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ABSTRACT

In this paper, we propose a novel scheme that can achieve data privacy by hybrid cloud, which consists of public and private
cloud, and reduce storage and computation in private cloud, as well as communication overhead between private and public
cloud. Meanwhile, we propose a novel algorithm to process private image data. Our experimental results show that (1) our
algorithm achieves data privacy but only takes about 1/1000, time of the Advanced Encryption Standard algorithm and
(2) the delay of our hybrid cloud approach (including the private and public cloud communications) is only 3%–5% more
compared with the traditional public cloud-only approach. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the rapid development of information and communi-
cation technology, the amount of data produced by orga-
nizations has grown exponentially, which makes it hard
for many organizations to cost-effectively store and man-
age the data. Cloud computing, a new business model, is
considered as one of the most cost-effective solutions for
organizations to improve their IT segment and provides the
advantage of reduced cost through sharing computing and
storage resources. It utilizes an on-demand provisioning
mechanism and a pay-per-use model, and has drawn much
attention in recent years [1–3].

As more and more individuals and organizations stored
their data in cloud, there are also increasing concerns
about cloud computing, which have greatly affected the
wide adoption of cloud [4–6]. At the top of the list are
security and privacy concerns: people concern about the
storage and processing of sensitive data in remote physical
infrastructures which are owned by a third party, that is,
a cloud service provider (CSP). Because a CSP has full
control of the physical infrastructure stored clients’ data,
it is possible that the CSP conducts malicious attacks on
users’ data for financial or other reasons. For example, a
CSP could make money by revealing the data of one client
(say C) to C’s competitor. Meanwhile, a client’s data may
be leaked to the public by attackers if a CSP does not have
good security mechanisms to protect its servers.

Most existing solutions (e.g., [7,10–13]) employ
encryption/decryption techniques combined with access
control and auditing system to provide security and pri-
vacy for data stored on public cloud. However, in doing
so, these solutions inevitably bring in a heavy computa-
tional overhead to the data owner for key distribution, data
management, data query, and other operations.

In this paper, we consider a different approach: achiev-
ing data privacy by utilizing hybrid cloud. A hybrid cloud
consists of public cloud (such as Amazon EC2) and private
cloud, which is owned and controlled by the data owner.
The privacy of data is protected by splitting user data into
sensitive data and non-sensitive data and only outsourcing
the non-sensitive data to the public cloud. The sensitive
data are stored in user’s private cloud.

Many data (such as medical data) stored in cloud have
a large number of images, which require more storage and
computations. A patient medical image may be private.
If we directly take advantage of the approach mentioned
previously, all the medical images need to be stored in
private cloud. This would require a large amount of stor-
age in private cloud and may cause most data stored (and
processed) in private cloud, instead of in public cloud. Typ-
ically, one wants to minimize the storage and computation
in private cloud. To address the aforementioned challenge,
an important problem should be addressed: How to effi-
ciently achieve image data privacy by using hybrid cloud?
Compared with using public cloud only, using hybrid
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cloud would have communication overhead between pri-
vate and public cloud. Besides achieving data privacy, we
want to reduce storage and computation in private cloud,
as well as communication overhead between private and
public cloud.

Another way to protect data privacy is to transform data
or perturb data, which are used to preserve the anonymity
of data during data dissemination process. Perturbing data
is to use techniques like adding noise and swapping val-
ues while ensuring that some statistical properties of the
entire dataset are maintained. The method of adding noise
is used to perturb data before sending it to the public
cloud [14], and such noise is removed when these data
are sent to authorized users. However, if not enough noise
is added, the data can still be recognizable. Hence, this
method may introduce a large overhead on communication
and processing.

Data transformation is an anonymous method that is
used to keep data privacy via generalizations and suppres-
sions. An example of data transformation is to replace the
exact date of birth by only the year of birth. The loss of
specificity makes the identification process harder [15]. It
may not be a good solution to remove any data for pri-
vacy purpose because we would not be able to obtain
the original information, for example, the month and day
of birth.

Our goal is to design a solution that can efficiently pro-
vide privacy to data stored in cloud without introducing
large overhead on both computation and communication.

In this paper, we propose a novel algorithm that effi-
ciently achieves data privacy for large data sets, especially
images, stored in cloud. In our algorithm, firstly, a ran-
dom noise is added to image blocks instead of pixels,
and the size of block is determined by a balance between
the complexity of recovering the image and communica-
tion overhead. Then a random shuffle operation is applied
on the modified blocks, which makes the image hard to
be recognized.

The rest of the paper is organized as follows. Section 2
overviews the related work on privacy and security in
cloud computing. Section 3 describes our system and
thread models. The details of our scheme are presented
in Section 4, followed by performance evaluation in
Section 5. Finally, our concluding remarks are given in
Section 6.

2. RELATED WORK

Much work has been carried out on providing data pri-
vacy and security in cloud computing. In the sections that
follow, we discuss some closely related work.

2.1. Providing data privacy on
virtual machines

Mundada et al. [16] introduce SilverLine, a system that
enables a CSP to offer security as a service to protect

tenant data in clouds even if the software or services
that a particular tenant runs are themselves insecure. In
SilverLine, the cloud provider’s virtual machine manager
is augmented to obtain data and network isolation between
different cloud users, and these two kinds of isolation are
combined with the modifications of guest operating sys-
tems to obtain additional data isolation. Data are labeled
with security levels by the user, which are used to ensure
that data from one user are not propagated to untrusted
server instances belonging to other users or to locations
outside the cloud. Such kinds of techniques could protect
against data leaks that result from compromise, miscon-
figuration, or side-channel attacks from co-resident cloud
tenants [17], but all the protections (including data pri-
vacy) are established on the assumption of full trust on the
cloud providers.

2.2. Providing data privacy via
cryptographic techniques

Feldman et al. [7] propose a generic framework – SPORC,
for building a wide variety of collaborative applica-
tions like word processing and calendaring with untrusted
servers. In SPORC, data are encrypted with users’ cryp-
tographic keys before being sent to a cloud-hosted server;
therefore, the server observes only encrypted data and
cannot deviate from the correct execution without being
detected. The server assigns a total order to all oper-
ations and redistributes the ordered updates to clients,
and SPORC clients can detect the server’s misbehavior
according to the order. Because the order used to detect
servers’ bad behavior comes from the server, the user is
still required to trust the cloud provider to maintain data
privacy and even to operate correctly. Furthermore, large
computational overhead is introduced because of the use of
traditional encryption/decryption.

2.3. Protecting data privacy via
hybrid cloud

To secure outsourcing of data and arbitrary computations
to an untrusted commodity cloud, in [9], the data are
encrypted and verified in private cloud and operated and
stored in untrusted public cloud. As we have mentioned
previously, much computation overhead will be introduced
when the volume is huge, especially for the image data.
Zhang et al. [8] design a system named Sedic, which lever-
ages the special features of MapReduce to automatically
partition a computing job according to the security lev-
els of the data it works on to make the computation with
sensitive data in private cloud and only assigns the com-
putation without sensitive data to a public cloud. However,
all images contained privacy information will be stored
in private cloud, which makes the advantage of hybrid
cloud meaningless.
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2.4. Access control in cloud

Yu et al. [11] propose a scheme, which utilizes and
uniquely combines techniques of attributed-based encryp-
tion (ABE), proxy re-encryption and lazy re-encryption.
Each data file is associated with a set of attributes,
and each user is assigned an expressive access structure
defined over the attributes of files. Fine-grained access
control is received via key-policy ABE (KP-ABE) [18].
Then proxy re-encryption [19] is combined with KP-
ABE, which enables the data owner to authorize most
computation tasks of user revocation to cloud servers with-
out disclosing the underlying file contents. Finally, the
scheme takes advantage of the lazy re-encryption [20]
technique to eliminate re-encryptions required as part of
access revocation. However, attributed-based encryption
is computational expensive and consumes much time of
computing resources.

In [13], a completely different approach to secure the
data stored in public cloud is proposed via using offensive
decoy information technology, which is call Fog comput-
ing. Data access is monitored in public cloud, and the
abnormal data access is able to be detected through data
access patterns. When unauthorized access is suspected
and then verified using challenge questions, a disinforma-
tion attack is launched by returning large amounts of decoy
information to the attacker.

2.5. Achieving data storage security via
third party auditor

Users should be able to check the integrity of data placed
in cloud, sometimes with the aid of a third party auditor
(TPA). Auditing should be efficient and does not require
copy of users’ data. Auditing should not bring in new
vulnerabilities or introduce too much communication and

computational overhead. Wang et al. [10] propose an
auditing protocol by utilizing the technique of public key-
based homomorphic authenticator [21–23]. In [10], the
TPA could audit data in cloud without a copy of data and
thus does not introduce much overhead. Neither can the
TPA obtain any knowledge about the data stored in the
cloud. Even though the TPA in [10] can protect data from
being modified or deleted by the cloud providers, the cloud
provider can still access the original data and obtain private
information from the data. Hence, the scheme in [10] does
not provide data privacy.

3. ACHIEVING DATA PRIVACY VIA
HYBRID CLOUD

3.1. System and threat model

The architecture of a hybrid cloud is illustrated in Figure 1.
The original data come from private cloud and are sent to
data processing center.

For image data containing sensitive information, as seen
in Figure 2, we divide the image into several blocks with
the same size and shuffle these blocks with a random per-
mutation, and then we transform the problem of image
security into a jigsaw problem. To make the jigsaw prob-
lem NP-complete, where NP stands for “nondeterministic
polynomial time”, we add random noise into each color
dimension of every block, which breaks the pairwise
blocks relationship and the statistic information of the
original image. The shuffled and modified image becomes
unreadable and is sent to the public cloud. We store the
random noise used to cut the relationship between adja-
cent blocks and the information used to shuffle blocks in
the private cloud. The ID of the image is sent to the pri-
vate and public cloud at the same time. The shuffle order
is the information of random permutation obtained from

Figure 1. The architecture of hybrid cloud.
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the private cloud and is used to reorder the shuffled image
downloaded from the public cloud. Then the random noise
is obtained from the private cloud, and it is used to recover
the original image, as seen in Figure 3.

We consider an untrusted public cloud which intends
to obtain sensitive user data and has full control of the
hardware, software, and networks in the public cloud.

3.2. Design goals

We want to protect image data privacy stored in public
cloud via hybrid cloud. Specifically, we want to design
an efficient image encryption algorithm in trusted private

Figure 2. The flowchart of image process.

Figure 3. The flowchart of image recover process.

cloud, which could make the processed image stored in
public cloud unreadable and could store the small amount
of data used to encrypt the image in private cloud. It would
require too much storage in private cloud if we simply
store the entire image with sensitive information in pri-
vate cloud. Therefore, our design goal is to achieve image
data privacy via hybrid cloud and at the same time reduce
the following overheads: (1) the amount of data stored in
private cloud, (2) the communication overhead between
private and public cloud, and (3) the delay introduced by
communications between private and public cloud.

4. SECURITY OF IMAGE DATA

4.1. Modifying image

4.1.1. Dividing image into blocks.

Different from text, image has a larger size. It is inef-
ficient to perform operations based on pixels, no matter
what kind of encryption is taken. To speed up the opera-
tion on images, we divide a large image (size of N � N)
into n number of blocks, where each block has the same
size k � k. Take the Lena image for example, which has
a size of 256 � 256, the size of each block (k � k) is
set to 32 � 32. Therefore, the image is divided into n =
(256 � 32) � (256 � 32) = 64 pieces, which is shown in
Figure 4. The decision of value k, which is related to the
degree of security, could be seen in Section 5.1.

4.1.2. Adding noises to each block.

For each color dimension of a block, each pixel value
is subtracted from a random value (between 0 and 255).
We describe the details of the modification procedure
in Algorithm 1. After this modification, features along
two adjacent blocks are made unrelated because different
random values are used on each color dimension of the
two blocks. At the same time, the statistic features of the
image is also disarranged, which makes it hard to recover
the image via statistic methods.

Figure 4. Divided image.
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Algorithm 1 Image modification

Input: Original image and block size k .
Output: Modified image and a random value image.
for each color dimension do

for each block of the image do
rnd random value of {0, 1, : : : , 255};
for each pixel piwithin the block do

tmp pi – rnd;
if tmp < 0 then

tmp tmp + 256;
p0i  module(tmp, 255);
store p0i to modified image;

store rnd to random value image;

The random value image, which is used to recover the
original image, is stored in the private cloud, and has the
size of 1

k2 of the original image. Because we randomly
choose the value that is used to modify pixels of each color
dimension of every block, (256)n�d3 attempts are needed
to recover to the original image where d3 is the number of
color dimensions. Take Lena image, for example, 25664�3

attempts are needed. If a 1000 MIPS computer is used, then
it will take

25664�3

1000 � 106 � 60 � 60 � 24 � 365
years

However, the simple way of evaluating the security by
counting the number of brute-force trials is not enough to
measure the security.

Figure 5 is the Lena image after it is blurred on the block
level. Because of human visual capability, the blurred
image can still be identified by people who have seen the
original one. In addition, people may still be able to gain

Figure 5. Modified image.

information from the blurred image even though they have
never seen the original image. For example, one can tell
that Figure 5 is a photo of girl wearing a hat. To provide
strong privacy to image data, we propose to randomly shuf-
fle the blocks of modified image, which is discussed in the
next subsection.

4.2. Random shuffle of blocks

To make the modified image unrecognizable and the
storage overhead in private cloud as small as possible,
we shuffle the blocks of modified image according to
our image shuffle algorithm (the details are given in
Algorithm 2). We cluster the n blocks into a number of
groups with randomly chosen strides, and each cluster has
the same size m.

Algorithm 2 Image shuffle

Input: modified image, n: the number of block, m: the
group size.
Output: the shuffled image and shuffle information.
//produce a random permutation permut;
for i = 0! n – 1 do

orig[i] i;
left n;
cluser_id 0;
while left > 0 do

stride[cluser_id] random value of 1,2,...,n;
start[cluser_id]  random value of 0,1,...,n-1;/*the
start position */
i start[cluser_id];
i1 0;
for j = 0! m – 1 do

while orig[i] has been chosen do
i i + 1;
if i � n then

i i – n;
permut[i1] orig[i]; /*orig[i]is chosen */
i1 i1 + 1;
left left – 1;
i i + stride[cluser_id];
cluster_id cluster_id + 1;

//Shuffle modified image with the permutation:permut
for i = 0! n – 1 do

j perm[i];
Copy each pixel within ith block of modified image to
jth block of shuffled image;

Store the shuffled image to public cloud;

shuffle  each value of start and each value of stride
with splitting signal 0,0;
Store the string value shuffle to private cloud;

Security Comm. Networks 2015; 8:3771–3781 © 2015 John Wiley & Sons, Ltd. 3775
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Figure 6. Shuffled image.

The steps are given as follows:

(1) For each cluster of blocks of modified image.

(a) Randomly choose value stride from
1, 2, : : : , n as the stride.

(b) Randomly choose value start from
0, 1, : : : , n – 1 as the start position.

(2) Increasing the start position, start = start + stride.
If the current block has been chosen before, move to
the next block (start = start + 1, until it moves to
a block that has not been chosen before. Then copy
the block to the shuffled image.

(3) Goto step 2 until m number of blocks have been
chosen.

(4) Goto step 1 until all of the blocks of modified image
have been chosen.

After modification and shuffle operations are applied on
the Lena image, we obtain an image shown in Figure 6,
which has become very hard to be identified. This shows
that our modification and shuffle approach can protect the
privacy of images. In Section 5.1, we will mathematically
prove that our approach is secure. The shuffled image is
sent and stored in the public cloud, and the shuffle informa-
tion, such as the random value image, the random stride,
and random start position, is stored in the private cloud.

4.3. Recovering images

When an image is queried, the request is sent to both
the private cloud and public cloud at the same time. As
we mentioned previously, the information used to recover
the image is obtained from the private cloud. Firstly, we
obtain the shuffle order permut via Algorithm 3. Secondly,
we re-order the blocks of shuffled image from the public
cloud, which makes us obtain the modified image. Thirdly,
we obtain the random values from the private cloud and

Algorithm 3 Obtaining shuffle order

Input: n: The number of blocks, shuffle: a string com-
posed of start value , stride value, and split signal 0,0.
Output: Shuffle order perm.
//get start, stride, and cluster size information;
shuff _string_array  split shuffle with 0,0;
start the start value of shuff _string_array;
stride the stride value of shuff _string_array;
cluster_n the number of start;
m d n

cluser_n e;
left n;
cluster_id 0;
i1 0;
for i = 0! n – 1 do

orig[i] i;
while left > 0 do

i start[cluster_id];
if m < left then

m left;
for j = 0! m – 1 do

while orig[i] has been chosen do
i i + 1;
if i � n then

i i – n;
permut[i1] orig[i];
i1 i1 + 1;
left left – 1;

i i + stride[cluser_id];
cluster_id cluster_id + 1;

use them to recover the original image from the modified
image, that is, the random values are added to each color
dimension of every block of the modified image.

5. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our scheme,
including security analysis, overhead analysis, and experi-
mental results on efficiency.

5.1. Security analysis

When we divide an image into blocks and then shuffle it,
we convert the problem of recovering the shuffled image
to original one to the ‘jigsaw puzzle problem’, which has
been proven to be NP-complete if the pairwise affinity
among jigsaw pieces is unreliable [29].

Some recent literatures propose to use the features
of adjacent block’s edge to recover an image such that
humans can identify the image content in polynomial time.
Cho et al. [24] find that the dissimilarity-based compati-
bility, which is exploited to measure the color difference
along the adjacent boundary, is more discriminative than
booting-based compatibility [25,26], set-based compatibil-
ity [27], and statistics-based compatibility [28].
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However, our modifications on an image prevent such
features being used to recover a shuffled image. The
detailed explanations are given in the succeeding discus-
sion. In our scheme, each pixel of every block’s color
dimension is modified by subtracting a random value. If
after subtraction the pixel is less than 0, the maximum
value of pixel (namely 256) is added to the result (to make
it positive). Our scheme also destroys the original statistic
information. Specifically, our scheme disturbs the statistic
features that could be used to obtain the anchor block of
a puzzle. This is illustrated in Figures 7 and 8. With the
pixel modification in each color dimension of every block,
the features of adjacent block edges (used in [24]) are also
removed. According to [29], the jigsaw puzzle problem
that we have is NP-complete, which means that it cannot
be resolved in polynomial time.

We conduct experiments on several color standard test
images of size 512 � 512, and each experiment is run 100
times for each setting. The pairwise affinity is judged by
the dissimilarity-based compatibility measurement of the
sum of block color difference along adjacent boundaries.
Take two blocks blki and blkj, for example, the left–right
dissimilarity between them is calculated via Equation (1)

Figure 7. Original image histogram.

Figure 8. Modified image histogram.

D(blki, blkj) =
KX

k=1

d3X
l=1

((blki(k, u, l) – random(i, l))

– ((blkj(k, v, l) – random(j, l)))2

(1)

where d3 is the number of image color dimensions and
each block is a K � K � d3 matrix, u indexes the last
column of blki, v indexes the first column of blkj, and
random(i, k) is the array of random values used to modify
the original image. The number of blocks n is determined
by Equation (2)

n =

�
N � N

K � K

�
(2)

The color difference square D is assumed conform to
an exponential distribution, and the probability density
function is given in Equation (3).

Pi,j(blkj|blki) = �e–�D(blki,blkj) (3)

where � is the variance of D(blki, blkj) among all blkj and
blkj ¤ blkj. The sample space � is defined as follows:

� = {blki|blki has a right adjacent block} (4)

Define event A = ‘the block blk0is right adjacent block
has the highest compatibility score among all blocks’.
For both the original image and the modified image, the
probability that the right adjacent block has the highest
compatibility is

P(A) =
|A|

|�|
(5)

Figure 9 presents the accuracy probability of identi-
fying block’s adjacent block correctly from the shuffled

Figure 9. Accuracy without image modification.
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Figure 10. Accuracy after image modification.

original image according to Equation (5), and it can be seen
in Figure 9 that the pairwise affinity method is reliable,
which means shuffled original image can be recovered in
polynomial time.

However, after we modify the original image, the pair-
wise affinity method does not work well, which can be
seen in Figure 10. In Figure 10, the average accuracy to
find the right adjacent block from the shuffled modified
is very low because of the modification on each block of
original image.

We can choose value of K such that the probability in
Equation (5) is less than a predefined maximum thresh-
old maxi_probability. In Figure 10, we choose K � 32
for the airplane image and K � 64 for Lena, pepper
and baboon images, and the average accuracy is low. We
can choose other values of K to make the accuracy even
lower, which will raise the overhead on both storage and
communication. After the maximum of K is determined
by maxi_probability, the minimum of n is determined
according to Equation (2).

For a given shuffled image, suppose it is divided into n
pieces and then randomly clustered with size of m, the time
to obtain the modified image from the shuffled image on a
1000 MIPS machine is calculated in Equation (6)

n � n � (n – m) � n � (n – 2m) � n � � � � � 1 � n

1000 � 106 � 60 � 60 � 24 � 365

=
n

n
m � m

n
m �

� n
m

�
!

1000 � 106 � 60 � 60 � 24 � 365

(6)

If we set 200 years as a long enough time for image
security, take the Lena image (divided into n = 64 blocks),
for example, we have

n
n
m � m

n
m �

� n
m

�
!

1000 � 106 � 60 � 60 � 24 � 365
> 200

=
64

64
m � m

64
m �

�
64
m

�
!

1000 � 106 � 60 � 60 � 24 � 365
> 200

(7)

From the aforementioned inequality, the maximum
value of m is 8. This means that if we choose m � 8, then
it will take more than 200 years for someone to identify the
image. This is secure enough for many applications. On
the other hand, it is easier to obtain information when an
image is divided into less blocks, then the selection of n
should be careful. In the previously discussed example, we
set n as 64, which is large enough.

Because the noise is randomly chosen for each color
dimension of block and the blocks of modified image
is shuffled randomly, the information used to modify
and shuffle the same image will be different when it is
encrypted many times. Therefore, it is secure for the plain
text attack.

5.2. Overhead analysis

Achieving data privacy on public cloud is not our only
goal; our another goal is to minimize communication over-
head introduced by our scheme. Given an image divided
into n pieces and randomly clustered with size m, the
communication overhead on private cloud is computed in
Equation (8)

f (m, n) = (n � n � 3) +
� n

m
� 3

�
+ c (8)

where c is related with the size of TCP/IP header and
the image file header. We should minimize the overhead
on private cloud, which is formulated as the following
optimization problem:

Minimize f (m, n) = (n � n � 3) +
� n

m
� 3

�
+ c

With constraints on :

n
n
m � m

n
m �

� n
m

�
!

1000 � 106 � 60 � 60 � 24 � 365

> 200

and

P(A) =
|A|

|�|
< maxi_probability

(9)

As discussed previously, the minimum value of n - min_n is
determined via inequality P(A) = |A|

|�| < maxi_probability,
and the maximum value of m - max_m is determined by

n
n
m �m

n
m �

� n
m

�
!

1000�106�60�60�24�365
> 200. We can obtain all the

pairs of (m, n) that satisfy the aforementioned constraints,
then we can find the minimum f (m, n).

min_overhead = minimum(f (m, n)),

where 1 � m � max_m and

n � min_n

(10)
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5.3. Evaluation of efficiency

To evaluate the efficiency of our privacy preserving
method, we compare our algorithm with the Advanced
Encryption Standard (AES) algorithm, which is a standard
cryptographic algorithm based on permutations and substi-
tutions. We use four different sizes of color Lena image,
namely, 128�128, 256�256, 512�512, and 1024�1024.
Both our algorithm and AES (128-bit key) are run on the
Matlab platform installed in the same computer. For each
size of image, we run 100 times modification and recovery
operations on the image and obtain the average time. We
run AES once to obtain the time of AES encryption and
decryption. The results are given in Table I, where the time
unit is second.

In Table I, we can see that the time for processing image
increases when the image size becomes larger. For all the
block sizes, our algorithm is about 1000 times faster than
the AES algorithm. The reason is that our algorithm has
no iteration, while AES consists of four stages with many
rounds. To sum up, our algorithm provides image data
privacy, and it is much more efficient than AES.

5.4. Experiments using Amazon EC2

Our private cloud is set up in a server located at Computer
Information Systems department of Temple University,
and public cloud is built on Amazon EC2 cloud. The
Microsoft SQL Server 2005 is one kind of database devel-
oped by Microsoft Corp. is installed in the local server,
which is used to store private and sensitive data. Amazon
Relational Database Service SQL server 2008 is installed
in Amazon EC2 and is used to store non-sensitive data. The
Microsoft Visual Studio 2010 software is utilized
to create websites that provide services through webpages,
which are developed using ASP.NET and C].

For database administrator (DBA), we develop data
processing applications to provide the process of origi-
nal data and management of databases both on private
cloud and public cloud. And for users, data accessing
applications are built to upload the original file and query
some kind of information that they are allowed. Inter-
net Information Services is chosen as the web server,
which supports both data processing applications and data
accessing applications.

The original data, which are uploaded by users via data
accessing applications, are stored in private cloud tem-
porarily. The DBA will process the original data using the

Table I. Running time of our algorithm and AES.

Image size Our algorithm AES Time ratio

128� 128 0.1317 122.6 931.1
256� 256 0.4593 490.1 1067
512� 512 1.858 1957 1054
1024� 1024 7.010 7824 1116

AES, Advanced Encryption Standard.

data processing applications and will output two kinds of
data. One is the disturbed data and cannot be recognized,
and the other kind of data contains the secret information
used to recover the disturbed data. The disturbed data are
sent to the public cloud, while the secret information is
sent to the private cloud. Meanwhile, the original data will
be removed from the original data storage after they are
processed by DBA.

When user wants to query some kind of information,
a request is sent to the web server via data accessing
applications. The web server forwards the request to the
private cloud and the public cloud according to the query
and user’s information. After the web server receives
data from private cloud and public cloud, data recov-
ery is performed, and then the recovered data are sent to
the user.

As shown in Figure 1, the key information used to
recover data is transmitted between data center and web
server within the private cloud, and a user is not able to
obtain the key information. Meanwhile, only data packets
between the web server in private cloud and the data cen-
ter in public cloud can be obtained at the public cloud. The
image data sent to public cloud is either blurred or hashed
data, and they cannot be taken advantage of to find con-
nections among tables in public cloud. Therefore, the key
information is secured from both the web client and public
cloud, which means that our scheme successfully protects
data privacy.

We choose the four different sizes of Lena image,
namely, 128� 128, 256� 256, 512� 512 and 1024� 1024,
to evaluate the security, efficiency, and overhead of our
scheme. To measure the delay caused by our scheme, we
perform 100 time experiments for each size of Lena image.
We record the delay between the time (t1) when a user
sends the request and the time (t2) when the web server has
the data ready. We also record the delay when our scheme
is not used. The average of the 100 runs are reported in
Table II, where the time unit is millisecond.

Table II displays that the delay increases as the image
size becomes larger, which is easy to understand. Table II
also exhibits that our scheme only increases the delay a
little bit, between 3.60%–5.29%. This proves the efficiency
of our scheme. Meantime, if we compare the data of Table I
with that of Table II, we discover that the execution time of
our scheme implemented in C] (Table II) is much less than
that implemented in Matlab (Table I, where the time unit
is second). The reason is given in the succeeding text: in the
C] implementation, we take advantage of the LockBitmap

Table II. Comparison of delay.

Image size With our Without our increase
scheme scheme

128� 128 23.3123 22.5023 3.60%
256� 256 76.1976 73.4673 3.72%
512� 512 242.4657 230.6346 5.13%
1024� 1024 976.4206 927.3578 5.29%
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Table III. Overhead on private cloud.

Cluster size Number of Communication
cluster overhead

1 64 571
2 32 389
3 22 333
4 16 298
5 13 282
6 11 271
7 10 266
8 8 245

Table IV. Overhead on public cloud.

Image size Communication Storage
overhead overhead

128� 128 49499 49206
256� 256 197099 196662
512� 512 787515 786486
1024� 1024 3149171 3145782

class that converts bitmaps to byte arrays, which greatly
accelerates the image processing.

We also execute experiments to measure the commu-
nication overhead introduced by our scheme. From the
overhead analysis in Section 5.2, we know that if image is
divided into 64 blocks, the maximum cluster size is 8. The
communication overhead of our scheme on private cloud
is measured by the packet size, which is captured by the
Wireshark software installed on the web server. The
communication overhead is presented in Table III.

When the number of cluster increases, the communica-
tion overhead on private cloud becomes larger. The reason
is that the number of random start value and stride value
increases even though the image size is the same.

The overhead of querying Lena image in public cloud is
computed using the same method as that on private cloud,
and the results are reported in Table IV. Table IV shows
that the overhead increases when the image size becomes
larger. It is because the maximum transmission unit (MTU)
limitation over Internet, which divides larger size data into
pieces with size less than MTU. When the image size
increases, the image is divided into more pieces and hence
has more overhead.

In Tables III and IV, we can calculate the overhead
caused by our privacy preserving scheme: (1) If we do not
run the optimum value of cluster numbers, the overhead is
between 245

3149171 and 571
49499 , that is, 0.01%–1.52%. (2) Oth-

erwise, the overhead is even less 245
49499 , that is, 0.49%.

Therefore, our scheme introduces little overhead.

6. CONCLUSION

To address the increasing concern of data privacy in cloud,
we proposed a novel scheme that can protect data pri-
vacy, especially for image data. In our scheme, an image

containing privacy information is divided into blocks, and
the blocks are shuffled with random start position and
random stride. Our scheme operates at the block level
instead of the pixel level, which greatly speeds up the
computation. We converted the image privacy problem
into the jigsaw puzzle problem. To make the jigsaw puz-
zle problem NP-complete, we modified the image data
based on blocks by subtracting a random value for each
pixel within the same block and same color dimension.
These operations make the pairwise affinity unreliable
and make the shuffled image unrecognizable as well as
the statistic information. We formulated an optimization
problem to minimize the overhead. By carefully select-
ing the number of blocks and the cluster size, the com-
munication overhead of our scheme on private cloud
can be greatly reduced. We implemented our scheme in
real network environments (including the Amazon EC2)
and tested the security, efficiency, and communication
overhead. Both our analysis and experimental results
showed that our scheme is secure, efficient, and introduces
little overhead.

ACKNOWLEDGEMENTS

This work was supported in part by the US National
Science Foundation under grants CNS-0963578, CNS-
1022552, and CNS-1065444, as well as US Army
Research Office under grant WF911NF-14-1-0518.

REFERENCES

1. Mell P, Grance T. Draft NIST working definition of
cloud computing, 2009. Referenced on June. 3rd.

2. Chen D, Zhao H. Data security and privacy protection
issues in cloud computing, 2012 International Confer-
ence on Computer Science and Electronics Engineer-
ing (ICCSEE), Delhi, India, 2012.

3. di Vimercati SDC, Foresti S, Samarati P. Manag-
ing and accessing data in the cloud: privacy risks
and approaches, Proceedings of CRiSIS, Cork, Ireland,
2012.

4. Ryan MD. Cloud computing privacy concerns on our
doorstep. Communications of the ACM 2011; 54 (1):
36-38.

5. Subashini S, Kavitha V. A survey on security issues in
service delivery models of cloud computing. Journal
of Network and Computer Applications 2011; 34 (1):
1-11.

6. Jansen WA. Cloud hooks: security and privacy issues
in cloud computing, 2011 44th Hawaii International
Conference on System Sciences (HICSS), Kauai, HI,
USA, 2011.

7. Feldman AJ, Zeller WP, Freedman MJ, Felten EW.
SPORC: Group collaboration using untrusted cloud
resources, OSDI, Vancouver, BC, Canada, 2010.

8. Zhang K, Zhou X, Chen Y, Wang X, Ruan Y. Sedic:
privacy-aware data intensive computing on hybrid

3780 Security Comm. Networks 2015; 8:3771–3781 © 2015 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



X. Huang and X. Du Achieving data privacy on hybrid cloud

clouds, Proceedings of the 18th ACM conference
on Computer and communications security, ACM,
Chicago, IL, USA, 2011.

9. Bugiel S, Nürnberger S, Sadeghi AR, Schneider T.
Twin clouds: an architecture for secure cloud com-
puting, Workshop on Cryptography and Security in
Clouds, WCSC, Zurich, Switzerland, 2011.

10. Wang C, Wang Q, Ren K, Lou W. Privacy-preserving
public auditing for data storage security in cloud
computing, 2010 Proceedings IEEE INFOCOM,
San Diego, CA, USA, 2010.

11. Yu S, Wang C, Ren K, Lou W. Achieving secure,
scalable, and fine-grained data access control in
cloud computing, 2010 Proceedings IEEE INFOCOM,
San Diego, CA, USA, 2010.

12. Li J, Jia C, Li J, Liu Z. Novel framework for outsourc-
ing and sharing searchable encrypted data on hybrid
cloud, 2012 4th International Conference on Intelli-
gent Networking and Collaborative Systems (INCoS),
Bucharest, Romania, 2012.

13. Stolfo SJ, Salem MB, Keromytis AD. Fog computing:
mitigating insider data theft attacks in the cloud, 2012
IEEE Symposium on Security and Privacy Workshops
(SPW), San Francisco, CA, USA, 2012.

14. Hwang K, Li D. Trusted cloud computing with secure
resources and data coloring. IEEE Internet Computing
2010; 14(5): 14-22.

15. Iyengar VS. Transforming data to satisfy privacy con-
straints, Proceedings of the eighth ACM SIGKDD
International Conference on Knowledge Discov-
ery and Data Mining, Edmonton, AB, Canada,
2002.

16. Mundada Y, Ramachandran A, Feamster N. Silver-
Line: data and network isolation for cloud services,
2nd USENIX Workshop on Hot Topics in Cloud Com-
puting, Portland, OR, USA, 2011.

17. Ristenpart T, Tromer E, Shacham H, Savage S. Hey,
you, get off of my cloud: exploring information leak-
age in third-party compute clouds, Proceedings of the
16th ACM Conference on Computer and Communica-
tions Security, Chicago, IL, USA, 2009.

18. Goyal V, Pandey O, Sahai A, Waters B. Attribute-
based encryption for fine-grained access control of
encrypted data, Proceedings of the 13th ACM Confer-
ence on CCS, Alexandria, VA, USA, 2006.

19. Blaze M, Bleumer G, Strauss M. Divertible protocols
and atomic proxy cryptography, Advances in Cryptol-
ogy EUROCRYPT’98, Helsinki, Finland, 1998.

20. Kallahalla M, Riedel E, Swaminathan R, Wang Q,
Fu K, Proceedings of the 2nd USENIX Conference
on File and Storage Technologies, San Antonio, TX,
USA, 2003.

21. Ateniese G, Burns R, Curtmola R, Herring J, Kissner
L, Peterson Z, Song D. Provable data possession at
untrusted stores, Proceedings of the 14th ACM Con-
ference on Computer and Communications Security,
Alexandria, VA, USA, 2007.

22. Shacham H, Waters B. Compact proofs of retriev-
ability, Advances in Cryptology–ASIACRYPT 2008,
Melbourne, Australia, 2008.

23. Wang Q, Wang C, Li J, Ren K, Lou W. Enabling public
verifiability and data dynamics for storage security in
cloud computing, Computer Security–ESORICS 2009,
Saint Malo, France, 2009.

24. Cho TS, Avidan S, Freeman WT. A probabilistic
image jigsaw puzzle solver, 2010 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
San Francisco, CA, USA, 2010.

25. Friedman J, Hastie T, Tibshirani R. Additive logistic
regression: a statistical view of boosting (With dis-
cussion and a rejoinder by the authors. The Annals of
Statistics 2000; 28(2): 337-407.

26. Torralba A, Murphy KP, Freeman WT. Sharing fea-
tures: efficient boosting procedures for multiclass
object detection, Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004, Washington,
DC, USA, 2004.

27. Simakov D, Caspi Y, Shechtman E, Irani M. Summa-
rizing visual data using bidirectional similarity, IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2008. CVPR ’08, Anchorage, AK, USA, 2008.

28. Weiss Y, Freeman WT. What makes a good model
of natural images? IEEE Conference on Computer
Vision and Pattern Recognition, 2007. CVPR’07,
Minneapolis, MN, USA, 2007.

29. Demaine ED, Demaine ML. Jigsaw puzzles, edge
matching, and polyomino packing: connections and
complexity. Graphs and Combinatorics 2007; 23 (1):
195–208.

Security Comm. Networks 2015; 8:3771–3781 © 2015 John Wiley & Sons, Ltd. 3781
DOI: 10.1002/sec


	Achieving data privacy on hybrid cloud*5pt
	INTRODUCTION
	RELATED WORK
	Providing data privacy on virtual machines
	Providing data privacy via cryptographic techniques
	Protecting data privacy via hybrid cloud
	Access control in cloud
	Achieving data storage security via third party auditor

	ACHIEVING DATA PRIVACY VIA HYBRID CLOUD
	System and threat model
	Design goals

	SECURITY OF IMAGE DATA
	Modifying image
	Dividing image into blocks
	Adding noises to each block

	Random shuffle of blocks
	Recovering images

	PERFORMANCE EVALUATIONS
	Security analysis
	Overhead analysis
	Evaluation of efficiency
	Experiments using Amazon EC2

	CONCLUSION


