
Analyzing Mobile Phone Vulnerabilities Caused by
Camera

Longfei Wu
†
, Xiaojiang Du

†
, Li Wang

∗
, Xinwen Fu

‡
, Ralph O. Mbouna

§
, and Seong G. Kong

§

†
Dept. of Computer and Info. Sci, Temple Univ., Philadelphia, PA, USA, {longfei.wu, dux}@temple.edu

∗
School of Electronic Eng, Beijing Univ. of Posts and Telecommunications, Beijing, P.R. China, liwang@bupt.edu.cn

‡
Dept. of Computer Science, Univ. of Massachusetts Lowell, Lowell, MA, USA, xinwenfu@cs.uml.edu

§
Dept. of Electrical & Computer Engineering, Temple Univ., Philadelphia, PA, USA, {oyini, skong}@temple.edu

Abstract—Nowadays mobile phones have been widely used,
and Android is one of the most popular mobile operating
system. The security issue of Android has caught great concerns
among mobile users and researchers. In this paper, we study
the vulnerabilities related of phone cameras. Specifically, we
discover and present several camera-based attacks including the
basic camera attack and advanced passcode inference attacks. We
implement these attacks on real phones (with anti-virus software
installed) and demonstrate the feasibility and effectiveness of the
attacks. Furthermore, a lightweight defense scheme is proposed
to secure phones against these attacks.

Keywords—Mobile phones; camera; Android

I. INTRODUCTION

Since 2007, Android operating system (OS) has enjoyed
an incredible rate of popularity. As of 2013, Android OS
holds 79.3% of global smartphone market shares. Meanwhile,
a number of Android security and privacy vulnerabilities have
been exposed in the past several years. Although the Android
permission system gives users an opportunity to check the
permission request of an application (app) before installation,
few users have knowledge of what all these permissions stand
for [1]; as a result, they fail to warn users of security risks.
Meanwhile, an increasing number of apps specified to enhance
security and protect user privacy have appeared in Android
application markets (e.g. anti-virus applications and locker
applications). However, mobile malwares and privacy leakage
remain a big threat for user security and privacy.

Generally, when talking about privacy protection, most
mobile phone users pay attention to the safety of SMS,
email, contact list, calling history, location information and
private files. They may be surprised that the phone camera
could become a traitor, for example, attackers could stealthily
take pictures and record videos by using the phone camera.
Nowadays, spy camera apps have become quite popular on
Android application markets. As for Google Play, there are
nearly one hundred spy camera apps, which allow phone users
to take pictures or record videos of other people without their
permission. However, believe it or not, phone users themselves
could also become victims. Attackers can implement spy
camera in malicious apps such that the phone camera is
launched automatically without the device owner’s notice, and
the captured photos and videos that contain user’s daily activi-
ties and conversations are sent out to the remote attackers. Even
worse, according to a survey on Android malware analysis [2],
camera permission ranks 12th of the most commonly requested

permissions among benign apps, while it is out of the top 20
in malwares. The popularity of camera usage in benign apps
and relatively scarce usage in malware lower user’s alertness
to camera-based multimedia attacks.

In this paper, we present the basic attack, and two passcode
inference attacks: the application-oriented attack and screen
unlocking attack. We run these attacks along with several pop-
ular antivirus softwares to test their stealthiness, and conduct
experiments on video-based passcode inference attacks. The
results demonstrate the feasibility and effectiveness of these
attacks. Finally, we propose a lightweight defense scheme.

The rest of the paper is organized as follows. Section II
discusses related works. Section III describes the basic camera
attack. Section IV presents the video-based passcode inference
attacks. Section V describes the implementation and evalu-
ation. Section VI proposes the countermeasure against the
camera-based attacks. Section VII concludes the paper.

II. RELATED WORK

A number of recent works have studied the issue of
obtaining private information on smartphones using multime-
dia devices such as microphones and cameras. For example,
Soundcomber [3] is a stealthy Trojan that can sense the context
of its audible surroundings to target and extract high-value data
such as credit card and PIN numbers. Stealthy audio recording
is easier to realize since it does not need to hide the camera
preview. Xu et al. [4] present a data collection technique using
a video camera embedded in Windows phones. Their malware
(installed as a Trojan) secretly records video and transmits
data using either email or MMS. Windows phones directly
offer a function, ShowWindow(hWnd, SW HIDE), which can
hide an app window on the phone screen. However, it is much
more complicated (no off-the-shelf function) to hide a camera
preview window in Android system. In this work, we are able
to hide the whole camera app. Moreover, we further utilize
computer vision technique to analyze recorded videos and infer
passcode from user’s eye movement.

Several video based attacks targeted at keystrokes have
been proposed. The attacks can obtain user input on touch
screen smartphones. Maggi et al. [5] implement an automatic
shoulder surfing attack against modern touch-enabled smart-
phones. The attacker deploys a video camera that can record
the target screen while the victim is entering text. Then user
input can be reconstructed solely based on the keystroke feed-
back displayed on the screen. iSpy [6], proposed by Raguram,

978-1-4799-3512-3/14/$31.00 ©2014 IEEE

Globecom 2014 - Wireless Communications Symposium

4126

Fig. 1. The Basic Camera Attack Architecture

shows how screen reflections may be used for reconstruction
of text typed on a smartphone’s virtual keyboard. However,
both the attacks require additional camera devices to capture
phone screen or its reflections, and issues like how to place the
camera near the victim without catching alert must be carefully
considered. Besides, they work only when visual feedback
such as the magnified keys function or key press confirmation
mechanism is available. In contrast, our camera-based attacks
work without any support from other devices, or dependence
on any specific function.

III. THE BASIC CAMERA ATTACK

We first introduce possible attacks based on spy camera.
The attacks should appear normal to user experience. The
main challenge is to make the attacks run stealthily and
silently so that they do not cause a user alert. Specifically,
the attacks are supposed to have a translucent view, make no
sound or vibration, and check phone resource utilization before
launching themselves. The general architecture should include
the following six parts. Figure 1 shows the architecture of a
basic spy camera attack.

1) Step 1: To prevent the user from suspecting, the malware
should consider the current CPU, memory usage and battery
status. Launching the attack when CPU and memory usage are
already high could make a phone’s performance even worse.
Users tend to be concerned about the unsmooth experience,
and check if any app or service is running in the background.
Similar concern happens with energy consumption, especially
when the phone’s battery is low and is not being charged. A
camera attack could drain the battery faster than the user’s
expectation, and cause user suspicion about possible attacks.
Hence, before launching the attack, malicious camera apps
want to ensure that system resources are plentiful. For Android
phones, memory usage could be obtained through the getMem-
oryInfo() function of ActivityManager, information related to
CPU utilization is available from “/proc/stat”, while current
battery level and charging status can be obtained by registering
a BroadcastReceiver with ACTION BATTERY CHANGED.

2) Step 2: After ensuring sufficient resources for launching
attacks, a malicious camera app can continue on the remain-
ing actions. First, the app can turn off the phone’s sound
and vibration, which can be achieved by setting the system
sound AudioManager.STREAM SYSTEM to 0 and the flag to
FLAG REMOVE SOUND AND VIBRATE. The app can log
the current volume level and vibration status, and resume the
parameters after the attack.

3) Step 3: The difficult task is to hide the camera preview.
At the beginning, the layout containing the SurfaceView is

inflated into a view via LayoutInflater.inflate(). Then the app
can change the parameters of that view by setting the attributes
of WindowManager.LayoutParams. Two important attributes
must be set: TYPE SYSTEM OVERLAY, which makes the
preview window always stay on top of other apps; the other
one is FLAG NOT FOCUSABLE, which disables the input
focus of a spy camera app such that input values would be
passed to the first focusable window underneath. This would
turn the camera preview into a floating and not focusable layer.
Then the app changes the size of preview (SurfaceView) to the
minimum pixel (1 pixel), which human eyes cannot notice.
This cannot be set directly through setPreviewSize(). Instead,
the app needs to get the layout parameter of SurfaceView by
using SurfaceView.getLayoutParams(). Notice that the type of
SurfaceView.getLayoutParams() is ViewGroup.LayoutParams
instead of the aforementioned WindowManager.LayoutParams.
Finally, the app can add the hidden preview dynamically to the
window by the addView function.

4) Step 4: After setting up the layout, the attack could
be launched as follows: initialize the SurfaceHolder, choose
which camera (front or back) is used, and open the camera
to take pictures or record videos. The photo/video data are
supposed to be stored in disguises, including using confusing
filenames and seldom visited directories. The app releases the
camera after the above actions.

5) Step 5: After the camera attack finishes, the app sets the
audio volume and vibration status back to its original values.
This way, the device owner would not find any abnormality.

6) Step 6: The last step of the attack is to transmit the
collected data to the outside. Since cellular network usage and
MMS may cause extra fees, the best choice is to wait until
free WiFi access is available. For example, it could use the
javax.mail to send the data as an email attachment. Most email
systems limit the maximum size of attachments, so the length
of the captured video should have an upper bound specific to
the email service.

IV. THE VIDEO-BASED PASSCODE INFERENCE
ATTACK

Since the virtual keyboard in a touch screen smartphone
is much smaller than computer keyboards, the virtual keys
are very close to each other. Based on the measurement on a
Galaxy Nexus 4 phone, even an offset of 5 mm could result
in touching the wrong key. Hence, when typing, users tend to
keep a short distance to the screen, which allows the phone
(front) camera to have a clear view of a user’s eye movements.
A user’s eyes move along with the keys being touched, which
means that tracking the eye movement could possibly tell what
the user is entering. It is of great importance to investigate
whether an attacker could obtain a phone user’s passcode by
tracking the eye movements.

As computer vision techniques are advancing and becom-
ing more accurate, an offline processing of the video can
extract the eye position in each frame and draw the path of
eye movements, which means that an attacker could infer the
passcode based on the video captured by a spy camera app.
In this section, we discuss two types of camera attacks for
inferring passcodes.

Globecom 2014 - Wireless Communications Symposium

4127

(a) Password (b) Pattern (c) PIN

Fig. 2. Different Types of Passcodes

A. The Application-oriented Attack

The first type of attack is the application-oriented attack,
which aims at getting the credentials of certain apps. Figure 2
gives some examples of app passcodes. The passcodes of
most apps (like Facebook) that require authentication contain
letters, which need a complete virtual keyboard, as shown in
Figure 2(a). Figure 2(b) and Figure 2(c) show two other types
of popular passcodes, pattern and PIN, which we will discuss
in detail later. Smart App Protector is a locker app by which a
user is able to lock apps that need extra protection (i.e. Gallery,
messaging and dialing apps).

For a successful passcode inference attack, the video must
be captured during user authentication. An effective way is
to poll the running task list and launch the attack as soon
as the target app appears on top of the list. Specifically,
using the getRunningTasks() function of ActivityManager, we
can get the name of most recently launched app. Therefore,
the detection service scans the running apps and resource
utilization periodically. When attack conditions are met, it
opens the camera and secretly takes videos of the user’s face
(especially the eyes) with front-face camera for a time long
enough to cover the entire authentication process.

There are several other factors we need to consider to
ensure the attack is effective and efficient. First, the detection
service of a spy camera app must be launched beforehand,
by either tempting the user to run the app or registering
an ACTION BOOT COMPLETED receiver to launch when
booting is finished. The RECEIVE BOOT COMPLETED per-
mission is a commonly requested permission that would not
be considered dangerous. Second, polling task list frequently
leads to extra consumption of energy resource. To improve
the efficiency of scanning, the detection service is active only
when a user is using the phone. Specifically, it will cease when
the screen is off and continue when the screen is lighting
up again. The status of the phone screen can be obtained
by registering two broadcast receivers ACTION SCREEN ON
and ACTION SCREEN OFF.

B. The Screen-unlocking Attack

In this subsection, we discuss another type of attack. The
attack is launched when a user is entering screen unlocking
passcode. We categorize this scenario as a different attack
since it is unnecessary to hide the camera preview under this

circumstance. To achieve privacy, Android system would not
show the user interface until a visitor proves to be the device
owner by entering the correct credential. This accidentally
provides a shield for spy camera attacks targeted at the
screen unlocking process. Users never know that the camera
is working, even though the camera preview is right beneath
the unlocking interface.

We demonstrate the screen-unlocking passcode inference
attack. Its difference from the application-oriented attack is
the condition to launch the attack and the time to stop.
Intuitively, the attack should start as soon as the screen turns
on and should end immediately as the screen is unlocked.
This can be achieved in two key steps: (1) registering a
BroadcastReceiver to receive ACTION SCREEN ON Intent
when a user lights up the screen and begins the unlocking
process, and (2) registering another BroadcastReceiver to re-
ceive ACTION USER PRESENT Intent when a passcode is
confirmed and the screen guard is gone. The second step
guarantees that the camera service would stop recording, and
end itself immediately when the user interface is switched on.
In addition, the attack should consider the situation in which
no screen locking passcode is set. To avoid being exposed,
the spy camera app should check keyguardmanager with the
isKeyguardLocked() function to make sure the screen is locked
before launching the attack.

To simplify the screen unlocking process, Android system
provides alternative authentication methods in addition to the
conventional password: pattern and PIN. A pattern is a graph-
ical passcode composed of a subset of a 3×3 grid of dots that
can be connected in an ordered sequence. There are some rules
for the combination of dots: (1) the number of dots chosen
must be at least 4 and no more than 9; (2) each dot can be used
only once. A PIN is a pure-digit passcode with length ranging
from 4 to 16, and repetition is allowed. Both alternatives are
extensively used in the screen locking of Android phones.
The relatively larger distance between adjacent keys effectively
relieves a user’s eye fatigue problem. However, this also brings
vulnerability to video-based passcode inference attacks since
the larger scale of eye movement makes the attack easier.

V. IMPLEMENTATION AND EVALUATION

We have implemented the video-based passcode inference
attacks on real phones including the Nexus S 4G (Andriod 4.1),
Galaxy Nexus (Android 4.2) and Nexus 4 (Android 4.3 with
Security Enhanced support). Furthermore, a computer vision
technique for eye tracking is used to process the captured
video. The evaluation of the feasibility and effectiveness of
the attacks is based on the experimental results.

A. Implementation

Both of the passcode inference attacks are successfully
implemented on Android phones equipped with a front-face
camera. The spy camera apps are completely translucent to
phone users and work without causing any abnormal expe-
riences. When WiFi access is enabled, the captured data is
transmitted to the attacker via email. To test the stealthiness
of the attacks, we install two popular antivirus apps: AVG
antivirus [7] and Norton Mobile Security [8]. Neither of the
two antivirus apps has reported warning during the entire video

Globecom 2014 - Wireless Communications Symposium

4128

capturing and transmission process. This demonstrates their
resistance to mobile anti-virus tools.

B. Feature Analysis

An important feature that enhances the effectiveness of
passcode inference attacks is that it can be launched repeatedly,
which allows certain passcodes to be “attacked” many times.
In this way, as attacker could get a set of possible passcodes
and keep launching attacks until the correct one is found.

The passcode inference attack depends on the victim’s eye
movement instead of analyzing videos containing the phone
screen [5] or its reflection [6], which makes it harder to achieve
high and stable one-time success rates. In addition, there are
complex factors that may influence its performance, such as the
distance between face and phone, lighting condition, velocity
of eye movement, pause time on each key, and head/device
shaking when typing. Among these experimental conditions,
only the lighting condition can be kept constant during our
experiments.

To test the effectiveness of the passcode inference attacks
with different types of passcodes, we use the conventional
password, pattern, and PIN in our experiments. By comparing
the rules of pattern and PIN, we find that pattern combination
is actually a subset of PIN. In addition, the outlines of the two
passcodes are similar (both are squares). Hence, we present
their results and discuss their performance together. Another
consideration for experiments is the length of pattern and PIN.
In fact, people rarely use long PINs and complex patterns
since they are hard to memorize and impractical for frequent
authentications such as screen unlocking. This can be best
illustrated by Apple iOS’s 4-digit PIN for screen locking. In
our experiments, we choose 4-digit pattern/PIN for testing.

C. Performance Evaluation

We process the videos containing user eye movement with
computer vision technique for visible spectrum eye tracking.
Fast Eyetracking [9] extracts feature points from faces to track
eye movement, which is adopted in our experiments. Due to the
tight configuration of virtual keyboard and limitation of visible
spectrum imaging, the performance of inferring conventional
password is poor and unstable. However, the possibility of
compromising patterns and PINs is shown to be much higher.
In our evaluation, 18 groups of 4-digit passcodes were tested,
and the results are listed in Table I.

In Table I, each group consists of three components: real
passcode (Real Psscd), eye movement (Eye Movement), and
possible passcodes (Possible Psscds). Since the shape of the
9-dot pattern keypad and 10-digit PIN keypad are both similar
to a square, the results of eye movement are drawn in a
square. Therefore, position projection can be used to infer input
keystrokes. We find that in some cases, the passcode can be
inferred uniquely and accurately. While in other cases, it is
in a small group of possible passcodes. For example, from
the first row of Table I, the passcode “1459” can be directly
inferred, while “1687” and “1450” both have three candidates.
The attacker could further narrow down the possible passcode
set by launching more attacks and finding out the intersection.
Furthermore, when the owner is not using the phone, the
attacker may try different possible passcodes and see which
one works.

Fig. 3. Defense to Spy Camera Attack

VI. COUNTERMEASURES

In this section, we discuss possible methods that can protect
Android phones against these spy camera attacks.

In Android system, no application programming interface
(API) or log file is available for a user to check the usage
of phone camera. Hence, the detection of the camera-based
attacks requires modification to the system. We make changes
to the CheckPermission() function of ActicityManagerService,
and write a lightweight defense app such that whenever the
camera is being called by apps with CAMERA permission,
the defense app will be informed along with the caller’s
Application Package Name. The Application Package Name
is a unique identifier in Android, and third party apps cannot
reuse the name of built-in apps like the default camera app
(com.android.gallery3d). By looking at the app name, we are
able to identify the built-in camera app (that is known to be
safe) and no alert will be generated.

Then, we design a checking mechanism for third-party
camera-based apps. Analyzing activity pattern is an effective
approach in malware detection. For each type of spy cam-
era attack, we are able to extract specific feature from its
activity pattern. The application-oriented passcode inference
attack launches immediately after another app runs. The screen
unlocking attack runs when the screen turns on but remains
locked. The defense app is able to decide the dynamic launch
pattern of camera related apps by polling the task list. If an
app calls the camera in one of the above manner, the defense
app gives warnings to the phone user.

There are three parts of warnings in our defense scheme.
First, an alert dialog including the name of the suspicious
app is displayed. In case the warning message cannot be seen
immediately by the user (e.g., the user is not using the phone),
the defense app will also make sound and vibration to warn
the user of spy camera attacks. Besides, the detailed activity
pattern of suspected apps are logged so that the user can
check back. As shown in Figure 3, the spy camera app named
com.example.as bakvideo lock calls the camera as soon as
Facebook is launched. This process is detected by the defense
app, and a warning message with its name is displayed before
the user enters his/her credential.

VII. CONCLUSION

In this paper, we study camera-related vulnerabilities in
Android phones. We discover the basic camera attack, and
two passcode inference attacks specified for an application and
screen unlocking, respectively. We implement these attacks on

Globecom 2014 - Wireless Communications Symposium

4129

TABLE I. PASSCODE INFERENCE RESULTS FOR 4-DIGIT PASSCODES

Real Psscd Eye Movement Possible Psscds Real Psscd Eye Movement Possible Psscds Real Psscd Eye Movement Possible Psscds

1459

320 322 324 326 328 330 332 334 336 338
360

361

362

363

364

365

366

367

368

369

1459 1687

150 155 160 165 170 175 180
318

320

322

324

326

328

330

332

334

336

1687
16857
168587

1450

320 325 330 335 340

400

402

404

406

408

410

412

414

416

418

420

1450
1458
2569

1486

308 310 312 314 316 318 320
354

355

356

357

358

359

360

361

362

363

364

365

1486
14786
1786

1479

332 334 336 338 340 342 344 346
395

396

397

398

399

400

401

402

403

404

405

1479 1856

170 175 180 185

364

366

368

370

372

374

376

378

1856
14856

1359

322 324 326 328 330 332 334 336

362

364

366

368

370

372

1359
13659
13589
136589
12359
123659
123589
1236589

2548

184 186 188 190 192 194
378

379

380

381

382

383

384

385

386

387

388

2548
3659

1793

308 310 312 314 316 318 320 322 324 326

372

374

376

378

380

382

384

386

1793
1452
2563
4785
5896

1953

314 316 318 320 322 324 326
340

342

344

346

348

350

1953
15953

2856

324 325 326 327 328 329 330 331 332

338

339

340

341

342

343

344

345

2856
25856
1745
14745

1759

314 316 318 320 322 324 326 328 330 332 334

365

370

375

380

1759
14759

4734

310 315 320 325

344

346

348

350

352

354

356

4734
47534
47354
475354

1490

170 175 180 185 190

354

356

358

360

362

364

366

368

370

372

374

1490
1790

1595

140 142 144 146 148 150
380

381

382

383

384

385

386

387

388

1595

2450

300 302 304 306 308 310
389

390

391

392

393

394

395

396

397

398

2450
2480
2458
3569
3469

1741

154 156 158 160 162 164
412

413

414

415

416

417

418

419

420

1741
14741
2852
25852
5085
58085
3963
36963

1865

250 260 270 280 290 300
805

810

815

820

825

830

835

1865
1895
1065
1098
1095

real devices with anti-virus softwares installed. The experi-
mental results demonstrate the feasibility and stealthiness of
the attacks. We also propose a lightweight defense scheme that
can effectively detect these attacks.

ACKNOWLEDGMENT

This work was supported in part by the US National Sci-
ence Foundation under grants CNS-0963578, CNS-1022552,
and CNS-1065444.

REFERENCES

[1] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: user attention, comprehension, and behavior,” in
Proceedings of the Eighth Symposium on Usable Privacy and Security,
2012, pp. 3:1–3:14.

[2] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution,” in Proceedings of IEEE Symposium on Security and Privacy
(SP), 2012, pp. 95–109.

[3] R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound trojan for
smartphones,” in NDSS, 2011, pp. 17–33.

[4] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and J. Teng, “Stealthy video
capturer: a new video-based spyware in 3g smartphones,” in Proceedings
of the second ACM conference on Wireless network security (WiSec),
2009, pp. 69–78.

[5] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “A fast
eavesdropping attack against touchscreens,” in Proceedings of the 7th
International Conference on Information Assurance and Security (IAS),
2011, pp. 320–325.

[6] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm,
“ispy: automatic reconstruction of typed input from compromising re-
flections,” in Proceedings of the 18th ACM conference on Computer and
communications security (CCS), 2011, pp. 527–536.

[7] AVG AntiVirus for Android Mobiles, http://www.avg.com/us-
en/antivirus-for-android.

[8] Norton Mobile Security, http://us.norton.com/norton-mobile-security/.
[9] P. Aldrian, “Fast eyetracking,” http://www.mathworks.com/matlabcentral

/fileexchange/25056-fast-eyetracking, 2009.

Globecom 2014 - Wireless Communications Symposium

4130

