SECURITY IN WIRELESS MULTIMEDIA
COMMUNICATIONS

Security Threats to Mobile
Multimedia Applications: Camera-Based
Attacks on Mobile Phones

Longfei Wu and Xiaojiang Du, Temple University

Xinwen Fu, University of Massachusetts Lowell

ABSTRACT

Today’s mobile smartphones are very power-
ful, and many smartphone applications use wire-
less multimedia communications. Mobile phone
security has become an important aspect of secu-
rity issues in wireless multimedia communica-
tions. As the most popular mobile operating
system, Android security has been extensively
studied by researchers. However, few works have
studied mobile phone multimedia security. In
this article, we focus on security issues related to
mobile phone cameras. Specifically, we discover
several new attacks that are based on the use of
phone cameras. We implement the attacks on
real phones, and demonstrate the feasibility and
effectiveness of the attacks. Furthermore, we
propose a lightweight defense scheme that can
effectively detect these attacks.

INTRODUCTION

Since 2007, the Android operating system
(OS) has enjoyed an incredible rate of popu-
larity. As of 2013, the Android OS holds 79.3
percent of global smartphone market shares.
Meanwhile, a number of Android security and
privacy vulnerabilities have been exposed in
the past several years. Although the Android
permission system gives users an opportunity
to check the permission request of an applica-
tion (app) before installation, few users have
knowledge of what all these permission
requests stand for; as a result, they fails to
warn users of security risks. Meanwhile, an
increasing number of apps specified to
enhance security and protect user privacy have
appeared in Android app markets. Most large
anti-virus software companies have published
their Android-version security apps, and tried
to provide a shield for smartphones by detect-
ing and blocking malicious apps. In addition,
there are data protection apps that provide
users the capability to encrypt, decrypt, sign,
and verify signatures for private texts, emails,

and files. However, mobile malware and priva-
cy leakage remain a big threat to mobile phone
security and privacy.

Generally, when talking about privacy protec-
tion, most smartphone users pay attention to the
safety of SMS, emails, contact lists, calling histo-
ries, location information, and private files. They
may be surprised that the phone camera could
become a traitor; for example, attackers could
stealthily take pictures and record videos by
using the phone camera. Nowadays, various
types of camera-based applications have
appeared in Android app markets (photography,
barcode readers, social networking, etc.). Spy
camera apps have also become quite popular. As
for Google Play, there are nearly 100 spy camera
apps, which allow phone users to take pictures
or record videos of other people without their
permission. However, believe it or not, phone
users themselves could also become victims.
Attackers can implement spy cameras in mali-
cious apps such that the phone camera is
launched automatically without the device
owner’s notice, and the captured photos and
videos are sent out to these remote attackers.
Even worse, according to a survey on Android
malware analysis [1], camera permission ranks
12th of the most commonly requested permis-
sions among benign apps, while it is out of the
top 20 in malware. The popularity of camera
usage in benign apps and relatively less usage in
malware lower users’ alertness to camera-based
multimedia application attacks.

Nowadays, people carry their phones every-
where; hence, their phones see lots of private
information. If the phone camera is exploited by
a malicious spy camera app, it may cause serious
security and privacy problems. For example, the
phone camera may record a user’s daily activities
and conversations, and then send these out via
the Internet or multimedia messaging service
(MMS). Secret photography is not only immoral
but also illegal in some countries due to the
invasion of privacy. Nevertheless, a phone cam-
era could also provide some benefits if it is con-

80

0163-6804/14/$25.00 © 2014 IEEE

IEEE Communications Magazine ¢ March 2014

trolled well by the device owner. For example,
when the owner wants to check if someone has
used his/her phone without permission, the
phone camera could be used to record the face
of an unauthorized user. Besides, it can also help
the owner find a lost phone.

In this article, we first conduct a survey on
the threats and benefits of spy cameras. Then we
present the basic attack model and two camera-
based attacks: the remote-controlled real-time
monitoring attack and the passcode inference
attack. We run these attacks along with popular
antivirus software to test their stealthiness, and
conduct experiments to evaluate both types of
attacks. The results demonstrate the feasibility
and effectiveness of these attacks. Finally, we
propose a lightweight defense scheme.

RELATED WORK

A number of recent works have studied the issue
of obtaining private information on smartphones
using multimedia devices such as microphones
and cameras. For example, Soundcomber [2] is a
stealthy Trojan that can sense the context of its
audible surroundings to target and extract high-
value data such as credit card and PIN numbers.
Stealthy audio recording is easier to realize since
it does not need to hide the camera preview. Xu
et al. [3] present a data collection technique
using a video camera embedded in Windows
phones. Their malware (installed as a Trojan)
secretly records video and transmits data using
either email or MMS. Windows phones offer a
function, ShowWindow(hWnd, SW HIDE),
which can hide an app window on the phone
screen. However, it is much more complicated
(no off-the-shelf function) to hide a camera pre-
view window in an Android system. In this work,
we are able to hide the whole camera app in
Android. Moreover, we implement advanced
forms of attacks such as remote-controlled and
real-time monitoring attacks. We also utilize
computer vision techniques to analyze recorded
videos and infer passcodes from users’ eye move-
ments.

Several video-based attacks targeted at
keystrokes have been proposed. The attacks can
obtain user input on touch screen smartphones.
Maggi et al. [4] implement an automatic shoul-
der surfing attack against modern touch-enabled
smartphones. The attacker deploys a video cam-
era that can record the target screen while the
victim is entering text. Then user input can be
reconstructed solely based on the keystroke
feedback displayed on the screen. However, this
attack requires an additional camera device, and
issues like how to place the camera near the vic-
tim without catching an alert must be considered
carefully. Moreover, it works only when visual
feedback such as magnified keys are available.
iSpy [5], proposed by Raguram, shows how
screen reflections may be used for reconstruc-
tion of text typed on a smartphone’s virtual key-
board. Similarly, this attack also needs an extra
device to capture the reflections, and the visual
key press confirmation mechanism must be
enabled on the target phone. In contrast, our
camera-based attacks work without any support
from other devices.

THREATS AND BENEFITS OF
Spy CAMERA

As mentioned above, the role a spy camera plays
depends on the way it is used and who is in con-
trol of it. In the following, we discuss some
threats and benefits of using a spy camera.

LEAKING PRIVATE INFORMATION

A spy camera works as a thief if it steals private
information from the phone. First, the malware
finds a way to infect the victim’s smartphone.
For example, it appears to be a normal app with
legitimate use of a camera and the Internet. On
one hand, it performs the function it claims. On
the other hand, it runs a background service to
secretly take pictures or record videos, and store
the data with obscure names in a directory that
is seldom visited. Then these data are sent out to
the attacker when WiFi (fast and usually unlim-
ited) access or other connection is available.

\WATCHDOG

Watchdog is another thing a spy camera can do.
Nobody wants other people to use or check
his/her phone without permission. A spy camera
can stealthily take pictures of the phone user
and deter those who use or check other people’s
phones.

ANTI-THIEF

On the other hand, a spy camera could play a
completely different role if it is used properly.
When a user loses his/her phone, the spy camera
could be launched via remote control and cap-
ture what the thief looks like as well as the sur-
rounding environment. Then the pictures or
videos along with location information (GPS
coordinates) can be sent back to the device
owner so that the owner can pinpoint the thief
and get the phone back.

THE BAsIC CAMERA ATTACK MODEL

We want to discover possible attacks based on a
spy camera. The attacks should appear normal
to user experience. The main challenge is to
make the attacks run stealthily and silently so
that they do not cause a user alert. Specifically,
the attacks are supposed to have a translucent
view, make no sound or vibration, and check
phone resource utilization before launching
themselves. The general architecture should
include the following six parts. Figure 1 shows
the architecture of a basic spy camera attack.
Step 1: To prevent the user from suspecting,
the malware should consider the current CPU,
memory usage, and battery status. Launching the
attack when CPU and memory usage are already
high could make a phone’s performance even
worse. Users tend to be concerned about the
unsmooth experience, and check if any app or
service is running in the background. Similar
concern happens with energy consumption, espe-
cially when the phone’s battery is low and is not
being charged. A camera attack could drain the
battery faster than the user’s expectation and
cause user suspicion about possible attacks.
Hence, before launching the attack, malicious

Nowadays, people
carry their phones

everywhere; hence,

their phones see lots

of private
information. If the
phone camera is
exploited by a

malicious spy camera

app, it may cause

serious security and

privacy problems.

IEEE Communications Magazine * March 2014

81

Detect Shutdown
resource . sound and . Preview hiding
utilization vibration
Send out Recover ; -
photo or video . volume and ‘ Plcztgséwgeo
via email vibration 9

Figure 1. The basick camera attack architecture.

camera apps want to ensure that system
resources are plentiful. For Android phones,
memory usage could be obtained through the
getMemorylnfo() function of ActivityManager,
information related to CPU utilization is avail-
able from “/proc/stat,” while current battery level
and charging status can be obtained by register-
ing a BroadcastReceiver with ACTION_BAT-
TERY _CHANGED.

Step 2: After ensuring sufficient resources for
launching attacks, a malicious camera app can
continue on the remaining actions. First, the app
can turn off the phone’s sound and vibration,
which can be achieved by setting the system
sound AudioManager. STREAM_SYSTEM to 0
and the flag to FLAG_REMOVE_SOUND _
AND_VIBRATE. The app can log the current
volume level and vibration status, and resume
the parameters after the attack.

Step 3: The difficult task is to hide the cam-
era preview. At the beginning, the layout con-
taining the SurfaceView is inflated into a view via
Layoutlnflater.inflate(). Then the app can set the
view parameters by changing the attributes of
WindowManager.LayoutParams. Two important
attributes must be set: TYPE_SYSTEM_OVER-
LAY, which makes the preview window always
stay on top of other apps; the other one is
FLAG_NOT _FOCUSABLE, which disables the
input focus of a spy camera app such that input
values would be passed to the first focusable
window underneath. This would turn the camera
preview into a floating and not focusable layer.
Then the app changes the size of preview (Sur-
faceView) to the minimum pixel (1 pixel), which
human eyes cannot notice. This cannot be set
directly through setPreviewSize(). Instead, the
app needs to get the layout parameter of Sur-
faceView by using SurfaceView.getLayout-
Params(). Notice that the type of
SurfaceView.getLayoutParams() is ViewGroup.
LayoutParams instead of the aforementioned
WindowManager.LayoutParams. Finally, the app
can add the hidden preview dynamically to the
window by the addView function.

Step 4: After setting up the layout, the attack
could be launched as follows: initialize the Sur-
faceHolder, choose which camera (front or back)
is used, and open the camera to take pictures or
record videos. The photo/video data are sup-
posed to be stored in disguises, including using
confusing filenames and seldom visited directo-
ries. The app releases the camera after the above
actions.

Step 5: After the camera attack finishes, the
app sets the audio volume and vibration status
back to its original values. This way, the device
owner would not find any abnormality.

Step 6: The last step of the attack is to trans-
mit the collected data to the outside. Since cellu-
lar network usage and MMS may cause extra
fees, the best choice is to wait until free WiFi
access is available. For example, it could use the
Javax.mail to send the data as an email attach-
ment. Most email systems limit the maximum
size of attachments, so the length of a video
should have an upper bound specific to the
email service.

THE REMOTE-CONTROLLED
REAL-TIME MONITORING ATTACK

The basic camera attack can be further
enhanced to more aggressive attacks. For
example, the attacker can remotely control the
spy camera app such that the time to launch
and end the attack is under control. The sim-
plest way to implement the remote control is
by socket. After the malicious app is down-
loaded and installed on a victim’s phone, it
sends a “ready” message along with the IP
address and port number to the attacker’s
server. Then the attacker can control the app
with orders like “launch” and “stop” or specify
a time schedule.

There are many Android apps that turn the
phone into a security surveillance camera,
such as Android Eye [6]. The spy camera can
easily be extended to a stealthy real-time
monitor based on the way an IP camera is
built. NanoHttpd [7] is a lightweight HTTP
server that can be installed on a phone. In our
case, we can start an HTTP server at a given
port which supports dynamic file serving such
that the captured videos can be played online
upon requests from a browser client. Figure 2
shows the video taken by a real-time spy cam-
era of a mobile phone. Figure 2a is the envi-
ronment in which an Android phone is
located. Although the phone’s screen is show-
ing its app menu, it actually captures videos
through the front-face camera. Figure 2b is
the view of the phone camera, which is
accessed from a PC browser. The address is
the IP address of the phone and the port num-
ber of the server.

In this section, we discuss the remote-con-
trolled real-time monitoring attack, which could
pose a big threat to a phone user’s privacy: daily
activities and surrounding environment are all
under the eye of the attacker. Camera-based
attacks can be detected when multiple apps
request the camera device at the same time or if
the camera is being used by another app. But
this can easily be avoided by selecting the time
to launch attack. The malicious camera app can
periodically check the screen status and run the
stealthy video recording only when the screen is
off, which means that the user is not using the
phone and the camera device is idle. The status
of the phone screen can be obtained by register-
ing two broadcast receivers, ACTION_
SCREEN_ON and ACTION_ SCREEN_OFF.

82

IEEE Communications Magazine ¢ March 2014

THE VIDEO-BASED PASSCODE
INFERENCE ATTACK

Since the virtual keyboard in a touch screen
smartphone is much smaller than computer key-
boards, the virtual keys are very close to each
other. Based on measurement of a Galaxy Nexus
4 phone, even an offset of 5 mm could result in
touching the wrong key. Hence, when typing,
users tend to keep a short distance to the screen,
which allows the phone (front) camera to have a
clear view of a user’s eye movements. A user’s
eyes move along with the keys being touched,
which means that tracking the eye movement
could possibly tell what the user is entering.
Thus, it is of great importance to investigate
whether an attacker could obtain a phone user’s
passcode by tracking the eye movements.

As computer vision techniques are advancing
and becoming more accurate, an offline process-
ing of the video can extract the eye position in
each frame and draw the path of eye move-
ments, which means that an attacker could infer
the passcode based on the video captured by a
spy camera app. In this section, we discuss two
types of camera attacks for inferring passcodes.
We also discuss the computer vision techniques
for eye tracking that can be utilized in the
attacks.

THE APPLICATION-ORIENTED ATTACK

The first type of attack is the application-orient-
ed attack, which aims at getting the credentials
of certain apps. Figure 3 gives some examples of
app passcodes. Most apps (like Facebook) that
require authentication contain letters, which
need a complete virtual keyboard, as shown in
Fig. 3a. Figures 3b and 3c show two other types
of popular passcodes, pattern and PIN, which we
discuss in detail later. Smart App Protector is a
locker app by which a user is able to lock apps
that need extra protection (i.e., Gallery, messag-
ing, and dialing apps).

For a successful passcode inference attack,
the video must be captured during user authenti-
cation. An effective way is to poll the running
task list and launch the attack as soon as the tar-
get app appears on top of the list. Specifically,
using the getRunningTasks() function of Activity-
Manager, we can get the name of the most
recently launched app. Meanwhile, the detection
service scans the running apps and resource uti-
lization periodically. When attack conditions are
met, it opens the camera and secretly takes
videos of the user’s face (especially the eyes)
with a front-face camera for a time long enough
to cover the entire authentication process.

There are several other factors we need to
consider to ensure the attack is effective and
efficient. First, the detection service of a spy
camera app must be launched beforehand, by
either tempting the user to run the app or regis-
tering an ACTION_BOOT_COMPLETED
receiver to launch when booting is finished. The
RECEIVE_BOOT _COMPLETED permission is
a commonly requested permission that would
not be considered dangerous. Second, polling
task lists frequently leads to extra consumption
of energy resource. To improve the efficiency of

€ & € 1033461108080

(b)

Figure 2. Demo of the real-time monitoring attack: a) overall view of the
phone environment; b) scene captured by phone camera.

scanning, the detection service is active only
when a user is using the phone. As mentioned
before, this can be determined by screen status.
The detection service will cease when the screen
is off and continue when the screen lights up
again. Moreover, the scanning frequency should
be set properly. In a phishing attack [8], a mali-
cious app needs to poll the running task list
every 5 ms to prevent the user from noticing that
a new window (the fake app) has replaced the
original one. In our phone camera attack, the
view is totally translucent to users, so that worry
is unnecessary. However, we still need to keep
the frequency at around two scannings per sec-
ond; otherwise, the attack may happen after the
user starts entering the passcode (which makes
the attack unsuccessful).

THE SCREEN UNLOCKING ATTACK

In this subsection, we discuss another type of
attack. The attack is launched when a user is
entering a screen unlocking passcode. We cate-
gorize this scenario as a different attack model
since it is unnecessary to hide the camera pre-
view under this circumstance.

To achieve privacy, an Android system would
not show the user interface until a visitor proves
to be the device owner by entering the correct
credential. This accidentally provides a shield for
spy camera attacks targeted at the screen unlock-
ing process. Users never know that the camera is

IEEE Communications Magazine * March 2014

83

working, even though the camera preview is

right beneath the unlocking interface.

We demonstrate the screen unlocking pass-
code inference attack. Its difference from the
application-oriented attack is the condition to
launch the attack and the time to stop. Intuitive-
ly, the attack should start as soon as the screen
turns on and should end immediately as the
screen is unlocked. This can be achieved in two
key steps:

* Registering a BroadcastReceiver to receive
ACTION_SCREEN_ON when a user lights
up the screen and begins the unlocking pro-
cess

* Registering another BroadcastReceiver to
receive ACTION_USER_PRESENT when a
passcode is confirmed and the screen guard
is gone

The second step guarantees that the camera ser-

vice would stop recording and end itself immedi-

ately when the user interface is switched on. In
addition, the attack should consider the situation

N MOBOO®

facebook

Log In

Sign Up for Facebook 2

B
1 2 age i
“3 |
- N R
5K MNO

350

[F——
o &

qwertyuiop 4 ciir
asdfigh j kI -
7 PQRS
&+ z xcvbnmaea —

(0] ¢

Figure 3. Different types of passcodes: a) password; b) pattern; c) PIN.

(b)

Figure 4. Demo of existing eye tracking techniques: a) Starbust eye tracking

demo; b) fast eyetracking demo.

with no screen locking passcode. To avoid being
exposed, the spy camera app should check key-
guardmanager with the isKeyguardLocked() func-
tion to make sure the screen is locked before
launching the attack.

To simplify the screen unlocking process, the
Android system provides alternative authentica-
tion methods in addition to the conventional
password: pattern and PIN. A pattern is a graph-
ical passcode composed of a subset of a3 x 3
grid of dots that can be connected in an ordered
sequence. There are some rules for the combina-
tion of dots:

* The number of dots chosen must be at least

4 and no more than 9.
* Each dot can be used only once.
A PIN is a pure-digit passcode with length
ranging from 4 to 16, and repetition is allowed.
Both alternatives are extensively used in screen
unlocking of Android phones. The relatively
larger distance between adjacent keys effective-
ly relieves a user’s eye fatigue problem. How-
ever, this also brings vulnerability to
video-based passcode inference attacks since
the larger scale of eye movement makes the
attack easier.

VIDEO-BASED EYE TRACKING TECHNIQUES

In the eye tracking field, two types of imaging
approaches are commonly used: visible and
infrared spectrum imaging. Visible spectrum
imaging passively utilizes the ambient light
reflected from the eye, while infrared spec-
trum imaging is able to eliminate uncontrolled
specular reflection with active infrared illumi-
nation. Although infrared spectrum eye track-
ing is more accurate, most smartphones today
are not equipped with infrared cameras.
Hence, we focus on visible spectrum eye track-
ing. For images captured by visible spectrum
imaging, often the best feature to track is the
contour between iris and sclera known as the
limbus [9].

Li et al. [9] propose the Starburst eye tracking
algorithm, which can track the limbus of the eye.
As we can see from Fig. 4a, in visible spectrum,
they can locate where the eye is looking in a
real-time manner. However, Starburst requires
calibration by manually mapping between eye-
position coordinates and scene-image coordi-
nates. This can be performed only by the phone
owner, which makes it infeasible in spy camera
attacks.

Aldrian [10] presents a method to extract
fixed feature points from a given face in visible
spectrum, which is based on the Viola Jones
adaboosted algorithm for face detection. But it
is able to track pupil movement without scene
image and calibration, as shown in Fig. 4b. We
adopt this eye tracking algorithm in our research
to extract eyes from videos.

IMPLEMENTATION AND EVALUATION

We have implemented the remote-controlled
real-time monitoring and passcode inference
attacks on real phones including the Nexus S
4G (Andriod 4.1), Galaxy Nexus (Android 4.2),
and Nexus 4 (Android 4.3 with Security
Enhanced support). For passcode inference

84

IEEE Communications Magazine ¢ March 2014

Real Psscd Eye movement Possible Psscds Real Psscd Eye movement Possible Psscds Real Psscd Eye movement Possible Psscds
P i
= 1687 i 1450
1459 36 1459 1687 26 16857 1450 o 1458
j:; 32 168587 P 2569
1486 3 e 1856
1486 350 14786 1479 @ 1479 1856 o
558 = 14856
557 1786 38 =
1359 .
. 13659 o) 1793
5559 = ® 1452
1359 36583 2548 25 1793 n 2563
12359 ® 3659
384 351 76 4785
123659 0 74 5896
123589
522300 326 728 390 92 3 %6 1236589 o4 186 180 190 152 194 SO G a6
18 ' 2856 75
46 1953 - 25856 1759
(=S e 15953 2550 1745 1758 14759
o :‘; 14745
4734 =
47534 = 1490 =
4734 " 47354 1490 = 1790 1595 = 1595
o 475354 P
1741
2 2450 i Lot . 1865
= 2480 e = 1895
2450 3 2458 1741 e 1865 0 1065
ats 5085
= 3569 S 1098
= 3469 s 3963 GO 1095
300 302 304 306 308 310 154 156 158 160 162 164 36963 250 260 270 280 290 300

Table 1. Passcode inference results for four-digit passcodes.

attacks, a computer vision technique for eye
tracking is used to process the captured video.
The evaluation of the feasibility and effective-
ness of the attacks is based on the experimen-
tal results.

IMPLEMENTATION

Both camera-based attacks are successfully
implemented on Android phones equipped
with a front-face camera. The spy camera apps
are completely translucent to phone users and
work without causing any abnormal experi-
ences. When WiFi access is enabled, the cap-
tured data is transmitted to the attacker via a
local HTTP server or email. To test the stealth-
iness of the attacks, we install two popular
antivirus apps: AVG antivirus and Norton
Mobile Security. Neither of the two antivirus
apps has reported warning during the entire
video capturing and transmission process. This
demonstrates their resistance to mobile anti-
virus tools.

FEATURE ANALYSIS OF THE
PASSCODE INFERENCE ATTACK

An important feature that enhances the effec-
tiveness of a passcode inference attack is that it
can be launched repeatedly, which allows certain
passcodes to be “attacked” many times. In this
way, an attacker could get a set of possible pass-
codes and keep launching attacks until the cor-
rect one is found.

The passcode inference attack depends on
the victim’s eye movement instead of analyzing
videos containing the screen [4] or its reflection
[5], which makes it harder to achieve high and
stable one-time success rates. In addition, there
are complex factors that may influence its per-
formance, such as the distance between face and
phone, lighting conditions, velocity of eye move-
ments, pause time on each key, and head/device
shaking when typing. Among these experimental
conditions, only the lighting condition can be
kept constant during our experiments.

IEEE Communications Magazine * March 2014

85

The defense app is
able to decide the
dynamic launch
pattern of camera
related apps by
polling the task list.
If a camera app calls
camera in one of the
above situations, the
defense app would
give warnings to the
phone user.

A WARNING

Camera is called by App:
com.example.as_bakvideo_lock

See Details | Ignore

Figure 5. Defense against spy camera attack.

To test the effectiveness of the passcode
inference attacks with different types of pass-
codes, we use the conventional password, pat-
tern, and PIN in our experiments. By comparing
the rules of pattern and PIN, we find that pat-
tern combination is actually a subset of PIN. In
addition, the outlines of the two passcodes are
similar (both are squares). Hence, we present
their results and discuss their performance
together. Another consideration for experiments
is the length of pattern and PIN. In fact, people
rarely use long PINs and complex patterns since
they are hard to memorize and impractical for
frequent authentications such as screen unlock-
ing. This can be best illustrated by Apple iOS’s
four-digit PIN for screen unlocking. Hence, in
our experiments we choose a four-digit
pattern/PIN for testing.

PERFORMANCE EVALUATION

We process videos containing user eye move-
ment with the aforementioned computer vision
technique [10]. Due to the tight configuration of
the virtual keyboard and limitation of visible
spectrum imaging, the performance of inferring
a conventional password is poor and unstable.
However, the possibility of compromising pat-
terns and PINs is shown to be much higher. In
our evaluation, 18 groups of 4-digit passcodes
were tested, and the results are listed in Table 1.

In Table 1, each group consists of three com-
ponents: real passcode (Real Psscd), eye move-
ment, and possible passcodes (possible Psscds).
Since the shape of the 9-dot pattern keypad and

10-digit PIN keypad is similar to a square, the
results of eye movement are drawn in a square.
Therefore, position projection can be used to
infer input keystrokes.

We find that in some cases, the correct pass-
code can be inferred accurately, while in other
cases, it is in a small group of possible pass-
codes. For example, from the first row in Table
1, passcode 1459 can be directly inferred, while
1687 and 1450 both have three candidates. The
attacker could further narrow down the possible
passcode set by launching more attacks and find-
ing out the intersection. Furthermore, when the
owner is not using the phone, the attacker may
try different possible passcodes and see which
one works.

COUNTERMEASURES

In this section, we discuss possible countermea-
sures that can protect Android phones against
these spy camera attacks.

In an Android system, no application pro-
gramming interface (API) or log file is available
for a user to check the usage of a camera device.
Hence, detection of camera-based attacks
requires modification to the system. We make
changes to the CheckPermission() function of
ActicityManagerService and write a lightweight
defense app such that whenever a camera is
being called by apps with CAMERA permission,
the defense app will be informed along with the
caller’s Application Package Name. The Appli-
cation Package Name is a unique identifier in
Android, and third party apps cannot reuse the
name of built-in apps like a Camera
(com.android.gallery3d). By looking at the app
name, we are able to identify the built-in camera
app (that is known to be safe), and no alert will
be generated.

Then we design a further checking mecha-
nism for third party camera-based apps. Analyz-
ing activity pattern is an effective approach in
malware detection. For each type of spy camera
attack, we are able to extract a specific feature
from its activity pattern. The activity pattern of
spy camera apps are totally different from legiti-
mate camera apps. To avoid collision in the use
of cameras, a remote-controlled real-time moni-
toring attack runs when the screen is off. The
application-oriented passcode inference attack
launches immediately after another app runs.
The screen unlocking attack runs when the
screen turns on but remains locked. The defense
app is able to decide the dynamic launch pattern
of camera related apps by polling the task list. If
a camera app calls a camera in one of the above
situations, the defense app gives warnings to the
phone user.

There are three parts of warnings in our
defense scheme. First, an alert dialog including
the name of the suspicious app is displayed. In
case the warning message cannot be seen imme-
diately by the user (e.g., the user is not using the
phone), the defense app will also make sound
and vibration to warn the user of spy camera
attacks. Besides, the detailed activity pattern of
suspected apps are logged so that the user can
check later. As shown in Fig. 5, the spy camera
app named com.example.as_bakvideo_ lock calls

86

IEEE Communications Magazine ¢ March 2014

the camera as soon as Facebook is launched.
This process is detected by the defense app, and
a warning message with its name is displayed
before the user enters his/her credentials.

CONCLUSION

In this article, we study camera-related vulnera-
bilities in Android phones for mobile multimedia
applications. We discuss the roles a spy camera
can play to attack or benefit phone users. We
discover several advanced spy camera attacks,
including the remote-controlled real-time moni-
toring attack and two types of passcode infer-
ence attacks. Meanwhile, we propose an effective
defense scheme to secure a smartphone from all
these spy camera attacks. In the future, we will
investigate the feasibility of performing spy cam-
era attacks on other mobile operating systems.

ACKNOWLEDGMENT

This work was supported in part by the U.S.
National Science Foundation under grants CNS-
0963578, CNS-1022552, CNS-1065444, CNS-
1116644, and CNS-0958477.

REFERENCES

[11Y. Zhou and X. Jiang, “Dissecting Android Malware:
Characterization and Evolution,” IEEE Symp. Security
and Privacy 2012, 2012, pp. 95-109.

[2] R. Schlegel et al., “Soundcomber: A Stealthy and Con-
text-Aware Sound Trojan for Smartphones,” NDSS,
2011, pp. 17-33.

[3] N. Xu et al., “Stealthy Video Capturer: A New Video-
Based Spyware in 3g Smartphones,” Proc. 2nd ACM
Conf. Wireless Network Security, 2009, pp. 69-78.

[4] F. Maggi, et al.,”A Fast Eavesdropping Attack against
Touchscreens,” 7th Int’l. Conf.Info. Assurance and
Security, 2011, pp. 320-25.

[5] R. Raguram et al., “ispy: Automatic Reconstruction of
Typed Input from Compromising Reflections,” Proc.
18th ACM Conf. Computer and Commun. Security,
2011, pp. 527-36.

[6] “Android-eye,” https://github.com/Teaonly/
android-eye, 2012.

[7] “Nanohttpd,” https://github.com/NanoHttpd/
nanohttpd.

[8] A. P. Felt and D. Wagner, “Phishing on Mobile Devices,”
Proc. WEB 2.0 Security and Privacy, 2011.

[9] D. Li, D. Winfield, and D. Parkhurst, “Starburst: A
Hybrid Algorithm for Video-Based Eye Tracking Com-
bining Feature-Based and Model-Based Approaches,”
IEEE Computer Soc. Conf. Computer Vision and Pattern
Recognition — Workshops, 2005, p. 79.

[10] P. Aldrian, “Fast Eyetracking,” http://www.math-
works.com/matlabcentral /fileexchange/25056-fast-eye-
tracking, 2009.

BIOGRAPHIES

LoNGFEI WU (longfei.wu@temple.edu) is a Ph.D. candidate
in the Department of Computer and Information Sciences
at Temple University under the supervision of Dr. Xiaojiang
Du. He received his B.E. degree in communication engi-
neering from Beijing University of Posts and Telecommuni-
cations, China, in 2012. His research interests include
smartphone security and wireless networks.

XIAOJIANG (JAMES) Du [SM] (dux@temple.edu) is an associate
professor in the Department of Computer and Information
Sciences at Temple University. His research interests are
security, cloud computing, wireless networks, and comput-
er networks and systems. He has published over 100 jour-
nal and conference papers. He has been awarded more
than $3 million in research grants from the U.S. NSF and
Army Research Office. He is a Life Member of ACM.

XINWEN Fu (xinwenfu@cs.uml.edu) is an associate professor
in the Department of Computer Science, University of Mas-
sachusetts Lowell. He obtained his Ph.D. (2005) in comput-
er engineering from Texas A&M University. His current
research interests are in network security and privacy, and
digital forensics.He has published papers in conferences
such as IEEE S&P, ACM CCS, and ACM MobiHoc; and in
journals such as ACM/IEEE Transactions on Networking. His
research is supported by NSF.

IEEE Communications Magazine *March 2014

87

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

