
Auditing Cloud Service Level Agreement on VM
CPU Speed

Ryan Houlihan, Xiaojiang Du, Chiu C. Tan, Jie Wu
Department of Computer and Information Sciences

Temple University

Philadelphia, PA 19122, USA

Email: {ryan.houlihan, dux, cctan, jiewu}@temple.edu

Mohsen Guizani
Qatar University

Doha, Qatar

mguizani@ieee.org

Abstract—In this paper, we present a novel scheme for
auditing Service Level Agreement (SLA) in a semi-trusted or
untrusted cloud. A SLA is a contract formed between a cloud
service provider (CSP)and a user which specifies, in measurable
terms, what resources a the CSP will provide the user. CSP’s being
profit based companies have incentive to cheat on the SLA. By
providing a user with less resources than specified in the SLA the
CSP can support more users on the same hardware and increase
their profits. As the monitoring and verification of the SLA is
typically performed on the cloud system itself it is straightforward
for the CSP to lie on reports and hide their intentional breach
of the SLA. To prevent such cheating we introduce a framework
which makes use of a third party auditor (TPA). In this paper
we are interested in CPU cheating only. To detect CPU cheating,
we develop an algorithm which makes use of a commonly used
CPU intensive calculation, transpose matrix multiplication, to
randomly detect cheating by a CSP. Using real experiments we
show that our algorithm can detect CPU cheating quite effectively
even if the extent of the cheating is fairly small.

Keywords—Cloud computing; Service Level Agreement; audit-
ing; CPU

I. INTRODUCTION

Over the years, cloud computing has steadily gained pop-
ularity in both industrial and academic settings. Cloud com-
puting is a model which allows for ubiquitous and on demand
network access to a shared pool of configurable computing
resources which are capable of being rapidly provisioned
and released [1]. The cloud maximizes its efficiency using
shared resources and rapid elasticity to achieve both coherence
and economies of scale. Using cloud services, users can find
many economic benefits by avoiding upfront infrastructure
costs, maintenance costs and operational expenditures. Cloud
computing systems also significantly reduce unnecessary over-
head by both providing enterprises with faster deployment
and improved manageability by a reduction in maintenance
demands. Recently, a number of large cloud providers have
begun pay-as-you-go services. Some of these are Amazon [2],
IBM [2], Google [3] and Mega [4]. With the emergence of such
large and effective cloud providers, an ever increasing number
of enterprises and individual users have been migrating their
data and computational tasks to cloud systems.

By definition, offered cloud services belong to one of
three models. These models include infrastructure as a service
(IaaS), platform as a service (PaaS) and software as a service
(SaaS). IaaS is any cloud system that provides provision pro-
cessing, storage, networks and other fundamental computing

resource. PaaS is any cloud system that deploys consumer-
created or acquired applications. SaaS is any cloud systems that
provides applications [1]. Cloud service providers (CSPs) offer
their services to clients in a pay-as-you-go fashion. The actual
services the CSPs are required to provide are defined in the
Service Level Agreement (SLA) which is a contract between
the client and the CSP. For this work, we are most concerned
with providers of IaaS services such as Amazons Elastic
Compute Cloud (EC2) [2] that provides basic components such
as memory, disk drives, and CPUs. For IaaS based services,
the SLA metrics include CPU speed, storage size, network
bandwidth, etc.

In cloud computing, a SLA serves as the basis for the
expected level of service the CSP is required to provide. Being
that a CSP is a profit driven enterprise, there is a great incentive
for the CSP to cheat on the SLA. Due to this incentive to cheat,
a CSP can not guarantee to audit the SLA and to verify for sure
that it is being met. To handle this problem Amazon EC2, for
example, has now moved the burden of auditing the SLA to the
user. Unfortunately, the overhead for individual users to audit
the cloud by themselves is high, since any auditing process will
consume resources which the user has paid for. Thus, the only
reasonable choice is to put the burden of auditing the SLA onto
a third party whose purpose is to verify that the SLA is being
met. This, however, is also problematic being that the CSP
has incentives to defeat the SLA monitoring and verification
techniques performed by the third party by interfering with the
monitoring and measurement process.

In this paper, we present an algorithm for auditing CPU
allocation and verify the corresponding SLA is being met via a
SLA verification framework which makes use of a third party
auditor (TPA). The TPA framework, first introduced by [5],
[6], is highly beneficial for three fundamental reasons. First,
it is highly flexible and scalable and can easily be extended
to cover a variety of metrics from memory allocation to CPU
usage. Secondly, it supports testing for multiple users which
increases the accuracy of the cloud testing. Third, it removes
the auditing and verification burden from the user and instead
puts it on the TPA. Using the TPA, we can either prove that the
CSP satisfies the SLA or detect and report an SLA violation.
In this paper, our contribution can be summarized as follows:

• Develop a novel algorithm for auditing CPU allocation
using a TPA framework to verify the SLA is met.

• Use real experiments to demonstrate the effectiveness

IEEE ICC 2014 - Communication and Information Systems Security Symposium

978-1-4799-2003-7/14/$31.00 ©2014 IEEE 799

of our algorithm for detecting CSP cheating on the
SLA metric of CPU speed.

II. RELATED WORK

Brandic et al. [7] proposes a layered cloud architecture to
model the bottom-up propagation of failures and uses these
to detect SLA violations via mapping of resource metrics to
SLA parameters. There have also been a variety of approaches
for SLA assessment which focus on measuring or estimating
Quality of Service (QoS) parameters. Sommers et al. [8]
proposes a passive traffic analysis method for online SLA
assessments which reduce the need for measuring QoS metrics.
Wang and Eugene [9] present a quantitative study of end-to-
end network performance among Amazon EC2 and conclude
that virtulization causes significant unstable throughput and
abnormal variations in delay. Li et al [10] compares the
performance cost of four major cloud providers including
Amazon, Microsoft, Google and Rackspace.

Goldburg et al. built off of Li’s study by considering the
previous work on an untrusted cloud which can interfere with
the measurement and monitoring process which is triggered
by users. Zhang et al. [5] and Ye et al. [6] propose a flexible
and scalable framework which uses a TPA for SLA verifica-
tion. This framework supports various types of SLA tests. In
particular, they also develop an effective testing algorithm that
can detect SLA violations on physical memory size of a VM.

III. ASSUMPTIONS AND A THREAT MODEL

A. Assumptions

In our paper we make the following assumptions:

• The TPA can be trusted by the user to properly carry
out the auditing functions while auditing the CSP and
verifying the SLA.

• The CSP must provide the hypervisor source code to
the TPA to ensure that it does not exhibit malicious
behavior.

• The TPA must be able to ensure the integrity of
the hypervisor. This is provided by Trusted Platform
Group (TCG)’s Trusted Platform Module (TPM) and
Core Root of Trust for Measurement (CRTM) [13].
The framework for ensuring hypervisor integrity is
provided by Hypersentry [11].

• Communication time between the cloud system and
the TPA is 200 ms or less.

B. Threat Model

Our threat model consists fundamentally of the fact that the
CSP has complete control over all its own resources which
include physical machines, VMs, hypervisor, etc. The CSP
is able to access any data held on the VM and know about
anything executed on the VM. The CSP can also modify any
data held on the VM or any output of any execution. For
example if a test is run and outputs a variety of timestamps,
the CSP could stealthy change the timestamp values. Thus,
the output data saved on the cloud system is not to be trusted.
Finally, the CSP will only perform cheating if the benefit is
greater than the cost. The cost may be too large for the CSP
and thus the CSP would have no incentive to cheat.

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im
e
(s
)

Matrix Size NxN

Fig. 1. Time it takes to compute a SHA-1 [15] of a NxN matrix of doubles.
As is shown the time to compute the SHA-1 hash [15] is relatively small
being only 0.022021013 s for a 1000x1000 matrix. This is 0.3% the time it
takes to compute a transpose matrix multiplication of a 1000x1000 matrix.

IV. IMPLEMENTATION AND EVALUATION

A. Requirements

A variety of requirements must be fulfilled for our auditing
test to be effective in preventing SLA cheating. First, our
auditing test must run a fairly generic computational task so
as to not be easily detected as an audit while also being
computationally heavy and not wasting time with memory
passing. To fill this first requirement, we choose to use a trans-
pose matrix multiplication. This was chosen over a standard
matrix multiplication as transpose multiply minimizes memory
passing while maximizing CPU time.

Our auditing test must also be able to detect if the cloud
system has modified the input or output of our auditing test. It
must then report this malicious behavior. We accomplish this
through redundant time recording performed by the TPA which
will be covered in depth further on. Next, our auditing test
should be sensitive enough to detect a wide variety of cheating
behaviors, reporting as low as 2% cheating to be unacceptable.

Next, our auditing test should be developed in such a way
that its accuracy does not depend on any of the cloud systems
timing functions but instead depends only on the accuracy
of the timing functions on the TPA’s system. This prevents
the CSP from reporting false times and hiding cheating. The
communication overhead of 200 ms must also be less than
1% the total execution time of a single cycle of our execution.
Finally, we must be able to assure the computational task has
actually been run, not just faked. We do this by taking a SHA-1
hash [15] of the resulting matrix.

The time to compute the SHA-1 hash [15] of a NxN
matrix is relatively small compared to the computation time
of a transpose matrix multiplication. This is shown to be
true in (Fig. III-A) where it is clear that the time to run the
SHA-1 hash on a NxN matrix of doubles does not increase
significantly with larger sizes of N compared to the increased
computational time of the transpose matrix multiplication of
the larger matrices. As an example it takes 0.022021013 s to

IEEE ICC 2014 - Communication and Information Systems Security Symposium

800

compute the SHA-1 hash [15] of a 1000x1000 matrix while
it takes on average 6.7361414708 s to compute the transpose
matrix multiplication of two 1000x1000 matrices on the same
system. This means that the SHA-1 hash [15] only takes about
0.3 % of the time it takes to compute the matrix itself.

V. IMPLEMENTATION AND ALGORITHM

Our implementation consists of three distinct parts. Initial-
ization, algorithm execution, and verification.

A. Initilization

The initialization consists of the following parts:

• VM mirroring

• NxN matrix creation and upload

The VM mirroring is done by the TPA. The TPA must first rent
a VM on the target cloud system. The TPA must then, on their
auditing system, create a VM which mirrors the specifications
of the VM they have rented from the cloud provider. This
VM’s must also have the same or similar background tasks.
Next, the TPA must create two NxN matrices where N is a
number such that when the two NxN matrices are multiplied
with each other the time, τ to perform the multiplication is
large enough that the communication overhead is less than 1%
of τ . Finally, once the NxN matrices are created they must be
loaded onto the target cloud systems VM.

B. Auditing Test Execution

To introduce the next stage in our implementation, we
must first introduce the auditing test itself. Only three pieces
of information are needed for the execution of our test. Two
premade NxN matrices, A and B, and a number X where X is
the number of transpose matrix multiplications to be run. The
execution of the auditing test on the cloud VM is as follows:

• Output signal to terminal that multiplication will begin
and record the time, t2−i.

• Perform a matrix multiplication where C = A×B.

• Record the elapsed time, e2−i, and output to the
terminal that the multiplication has ended.

• Compute the SHA-1 hash of the resulting matrix C,
represented as SHA-1[C].

• Output the time to compute the matrix multiplication,
e2−i and SHA-1[C] to the terminal.

• Shift each element of matrix A and B by one.

• Repeat the previous steps X − 1 more times where i
is equal to the current transpose matrix multiplication
being performed.

The execution of the algorithm on the TPA VM is as follows:

• Record the time, T .

• Initialize and execute the auditing test on the cloud
VM.

• Watch the output from the cloud VM terminal. Com-
pute the time elapsed between the signal that the

multiplication has started and the signal that the mul-
tiplication has ended, e1i. Also record the hash value,
SHA-1[C], and the execution time, e2−i as reported
by the cloud VM.

• Record the elapsed time, E, for the entire execution
of the test.

First, the TPA begins the execution of the auditing test on
the cloud VM and records the time, T , the test begins. The
auditing test then initializes itself and signals via the terminal
that it will compute a transpose matrix multiplication. This
signals the TPA to take a recording of the time t1−i where i is
initialized to one. The auditing test also takes its own recording
of the time t2−i. Two matrices, A and B, are then multiplied
as C = A×B. The time is then again recorded by the auditing
test and the time elapsed since t2−i is recorded as e2−i. The
auditing test then signals the terminal that the multiplication
has ended. The TPA receives this signal and records the time
elapsed since t1−i as e1−i. Next, the auditing test computes
the SHA-1 hash [15] of the resulting matrix, C, as SHA-1[C].
The elapsed time e2−i and SHA-1[C] are then both output to
the terminal. The TPA then records these values.

Next, all the values in A and B are then shifted to the
right by one place. The counter i is increased by one. The
multiplication process as listed above is then repeated until
i = X for a total of X − 1 times. Finally, the execution of
the auditing test ends and the TPA records the time elapsed
since T as E. While this is all going on the TPA runs, on its
VM, the same algorithm records the time for each transpose
matrix multiplication test as well as the hash of the result for
validation purposes.

C. Verification

Now the question remains: Given all this information we
have recorded, how do we detect a breach in the SLA by
the CSP? The first step we take is to sum up the e2−i value,∑X

i e2−i for all tests run on the cloud VM. We compare this
to the value of E. Since the communication overhead, SHA-
1 hashing, and time to shift the matrix values are very small
compared to the execution time of the algorithm we can be

assured that
∑X

i e2−i should be close to but less than the

value of E. If the CSP has blatantly cheated then
∑X

i e2 will
be greater than, or significantly less than, the value of E and
a violation of the SLA can be detected.

Next, we take
∑X

i e1−i and compare it to
∑X

i e2−i. Again
since the communication time is small compared to the actual

transpose matrix multiplication,
∑X

i e1 should be very close,

<< 1%, to
∑X

i e2. If it is not, then a violation of the SLA is
once again is detected..

Furthermore, the hash of the resulting matrix C, written as
SHA-1[Ci], from the X tests run on the TPA’s VM should
match the SHA-1[Ci] values produced on the clouds. This
prevents the cloud from avoiding doing an actual computation
or delaying computations to a later time.. Since it is impossible
to compute the correct SHA-1[Ci] values without computing
C itself, the CSP can not avoid carrying out the computations.
Also since the hash is output and recorded via the terminal
by the TPA, each transpose matrix multiplication in the cloud
has no way of delaying the computation and later modifying

IEEE ICC 2014 - Communication and Information Systems Security Symposium

801

TABLE I. EXECUTIONS OF THE AUDITING TEST.

Average Time 100% CPU: 6.7361414708

AVERAGE (s) STDEV (s) STDEV % DIFF TTL EXECUTION % DIFF AV
100% CPU (Run 1): 6.727433531 0.0064725957 0.10% 112 min 49.320 s 0.13%
100% CPU (Run 2): 6.7399728319 0.0179976439 0.27% 113 min 2.049 s 0.06%
100% CPU (Run 3): 6.7398816269 0.0169161707 0.25% 113 min 2.049 s 0.06%
100% CPU (Run 4): 6.7372778932 0.0169161707 0.25% 112 min 59.325 s 0.02%

90% CPU: 7.5026936102 0.0360844519 0.48% 125 min 50.123 s 11.38%
80% CPU: 8.4290672141 0.0306025842 0.36% 141 min 21.955 s 25.13%
70% CPU: 9.628378256 0.0271392312 0.28% 161 min 28.456 s 43.12%
60% CPU: 11.242350495 0.0325625398 0.29% 188 min 31.927 s 67.11%

85% CPU 15% TTL: 6.9142334212 0.645254425 9.33% 115 min 57.541 s 2.78%
85% CPU 30% TTL: 7.0991599864 0.8731635046 12.30% 119 min 3.476 s 5.53%
70% CPU 15% TTL: 7.165942121 1.0357176467 14.45% 119 min 31.927 s 6.52%
70% CPU 30% TTL: 7.6036018606 1.3313916735 17.51% 127 min 31.176 s 13.02%

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

0% 10% 20% 30% 40%

A
ve

ra
ge

 T
im

e

% Cheating

Fig. 2. The average time to run a single transpose matrix multiplication based
on the percent cheating (100%-CPU Cap %). As the % cheating increases the
average run time increases linerealy, as expected.

 6.7

 6.8

 6.9

 7

 7.1

 7.2

 7.3

 7.4

 7.5

 7.6

 7.7

0-0% 15-15% 15-30% 30-15% 30-30%

A
ve

ra
ge

 T
im

e

% Cheating - % Time

Fig. 3. The average time to run a single transpose matrix multiplication based
on the percent cheating (100%-CPU Cap %) and the % time the cheating lasts.
As the % cheating or the % time of cheating increases the average run time
increases as expected.

the output. If the hashes do not match the TPA VM and the
CSP VM, then we have once again detected a violation of the
SLA.

VI. TESTING

A. Background

To test our algorithms’ ability to detect SLA violations by
the CSP, we ran a variety of different tests. Initially, we ran four
tests where no cheating has occurred to find a base execution
time. We then ran one test each where the CSP limits the
CPU percentage to 90%, 80%, 70%, and 60% of the expected
CPU, respectively. We also ran tests where the CSP limits
the CPU to 85% and 70% of its required value for 15% of the
algorithms execution and 30% of the algorithms execution.15%
and 30% of the algorithms’ execution, respectively. To perform
this testing, we used Ubuntu Server 12.04 LST with Xen
DOM-0 Hypervisor 4.1 x64 [12]. For our SHA-1 hashing [15]
algorithm we used PolarSSL’s [14] library. The tests were run
on a system with 4 Gigs of ram and a Intel Q6600 Quad Core
processor. The VM used was given one processor with a clock
of 1.0 Ghz as well as 1 Gigabyte of RAM.

To create a CPU cap on our VM, we used Xen’s sched-
credit function. The sched-credit function allows us to specify
a CPU cap in percentage. This is done by the command

xm sched-credit -d <domain> -c <cap>

where <domain> is the name of the VM in question and
<cap> is the cap we would like to apply to the CPU in terms
of percentage.

B. Results

The results of our test are shown in Table I . For all these
runs, we used a 1000x1000 matrix of doubles. In Table I the
first column lists the average,

∑X
i e2−i
X for each individual

auditing test. The second lists the standard deviation, σ of

each
∑X

i e2−i. The third lists the percent difference between
the average and the standard deviation. The fourth lists the
recorded time to execute the entire auditing test. Finally, the

last column lists the percent difference of the
∑X
i e2−i
X with

the average of
∑X
i e2−i
X for each of the four runs where there

was no cheating.

For the first four runs we did not set a cap on the CPU
and used 100% of the allocated CPU. As we can clearly see
that σ for all four of the runs using 100% of the CPU is very
small and the corresponding percent difference is also small as
expected. The total run times of each of the auditing test were
also fairly consistent. Lastly the percent difference from the

IEEE ICC 2014 - Communication and Information Systems Security Symposium

802

average of the four 100% CPU runs is also small. The largest
percent difference is only 0.13% where the smallest is 0.02%.

Next, if we look at the 90% CPU run we can see that σ
and the percent difference are both also small as expected..
We notice though that the total run time of the auditing test
has increased significantly. We also notice that the percent
difference between the 90% CPU test and the average of the
four 100% CPU runs has increased significantly to 11.38%.
Thus in our analysis, it is very obvious that the CSP has
violated the SLA by putting a cap on the total CPU percentage
we can use.

For a CPU cap of 80%, 70% and 60%, we notice similar

results. The average,
∑X
i e2
X , for each run steadily increases.

The corresponding percent difference from the average of the
four 100% runs also increases significantly. When the CSP has
a CPU cap of 60% we see a percent difference of 67.11% from
what we would expect. Thus, from these results it is fairly safe
to say that if a CSP puts an unchanging cap on the CPU, the
proposed auditing test will easily detect this cap and report it
as a violation of the SLA.

We also performed an analysis on cheating of a different
type. A cloud provider, rather than putting a single unchanging
cap on the CPU might instead cheat only a percentage of the
time. We replicated such an event by capping the CPU at 85%
and 70% for 15% and 30% of the execution time. For the
remaining 85% and 70% of the respective executions, the cap
was removed.

First, looking at the two 85% CPU cap runs we notice
a significant increase in σ and the percent difference. This
inconsistency in run time of each individual transpose matrix
multiplication is the first obvious sign of a malicious activity.
For the run with a cap only used for 15% of the total execution,
a percent difference of 9.33% was found. For the run with a
cap used for 30% of the total execution a percent difference of
12.30% was found. Furthermore, the percent difference from
the average also shows clear cheating by the CSP. Overall, for
both 85% CPU cap runs violations of the SLA by the CSP are
very obvious.

Similarly for the two 75% CPU cap runs, there were also
large inconsistencies between the run times of each individual
transpose matrix multiplication. For the first run with a cap
for 15% of the execution time, the percent difference between
σ and the average has increased noticeably to 14.45%. For
the second run with a cap for 30% of the execution time, this
percent difference increases even further to 17.51 %. Again
this is a sign of malicious activity by the CSP. Finally, the
percent differences from the average expected time are 6.52%
and 13.02% which are clear signs of a SLA violation by the
CSP.

VII. CONCLUSION

Due to an increased interest in cloud computing, providing
accountability to clients has become a critical component of
the value proposition offered by cloud providers. Service Level
Agreements (SLA) define the agreement between cloud service
providers (CSPs) and their users. Being that CSP’s are profit
based companies, it is in the CSP’s best interest to cheat on the
SLA. To alleviate this problem we make use of a Third Party
Auditor (TPA) to audit the SLA and verify it is being met by

the CSP. In this paper, we develop a scheme which makes use
of a TPA to audit the SLA metric of CPU speed and verify it
is being met by the CSP. Overall, our auditing scheme shows
promising results and is able to detect even minor cheating by
the CSP on the SLA regardless of the CSPs attempts to hide
its cheating.

ACKNOWLEDGMENT

This work was supported in part by the US National Sci-
ence Foundation under grants CNS-0963578, CNS-1022552,
and CNS-1065444.

REFERENCES

[1] “The NIST Definition of Cloud Computing”. National Institute of
Standards and Technology. Retrieved 2013-8-5

[2] Amazon EC2, [Online]. Available: http://aws.amazon.com/ec2

[3] Google App Engine, [Online]. Available: http://www.google.com/enterp
rise/appengine

[4] Mega, [Online]. Available: http://mega.co.nz

[5] H. Zhang, L. Ye, J. Shi, X. Du. “Verifing Cloud Service-Level
Agreement By a Third-Party Auditor,” Security and Communication
Networks, 2013.

[6] L. Ye, H. Zhang, J. Shi, X. Du. “Verifying Cloud Service Level
Agreement,” Proceedings of IEEE Global Communications Conference
(GLOBECOM), pp. 777-782, 2012.

[7] I. Brandic, V. C. Emeakaroha, M. Maurer, S. Dustdar, S. Acs, A.
Kertes, and G. Kecskemeti, Proceedings of 34th Annual IEEE Computer
Software and Applications Conference Workshops, pp. 366-370, 2010.

[8] J. Sommers, P. Barford, N. Duffield, and A. Ron, IEEE/ACM Trans-
actions on Networking, vol. 18, issue. 2, IEEE Press: NY, USA, pp.
652-665, 2010.

[9] G. Wang and N. T. Eugene, Proceedings of the 29th IEEE Conference
on Computer Communications, pp. 1163-1171, 2010.

[10] A. Li, X. Yang, S. Kandula, and M. Zang, Proceedings of the 10th
Internet Measurement Conference, ACM: New York, NY, USA, pp. 1-
14, 2010.

[11] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, N. C. Skalsky.
“HyperSentry: Enabling Stealthy In-context Measurement of Hypervi-
sor Integrity.” Proc. of the 17th ACM Conference on Computer and
Communications Security, pp. 38-49, 2010.

[12] P. Barham, B. Dargovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, A. Warfield. Xen and the Art of Virtualization.
Proc. 19th ACM Symposium on Operating Systems Principles, SOSP
2003, Bolton Landing, USA, October 2003.

[13] Trusted Computing Group. TPM specifications version 1.2.
https://www.trustedcomputinggroup.org/downloads/specifications/tpm,
July 2005.

[14] PolarSSL. Offspark, 2011. Avaliable: http://polarssl.org/source code

[15] Department of Commerce National Institute of Standards and Tech-
nology. Secure Hash Signature Standard (SHS) (FIPS PUB 180-2).
February 2004

IEEE ICC 2014 - Communication and Information Systems Security Symposium

803

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

