
A Novel Stochastic-Encryption-Based
P2P Digital Rights Management Scheme

Majing Su∗, Hongli Zhang∗, Xiaojiang Du† and Qiong Dai
∗School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
† Dept. of Computer and Information Sciences, Temple University, Philadelphia, PA, USA.

e-mail: {sumajing, zhl}@pact518.hit.edu.cn, dux@temple.edu

Abstract—Digital right protection in P2P systems is attracting
more and more attentions. In this paper, we present a new
stochastic-encryption-based Digital Rights Management (DRM)
scheme for P2P content delivery networks. The files are encrypted
such that unpaid users cannot access the plaintext content.
We exploit the random characteristics of P2P to increase the
key space, which can defense collusion attacks. We add piece
validation policy during a download process to prevent poisoning
attacks. In our scheme, peers make a payment after downloading,
and this prevents user loss due to download failures (caused by
the dynamics of P2P). Our scheme does not have frequent user
authentications or state maintenance. Analysis and simulation
experiments show that our scheme can defend against collusion
attacks and poisoning attacks with a fairly high probability.

Index Terms—P2P; copyright protection; DRM

I. INTRODUCTION

Peer-to-Peer (P2P) networks provide us an effective way
of file sharing. Large digital contents such as movies, games
and software can be delivered fast over P2P networks. How-
ever, illegal sharing copyrighted materials also bring piracy
problems. P2P users can download copyrighted content with-
out authorization by copyright owners. These abuses lead to
economic dispute and legal matters. Copyright owners have
been fighting against piracy via both legal and technical
measures. Lots of websites such as Mininova [1] have been
forced to delete pirated content or even shut down due to
copyright infringement. However, users seek new approaches
(i.e. using Private Tracker) to share content for free. As a
result, copyrighted content providers are unwilling to deliver
their products by P2P systems. This not only leads to a great
deal of financial loss to the content providers but also prevent
the legal commercial use of P2P technologies.

Many possible counter-measures have been proposed to
solve piracy problem in P2P network. Some piracy detection
systems [2]-[4] identify copyright infringement by monitoring
user traffic and behaviors. However, deep package inspection
may invade users’ privacy. Another type of approaches is
based on user identity authentication [11][12]. Typically, each
paid peer is given a unique ID, and it only uploads data to
peers with valid IDs. However, paid peers may share content
with unpaid users (referred to as collusion attack). Moreover,
continuous authentication costs a large overhead.

Cryptographic technologies [5]-[10], especially encryption
[5]-[7], have been widely used in designing copyright-
protected P2P mechanisms. Zhang et al. [5] discuss some
intuitive approaches of applying traditional symmetric key and

public-key algorithms in P2P networks. The main concern is
how to defend against collusion attack and keep the efficiency
of P2P. In addition, if peers verify content only after download-
ing all the pieces and decrypting them, an attacker can easily
deploy a poisoning attack (uploading fake pieces to peers).
However, unfortunately, this is not considered in most existing
encryption-based schemes [6][7].

On the other hand, P2P is open, anonymous and scalable.
These characteristics make it hard to prevent piracy and require
the DRM schemes to be high scalable and efficient. Besides,
P2P is dynamic, and some pieces may be missing after a period
of time. Thus users may fail to download the entire file after
payment, which hurts users’ interest.

Observing these issues, in this paper, we propose an novel
digital right protection scheme for P2P content delivery net-
works. We exploit the random characteristics of P2P systems
to increase the key space. The decryption key sequence
of the content for each peer is different from others, thus
unauthorized users could not access the content even if some
colluders share their keys. We modify the piece validation
policy to prevent the poisoning attacks. Peers does not need
to maintain massive state nor frequently verify users’ identity,
which improves the efficiency. Analysis and experiments show
that our scheme is secure to multiple types of attacks.

The remainder of this paper is organized as follows. In Sec-
tion II, we present our copyright protection scheme. Then we
analyze its security in Section III, and evaluate its performance
in Section IV. We compare our scheme with some related work
in Section V. Our work is concluded in Section V.

II. OUR COPYRIGHT PROTECTION SCHEME

A. Design Overview

In our scheme, large files are broken into several pieces and
each piece is encrypted with several different keys. According
to our measurement, a peer usually download pieces of one
file from multiple peers. Therefore, even if pieces transferred
between two peers are encrypted with same keys, with high
probability they will get all pieces from different peers. Con-
sequently, the sequence of decryption keys for all the pieces
are different. This is the basic idea of our approach. Besides,
we attach a signed piece hash with each encrypted piece. Peers
can verify the piece by checking the signature and hash.

Fig.1 shows the overview of our scheme. We employ an
agent server (AS) to perform delivery, which has a website,
a key generation clients and several distribution clients. The

IEEE ICC 2015 - Next Generation Networking Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 5541

P2P Networks

Encryption keys
Original
files

…

…

…

OwnerAgent Server

Peer Peer Peer Peer

Encrypted
files

Fig. 1. Sketch of our scheme

website is in charge of publishing content index information,
handling peer registration and bills, and delivering decryption
keys. The key generation client generates keys for encryption
and signature. The distribution clients are responsible for
encrypting pieces and distributing them to peers. The agent
server is trustable to the owner. To simplicity, we only use one
agent server to illustrate system. In fact, the owner can deploy
multiple agent servers to improve performance and robustness.

We use a group of cryptographic algorithms to perform
piece operations:

• KGen(n) are a group of functions performed by the AS
to generate a public key Uf and a private key Rf , a group
of n-bit encryption keys EK=(k1,k2,...,km) and the cor-
responding decryption keys DK=(Dk1,Dk2,...,Dkm).
Uf and Rf are used to encrypt/decrypt key information
and verify/sign the piece hash. EK and DK are used
to encrypt and decrypt pieces.

• Enc(Px, ki) is an encryption function performed by the
AS to encrypt the x-th plaintext piece Px with key ki,
obtaining a cipher piece CiPx.

• Dec(CiPx, Dki) is a decryption function performed by
peers to get the plaintext Px by decrypting the cipher
piece CiPx with decryption key Dki.

• RKGen(ki, kj) is a function performed by the AS to
generate a transfer key tkij from ki and kj .

• REnc(CiPx, tkij) is a re-encryption function used by
peers to re-encrypt the cipher piece CiPx (Px encrypted
with ki) with a transfer key tkij , which generates a new
cipher piece CjPx (the same as Px encrypted with kj).

• Hash(X) is a hash function to compute a digest of X .
• Sign(X,Rf) is a signature function to sign X with Rf .
Many existing crypto algorithms may be used as above

functions as long as they are secure enough (e.g., resilience
to brute-force attacks and chosen-plaintext attacks). Besides,
to maintain the efficiency of P2P network, these algorithms
should be efficient and easy to implement. In this paper, we
use SHA-1 to compute hash and RSA algorithm to sign.
We employ the ElGamal cryptosystem [13] to encrypt and
decrypt pieces, which is widely used in secure transmission. To
generate keys, the AS chooses a primer p, a primitive element
α of Z∗

p , and an integer a (0 < a < p − 1), and computes
β = αa. Then it randomly chooses a group of integers
k1, k2, ..., km (0 < k1, k2, ..., km < p − 1) for encryption.
The corresponding decryption key of ki is ((αki)a)

−1 mod p.

In our scheme, only p and the re-encryption keys generated
from two encryption key are public; while (α, a, β) are secret.

For each plaintext piece Px and an encryption key ki,
the cipher is calculated as equation (1). Correspondingly, the
decryption algorithm is in equation (2). The transfer key
generation algorithm performed is in equation (3) and the re-
encryption algorithm performed is in equation (4).

CiPx = Enc(Px, ki) = Pxβ
ki mod p (1)

Dec(CiPx, Dki) = Pxβ
ki((αki)a)−1 mod p = Px (2)

tkij = RKGen(ki, kj) = βkj−ki mod p (3)

CjPx = REnc(CiPx, kij) = Pxβ
kiβkj−ki mod p

= Pxβ
kj mod p = Enc(Px, ki)

(4)

B. Key Algorithms

1) Piece Encapsulation. Pieces are encapsulated to prevent
collusion attacks and poisoning attacks. For each piece (say
Px) and a key (say ki), the AS generates a encapsulated
piece using Algorithm 1, and caches their Ek, CP , EH in a
cipher table. Each key is only used once per piece. The key
information Eki (line 3 in Algorithm 1) is used by AS to find
the appropriate decryption key for piece Px. We use a sequence
number i instead of ki to prevent brute-force attack and reduce
storage cost. nonceix is a timestamp used to prevent replay
attack (replaying an old Eki to a piece). We encrypt i and
nonceix with the public key Uf so they are secure.

Algorithm 1 Piece Encapsulation
Input: Px, ki, Rf , Uf

Output: Encapsulated piece EC(Px; ki)
Procedures:

1: CiPx = Enc(Px, ki)
2: select a nonce nonceix
3: Eki = Encrypt(i||nonceix, Uf)

// Encrypt the key information with public key Uf //
4: Hix = Hash(Eki||CiPx) // calculate a digest of Eki||CiPx //
5: EHix = Sign(Hix, Rf)

//Sing the digest with private key Rf //
6: EC(Px; ki) = Eki||CiPx||EHix

// join Eki, CiPx and EHix to form a encapsulated piece //

We attach a modified piece hash EHix (line 5 in Algorithm
1) to CiPx to prevent replay attack and poisoning attack
(replacing Eki or CiPx with a fake one). The hash of Eki
and CiPx is signed by the private key Rf , which can be
verified by peers after downloading the piece. To verify a piece
EC(Px; ki), a peer decrypts EHix with Uf and compares
it with Hash(Eki||CiPx). If identical, the piece is valid.
Otherwise, the piece is invalid.

2) Piece Re-encryption. In practice, cipher pieces on peers
with more connections have larger chances to be downloaded.
This increases the probability that different peers may share
the same decryption keys. To address this issue, we use a
re-encryption algorithm (Algorithm 2) at each peer, which
transfers a piece encrypted with ki to a piece encrypted with
kj . To ensure the confidentiality, peers should not be able to
obtain plaintext content during re-encryption.

IEEE ICC 2015 - Next Generation Networking Symposium

5542

Algorithm 2 Piece Re-encryption
Input: EC(Px; ki)
Output: EC(Px; kj)
Procedures:

1: Eki = GetEK(EC(Px; ki))
// get key information from EC(Px; ki) //

2: CiPx = GetCP (EC(Px; ki)) // get cipher from EC(Px; ki) //
3: Reply = Re-encryptionKeyReuqest(Eki, x, AS)

// request a re-encryption key for piece x from AS//
4: if Reply == {Ekj , EHjx, tkij} then
5: CjPx = REnc(CiPx, tkij)
6: EC(Px; kj) = Ekj ||CjPx||EHjx

7: else
8: // Reply = “nonce invalid”, EC(Px; kj) //
9: EC(Px; kj) = Extract(Reply)

// extract new piece from reply message //
10: end if

To re-encrypt a piece Px, the peer first sends a request to
the AS that contains the key information Eki of Px. When
received the request, the AS decrypts Eki with its private
key Rf to get i and nonceix. If the nonceix is valid, the AS
locates the key ki according to i and randomly chooses another
key kj (different from ki). Then it computes tkij using the
RKGen(ki, kj) algorithm, looks up Ekj and EHjx in cipher
table (or computes if not exist), and sends tkij , Ekj , EHjx

to the peer. If the nonceix is invalid, the AS replies a “nonce
invalid” message and a new encapsulated piece of Px.

After the peer receives response containing the transfer
key tkij from the AS, it re-encrypts the cipher CiPx with
tkij using the re-encryption algorithm REnc(CiPx, tkij), and
caches the encrypted piece EC(Px, kj). If the response is a
new encapsulated piece of Px, the peer caches it instead.

C. Main Work flow

1) Content Publishing. To delivery a content, the owner
uploads the original files and content information to AS in a
secure way. Then the AS perform KGen(n) to generate keys
(Uf , Rf , EK, DK) for the content, and publish the content
index information (file name, infohash, Uf , etc.) on its website.
The AS breaks the content into N pieces. For each piece Px,
the AS calculates and caches TAS different encapsulated pieces
using Algorithm 1. The purpose of caching TAS copies of each
piece is to serve concurrent requests.

2) Piece Delivery. Peers join the swarm (group of peers
sharing same content) and sequentially request pieces from AS
and other peers. Fig. 2 illustrates the piece transmission among
peers. The AS returns an undistributed encapsulated piece for
each request, then it chooses a different key to encrypt that
piece and caches the cipher. Once downloaded a piece, a peer
verify it immediately. The peer should discard the invalid piece
and download the piece again.

Each peer tracks the upload times utimes of each encap-
sulated piece. When received a piece request, if utimes is no
more than a threshold TP , the peer returns the encapsulated
piece it has downloaded. Otherwise, the peer must generate a
new encapsulated piece using Algorithm 2 and send it to the
remote peer. Peers perform re-encryption up to Tr times. After
that, a peer responds a corresponding encapsulated pieces
randomly chosen from its cipher table.

Agent Server

Peer

6. re
turn (E

k j, E
Hjx

, tk
ij)

5. re
quest

re-encryptio
n key (E

ki,x
)

2. re
turn EC

(Px
;k i)

1. re
quest

piece Px

3
. r

eq
u

es
t
P
x

4
. r

et
u

rn
 E
C
(P

x;
k i
)

Peers

7. request piece Px
8. return EC(Px;kj)

Peers

Fig. 2. Piece transmission among peers

3) File Decryption. In our scheme, peers pay for decryption
keys when finished downloading all pieces of the content. The
peer logs into the AS and pays for the content, then uploads
the Ek sequence of pieces. The AS checks the Ek sequence to
generate a response message (decryption keys or piece number
of all incorrect pieces) using Algorithm 3 and returns the
results to the peer. After receiving response, the peer verifies
the signature. If the response is the decryption key sequence,
the peer decrypts each encrypted piece with its corresponding
key using Dec(CiPx, Dki) (e.g., decrypts CiPx with Dki). If
the response is the piece number of incorrect pieces, the peer
should re-download these pieces from AS and then upload the
Ek sequence, until the content is successfully decrypted.

Algorithm 3 Decryption Key Generation
Input: Ek sequence, Rf

Output: Dk sequence SEQ or incorrect piece number IPN
Procedures:

1: SEQ = null, IPN = null, all correct = true
2: for each Eki in Ek sequence do
3: i||nonceix = Decrypt(Eki, Rf)
4: if Check(nonceix) == “correct” then
5: Dki = GetKey(i) // find the i-th decryption key//
6: SEQ = SEQ||Dki // join Dki to SEQ //
7: else
8: IPN = IPN ||x // mark the incorrect piece number//
9: all correct = false

10: end if
11: end for
12: if all correct == true then
13: return SEQ
14: else
15: return IPN
16: end if

During above three process, data transmission between the
owner and the AS, peers and AS is protected by existing
security mechanisms such as SSL, VPN, etc. The purpose of
peers re-downloading incorrect pieces from AS is to ensure
that all paid peers can download the entire content correctly
and decrypt it successfully. The AS is required to serve for a
long term before the content index is deleted.

III. SECURITY ANALYSIS

Usually, with partially decrypted data, an attacker cannot
tell whether the decryption is successful; neither can the
attacker access the content, especially to the audio or video

IEEE ICC 2015 - Next Generation Networking Symposium

5543

files. Hence, we define a successful decryption as decryption
of the entire content. In this section, we evaluate our scheme
by analyzing the resistance against some potential attacks.

A. Brute-Force Attack
Let N be the number of pieces of the entire content. Let

ω be the average number of distributed versions (different
encrypted versions of a piece delivered in P2P system) of
each piece. Therefore, the key space size is ωN . In P2P, a
file usually can be divided into hundreds of pieces, and most
pieces at AS and hot peers will be request by lots of peers,
thus ω is usually larger than 1. Hence the key space is large
enough to defense brute force attack. For instance, if ω = 2,
N = 500, the key space is 2500 ≈ 3.27e + 150. Suppose an
attacker tries to decrypt with 1 billion key per second, the time
of searching decryption key is about 1.04e+134 years.

B. Collusion Attack
We mainly analyze two types of collusion attacks to demon-

strate the security of our scheme as follows.
1) Sharing-key Attack. Colluders share their decryption key

sequences to pirates. In this case, a pirate can decrypt the
content only if its decryption key sequence is the same as
the colluders’. According to the well-known birthday paradox,
theoretically, the probability P (ωN , χ) of two peers having the
same decryption keys (referred to as key conflict) is shown in
equation (5), where χ is the number of peers in a swarm.

P (ωN , χ) = 1− ωN !

(ωN − χ)!ωNχ
≈ 1− e−χ(χ−1)/2ωN

(5)

According to the equation (5), in a typical size swarm,
a very huge number of colluders are required to achieve a
successful collusion. Take a simple situation (ω = 2 and
N = 50) as an example, to achieve P (ωN , χ) = 0.001, about
χ=5e+13 peers are required. In addition, given certain level of
χ, the larger N and ω are, the smaller P (ωN , χ) is, therefore,
even if some colluders publish their decryption key sequences,
almost no pirates can decrypt all of their own pieces.

2) Selecting-key Attack. Colluders upload key information
Ek and corresponding decryption key Dk. A pirate can
decrypt the content if he can find Dk for all the downloaded
pieces by comparing its own Ek with the keys uploaded
by colluders. For a χ-scale swarm, let γ be the percentage
of colluders, then the number of colluders in the swarm is
Nc = γχ. Distribution rate λ = ω/χ is the ratio of the
number of distributed versions and swarm size. In theory, the
probability that pirates successfully decrypt the content is:

Psuccess = [1− (1− 1

ω
)Nc]

N

= [1− (1− 1

λχ
)
λχ

]N (6)

Figure 3 shows Psuccess varying with λ and γ on some
typical N and χ. According to equation (6) and Fig. 3, for
a typical swarm χ > 100 and N > 500, when λ > 0.1 and
γ < 0.5, the probability of pirate successful decryption is less
than 0.2%. When λ > 0.2, even if the percentage of colluders
is close to 100% (γ=0.99 in Fig. 3), the probability that a pirate
can decrypt its content is still close to zero. This indicates that:
to a given swarm, the larger ω is, the more likely that each

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

γ=0.1~0.99

χ=500,N=500

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

χ=100,N=1000

γ=0.1~0.99

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

χ=500,N=1000

γ=0.1~0.99

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

χ=10000,N=1000

γ=0.1~0.99

Fig. 3. Probability of successful collusion. The x-axis is λ and the y-axis is
the Psuccess

peer get different decryption keys. A large N (e.g., N > 1000)
ensures that Psuccess is small. N is determined by the owner
and can be large. To prevent collusion attacks, we need to
increase λ by setting a small Tp and a large Tr. We suggest
set Tp as 2-3 and Tr as 3-5.

C. Poisoning Attack.
In our scheme, hash and signature are used to prevent

poisoning attack. Malicious attackers can upload invalid Ek,
CP and EH to other peers. Peers compute the hash of
Ek||CP , and compare it with the hash embedded in EH . If
the two hashes are different, this piece is regarded as falsified.
In the case that EH is falsified by the attacker, peers can
always find the signature invalid when verifying it with Uf .
Therefore, our scheme is resilience to the poisoning attack.

IV. SIMULATION EXPERIMENTS

In real P2P networks, there are some hot peers, which
makes the probability of key conflict larger than the theoretical
value. To examine this, we implement our scheme in a
simulation environment. We deploy χ peers and a AS with
5 distribution clients in a server. There are 5% hot peers who
have large bandwidth and no connection limit. Other peers
have a connection limit of 50. All peers apply the tit-for-tat
peer selection policy and rarest-first piece selection policy. We
use M = 0.2χ 1024-bit encryption keys, and the piece number
N is set to 1000.

We plot the results of sharing-key attack in Fig.4. It shows
that none of the peer pairs shares more than 40% of the key
sequence, that is, all peers have different key sequences. Thus
the collusion of sharing-key does not work. This confirms the
theoretical analysis in subsection III-B. Besides, the trend of
the data in Fig.4 implies that: the larger the swarm is, the
smaller the average proportion of shared key sequence is; in
a large swarm (e.g., χ > 2000), most peers would share less
than 10% of the key sequence with others.

To evaluate the resistance against selecting-key attack, we
randomly select a group of colluders from the peers and
estimate the probability of successfully decryption for different
percentages of colluders. In our simulations, χ is set to 50,
100, 500, 1000, and 2000, and γ is set from 0.1 to 0.99. The

IEEE ICC 2015 - Next Generation Networking Symposium

5544

TABLE I
PROBABILITY OF SUCCESSFULLY COLLUSION

Swarm size Percentage of colluders γ

χ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
50 0 7.06E-257 6.65E-174 1.29E-114 3.89E-85 4.96E-61 1.73E-46 6.11E-28 1.28E-14 0.059
100 0 5.97E-245 2.14E-151 1.85E-111 1.37E-77 8.05E-56 2.20E-42 1.68E-20 4.48E-11 0.237
500 0 7.45E-255 1.29E-187 2.47E-141 1.03E-105 1.55E-73 1.36E-50 2.07E-32 1.97E-14 0.045

1000 0 5.34E-276 5.28E-199 8.10E-146 1.87E-105 1.80E-76 1.09E-52 1.77E-31 3.07E-15 0.073
2000 0 1.17E-290 9.36E-205 1.59E-150 7.01E-111 2.25E-80 1.08E-55 4.01E-34 3.77E-16 0.046

0.5 1 2 3 4 5 6 7 8 9 10 15 20
0

20

40

60

80

100

Swarm population  ( 102)

P
er

ce
nt

ag
e

of
 p

ee
r

pa
irs

 (
%

)

0<5
5<10
10<15
15<20
20<25
25<30
30<35
35<40
40<100

Fig. 4. Percentage of peer pairs that share certain proportions ρ of the key
sequence under different swarm populations

results are shown in Tab. I, which indicates that the probability
of successful collusion is very low even when the percentage
of colluders reaches 90%.

We also measure the computational overhead of the crypto-
graphic functions using a PC (CPU: 2.60GHz, memory: 2GB).
Results shows that for a typical size piece, it takes less than
1s to perform encryption and re-encryption, e.g., about 0.3s
for a 2MB piece. This is affordable for both the AS and peers
in their uploading and downloading process.

V. RELATED WORK AND COMPARISON

There are lots of studies on copyright protection in P2P
systems. For example, Zhang et al. [5] present a piece-level
encryption-based DRM scheme for BitTorrent-like systems.
Chen et al. [6] redesign Zhang’s [5] system to avoid the
performance bottleneck of trackers. Lou et al. [11] poison
the detected pirates with fake blocks to protect copyrighted
content. Qiu et al. [7] propose a decentralized authorization
scheme for DRM in P2P based on proxy re-encryption mecha-
nism. Other technologies such as Diffie-Hellman group key[8],
fingerprinting[9], digital watermarking [10], are also used in
design DRM mechanism in P2P systems.

Our scheme is suitable for large file distribution over P2P
networks. Comparing with [7][11], it does not have frequent
identity authentication and state maintenance between peers
during a download process. This makes it scalable and ef-
ficient. Different from [11], in our scheme, peers can join
and leave randomly and pay after downloading, which protects
users’ interest. In addition, our scheme can prevent pollution
attack, which is not considered in [6][7]. Our scheme is easy
to implement and deploy as well.

VI. CONCLUSION

In this paper, we presented an encrypion-based digital right
protection scheme for P2P content delivery networks. We

encrypted pieces to ensure none can obtain plaintext content
during the piece transmission. We exploited the random char-
acteristic of P2P systems to increase the key space and prevent
collusion attacks. We modified current piece hash scheme to
prevent poisoning attack. In our scheme, users can pay after
downloading the file, which protect users’ interest against P2P
download failures. Analysis and simulation results showed that
our scheme can defend brute-force attack, collusion attacks
and poisoning attack. Its computational overhead is acceptable.

ACKNOWLEDGMENT

This work was supported by the National Basic Research
Program of China under Grant No. 2011CB302605, the Na-
tional High-Tech Development 863 Program of China under
Grant No. 2011AA010705, 2012AA012506, the National Nat-
ural Science Foundation of China under Grant No. 61402475,
61472164, and by the US National Science Foundation under
grants CNS-0963578, CNS-1022552 and CNS-1065444.

REFERENCES

[1] http://www.mininova.org/
[2] J. Mee, P.A. Watters, “Detecting and Tracing Copyright Infringements in

P2P Networks,” in Proc. ICN/ICONS/MCL’06, Morne, Mauritius, 2006.
[3] K.P. Chow, K.Y. Cheng, L.Y. Man, P.K.Y. Lai, L.C.K. Hui, C.F. Chong,

et al., “BTM-An Automated Rule-based BT Monitoring System for
Piracy Detection,” in Proc. ICIMP, 2007

[4] A. Sherman, A. Stavrou, J. Nieh, A. D. Keromytis, C. Stein, “Adding
Trust to P2P Distribution of Paid Content,” in Proc. ISC’09, Pisa, Italy,
2009, pp. 459-474.

[5] X. Zhang, D. Liu, S. Chen, Z. Zhang, and R. Sandhu, “Towards Digital
Rights Protection in BitTorrent-like P2P Systems,” in Proc. SPIE/ACM
Multimedia Comput. and Networking, San Jose, CA, USA, 2008.

[6] Y. Y. Chen; J. K. Jan, Y. Y. Chi, M. L. Tsai, “A Feasible DRM
Mechanism for BT-Like P2P System”, in Proc. IEEC’09, Ternopil,
Ukraine, 2009, pp. 323-327.

[7] Q. Qiu, Z. Tang, Y. Y. Yu, “A Decentralized Authorization Scheme for
DRM in P2P File-Sharing Systems”, in Proc. IEEE CNCC 2011, Las
Vegas, NV, USA, 2011, pp. 136-140.

[8] Y. Chen, W. Wu, “An Anonymous DRM Scheme for Sharing Multimedia
Files in P2P Networks”, Multimedia Toos and Applications, vol. 69,
April 2014, pp. 1041-1065.

[9] X. L. Li, S. Krishnan, N. W. Ma, “A Wavelet-PCA-Based Fingerprinting
Scheme for Peer-to-Peer Video File Sharing”, IEEE Trans. Inf. Forensics.
Security, vol. 5, pp. 365-373, Sept. 2010

[10] D. Tsolis, S. Sioutas, A. Panaretos, I. Karydis, K. Oikonomou, “De-
centralized Digital Content Exchange and Copyright Protection via P2P
Networks,” in Proc. ICSS 2011, Corfu, Greece, 2011, pp.1056-1061.

[11] X. S. Lou, K. Hwang, “Collusive Piracy Prevention in P2P Content
Delivery Networks,” IEEE Trans. Comput., vol. 58, pp. 970-983, July
2009.

[12] J. Y. Sung, J. Y. Jeong; K. S. Yoon, “DRM Enabled P2P Architecture
Advanced Communication Technology”, in Proc. ICACT 2006, Phoenix
Park, Korea, 2006, pp. 487-490.

[13] T.E. Gamal, “A Public Key Cryptosystem And Signature Scheme Based
On the Discrete Logarithm,” IEEE Trans. Inf. Theory, vol. 4, Jan. 1985.

IEEE ICC 2015 - Next Generation Networking Symposium

5545

