
MobiFish: A Lightweight Anti-Phishing Scheme for
Mobile Phones

Longfei Wu, Xiaojiang Du, and Jie Wu
Dept. of Computer and Information Science

Temple University

Philadelphia, Pennsylvania 19122

{longfei.wu, dux, jiewu}@temple.edu

Abstract—Recent years have witnessed the increasing threat
of phishing attacks on mobile platforms. In fact, mobile phishing
is more dangerous due to the limitations of mobile phones
and mobile user habits. Existing schemes designed for phishing
attacks on computers/laptops cannot effectively address phishing
attacks on mobile devices. This paper presents MobiFish, a novel
automated lightweight anti-phishing scheme for mobile platforms.
MobiFish verifies the validity of web pages and applications
(Apps) by comparing the actual identity to the identity claimed
by the web pages and Apps. MobiFish has been implemented
on the Nexus 4 smartphone running the Android 4.2 operating
system. We experimentally evaluate the performance of MobiFish
with 100 phishing URLs and corresponding legitimate URLs, as
well as fake Facebook Apps. The result shows that MobiFish is
very effective in detecting phishing attacks on mobile phones.

Keywords—Mobile phones; phishing attack; security; Android

I. INTRODUCTION

Phishing attacks aim to steal private information such as
usernames, passwords, and credit card details by way of imper-
sonating a legitimate entity. Although security researchers have
proposed many anti-phishing schemes, the threat of phishing
attacks is not well mitigated. On the one hand, lots of phishing
sites expire and revive rapidly. According to the Anti-Phishing
Working Group (APWG), the average time that a phishing site
stays online is 4.5 days [1]. Cranor et al. even found sometimes
it is on the order of hours [2]. On the other hand, Phishing
attackers keep improving their techniques so that their new
attacks are able to circumvent existing anti-phishing tools.

Mobile phishing is an emerging threat targeting mobile
users of financial institutions, online shopping, and social
networking companies. In 2012, researchers from Trend Micro
found 4,000 phishing URLs designed for mobile web pages
[3]. Although this number takes up less than 1% of all
collected phishing URLs, it highlights that mobile platforms
has become new targets of phishing attacks. The trend of
launching phishing attacks on mobile phones may be attributed
to the hardware limitations such as the small screen size, and
the inconvenience of user input and application switching.
Besides, mobile users could also be spoofed by conventional
phishing web pages when browsing with their phones.

Almost all phishing attacks on PC are in the form of
bogus websites. Nowadays, with browsers powerful enough to
support all kinds of Internet services, people are accustomed
to online banking, online shopping, and online socializing.
They are familiar with being requested and providing private

information and credentials to websites. However, browsers
have many fancy features and convenient functions abandoned
or truncated during their adaptation to hardware-constrained
mobile platforms; this results in an in unpleasant experience for
users. To improve their services, most well-known enterprises
have published mobile applications (Apps) for major mobile
platforms. This sheds new light on phishing scams: some
phishing attackers develop fake applications or repackage legit-
imate applications, and then upload these phishing applications
to unofficial app markets: victim users’ credentials will be sent
to the phishing server. Phishing applications are even harder
to detect than phishing web pages since for web pages we
are able to judge the destination of form-data from HTML
source code (action attribute in form). But for mobile apps,
there is no way to check whether user credentials are sent to
the legitimate authentication server or phisher’ s server. Hence,
phishing attacks on mobile phones are more complicated than
those on PCs.

Current phishing detection schemes can be roughly divided
into two categories: heuristics-based schemes and blacklist-
based schemes. Blacklist-based schemes can only detect phish-
ing sites that are in the blacklist but cannot detect zero-day
phishing attacks that have appeared for days or even hours.
It is possible that new phishing sites may have already stolen
user credentials or even expired before being added into the
blacklist. Heuristics-based schemes largely depend on features
extracted from URL and HTML source code, and then other
techniques such as machine learning are used to determine
the validity. However, we find that the features extracted from
HTML source code could be inaccurate, and phishing sites
can easily bypass those heuristics. Furthermore, there is no
off-the-shelf tool to detect phishing Apps in mobile devices.
Therefore, it is important to design effective phishing defense
schemes for both conventional web pages (for PCs), mobile
web pages, and mobile Apps (for mobile devices).

In this paper, we propose a novel lightweight anti-phishing
scheme for mobile devices – MobiFish, which is capable
of defending against phishing attacks on mobile web pages
and Apps. MobiFish aims to solve the essential problem of
identity masquerade without reliance on HTML source code,
search engine, or machine learning techniques. We employ
the optical character recognition (OCR) technique to extract
text from the screenshot of a login interface, which achieves
better performance on mobile phones than on PCs. We are
able to find the claimed identity from the extracted text, and
the actual identity from the URL of a web page or remote

978-1-4799-3572-7/14/$31.00 ©2014 IEEE



server (for mobile apps). If these two identities are different,
our tool sends a warning to the user. Our tool could block the
credential transmission in phishing applications as well.

Our contributions are summarized as follows:

– We propose MobiFish, a novel automated lightweight
anti-phishing scheme for mobile phones.

– We find the weakness of previous heuristics-based secu-
rity schemes for conventional web phishing, and we propose
a lightweight detecting strategy that utilizes optical character
recognition (OCR).

– We implement MobiFish on a Google Nexus 4 smart-
phone running the Android 4.2 operating system.

– We evaluate the effectiveness of MobiFish with 100
phishing URLs and corresponding legitimate URLs, as well
as “Facebook” phishing Apps. The results show that MobiFish
can effectively defend mobile phishing attacks.

The rest of the paper is organized as follows. Section II
describes background information of mobile phishing. Section
III provides an overview of the MobiFish scheme. Section
IV presents the details of MobiFish. Section V describes
our evaluation methodology and results. Section VI discusses
related works. Section VII concludes the paper.

II. BACKGROUND OF MOBILE PHISHING

A. User Interface of Mobile Phone

To accommodate the small screen size, browsers on mobile
phones have to remove or change some features, including
security functionalities. The simplified version of user interface
may help phishing sites to bypass user inspection.

Due to the small size of phone screens, most mobile
browsers have to remove the status bar and hide the URL
bar once the web pages finish loading. Even during the
loading process, long URLs are truncated to fit the browser
frame. Since the ability to read and verify URLs is crucial
in detecting phishing attacks, partial URL (especially URL
displayed with partial domain name) would certainly increase
the risk of being spoofed by phishing attacks. For example,
Figure 1(a) shows the URL bar with only a partial domain
name when loading the “Bank of America” site. This could
lead to a successful phishing attack if users are convinced
by the partial URL and submit their credentials, while the
full URL turns out to be “https://secure.bankofameric.com” or
“https://secure.bankofamerica.com.phishing.com”. Such tricks
would fail if the entire URL (or at least domain name) is
displayed. One possible way by which a user can view the
complete URL is to click the address bar and manually scroll
all the way to the end. Another way is to view the actual
destination of a link, which can be invoked by holding the
link for about two seconds. Though the destination URL is
also partially presented as in Figure 1(b), it can display the
domain name with as many as 31 characters, instead of 19
characters in URL bar. Since the full domain names of the
login pages are no longer than 30 characters for most legitimate
sites, checking the destination allows users to detect phishing
sites more quickly.

(a) Display of Partial URL

(b) Display of Link Destination

Fig. 1. Display of URL in Mobile Browser (Android)

(a) Wells Fargo Domain Name

(b) Wells Fargo Domain Name with ‘l’ Replaced by Capital ‘i’

(c) Wells Fargo Domain Name with ‘l’ and Capital ‘i’

Fig. 2. URL Letter Replacement

Besides, for certain legitimate sites, their domain name
could be easily mimicked by replacing letters. For example,
it is hard to distinguish ‘l’ from capital ‘i’ because mobile
browsers display them both in vertical slash shape (e.g.,
Figure 2(a) and 2(b)). In Figure 2(c), we list both ‘l’ and
capital ‘i’ together and find that their small difference in height
is difficult to discern by human eyes. For this kind of letter
replacement phishing attack, even attentive and observant users
who always check the entire URL (domain name) are likely
to be fooled.

To sum up, the limitations in mobile browsers considerably
increase users’ vulnerability to mobile phishing attacks.

B. Mobile Application Phishing Attacks

Phishing attacks based on applications are quite uncommon
in PCs, but are disturbing problems on mobile platforms.
According to Felt et al. [4], the four specific phishing attack
models with prevalence level “common” and accuracy level
“perfect” are all associated with mobile applications that
impersonate legitimate apps. Application-oriented phishing at-
tacks can be further categorized into two types based on the
way they launch: Some phishing applications attempt to hijack
existing legitimate apps. These phishing apps keep performing
task polling, and launch themselves as long as they detect the
launch of target apps. As the result, the fake login interface
layers over the top of the real one, and the phishing app
pretends to be the target app. Mobile users do not know what
has happened since everything is accomplished during a single
window switching process. One possible way to solve this is
to check the identity of foreground app from the multitasking
list menu, though normally no user does that. Another type



of phishing app directly appears as the target app. This may
occur when a user downloads fake apps from unofficial app
markets.

Despite the various methods of stealing user credentials,
the essential attack pattern must end with the transmission
of credentials to the attacker. Hence, runtime monitoring
and blocking the transmission of phishing application can
effectively defeat the attack.

C. Mobile User Habits and Preferences

Mobile users’ habits and preferences further ease the
mobile phishing attacks. During the past few years, touch
screen smartphones have become dominant in the mobile
phone market. However, typing on a virtual keyboard is not as
easy as on a physical keyboard due to lower input accuracy,
particularly when walking or sitting in a moving vehicle.
Because of that, it is tempting to follow links in web pages
or e-mails rather than typing the links manually. Another
factor is that in smartphones, switching among applications
or even shifting to other pages within a browser, is more
complicated and tedious than when performed on a PC. Users
who value convenience usually prefer to follow links from
other applications [5].

In addition, phishing attacks can succeed because users
become accustomed to entering their credentials in familiar,
repeated login interfaces. If users frequently encounter legit-
imate links whose targets prompt them for private data, then
users get used to reflexively supplying the requested data [6].

III. OVERVIEW OF MOBIFISH SCHEME

A. Motivation

Phishing attackers take fancy tactics to direct victims to
their phishing sites or applications, which masquerade as
trustworthy entities. The key of solving the phishing problem
is to find the discrepancy between the identity it claims and the
identity it actually has. However, none of the two major exist-
ing methods for phishing detection – blacklist and heuristics,
are designed based on the key evidence of identity difference.
Blacklist method is to search a suspicious site in a list of
reported phishing sites. Although it can achieve high accuracy
at the cost of human verification, the delay in updating the
blacklist would greatly degrade its effectiveness. Specifically,
blacklist-based methods cannot defend new phishing sites
that have not been listed, such as zero-day phishing attacks.
Heuristic detection methods are based on features extracted
from URL and HTML source code, and often work with the
assistance of search engine or machine learning techniques.
These features are summarized from reported phishing sites.
However, phishing sites may not have the features at all
because each feature may only appear in some of the phishing
samples. This means that carefully constructed phishing sites
that remove all suspicious features are able to bypass the
heuristic detection methods.

In addition, we find that information extracted from HTML
source code may not always represent the web page displayed
to users. This is because attackers can add text, images, and
links into HTML source code, and simultaneously can make
“undesirable” content disappear from a web page by simply

(a) Ebay Official Login Page (b) Ebay Phishing Login Page

(c) Inserted HTML Source Code

Fig. 3. Comparison of Real and Fake Ebay Login Page

changing its size or covering it with other images. Therefore,
features like word frequency, brand name, and company logo
could easily be manipulated. For example, Figure 3(a) shows
the real Ebay mobile login page. We copy the code of the
original site and migrate it to our web page. We also upload
the image components to our website and change the links to
the corresponding places in our website, especially its form-
data submission URL. Then the code segment in Figure 3(c)
is added into the source code. However, the tampered web
page (Figure 3(b)) looks exactly the same as the official Ebay
site. No user will suspect its validity without looking at its
URL. In this manner, phishers can insert as many “bugs3” as
needed into the HTML source code to obfuscate conventional
identity extractors. The large number of “bugs3”s extracted
are able to convince the identity extractor that this web page
claims to be “bugs3” instead of “Ebay”. As a result, anti-
phishing heuristics would fail since the phishing web page
indeed belongs to “bugs3.com” domain. Moreover, the title of
a web page is not visible unless the user clicks the page menu
icon and switches to an overview of the opened page list, which
means the title could also be replaced by “bugs3” to enhance
the consistency of HTML source code. As discussed above,
we show that HTML source code is not a reliable way to find
the claimed identity of a phishing site. As an alternative, we
should focus on the screen presented to mobile users since
users are directly spoofed by what they see.

Besides, existing anti-phishing schemes cannot detect
phishing applications. Thus, there is a strong need for an
effective defense scheme against phishing attacks on mobile
platforms.

B. Identity Extraction

As discussed above, the screen presented to mobile users
should be the exact place where the claimed identity is extract-



Fig. 4. The Work Flow of WebFish

ed from. It turns out that a good way to capture phone screen
is to take a screenshot. There are two common observations
that lead us to believe that screenshot can work well in
identity extraction and verification. The first is that most login
interfaces of legitimate mobile sites and apps are very simple.
The entire login page, or the majority of the page, can be
captured in one screenshot. Another observation is that most
well-known enterprises use brand name as the second-level
domain name (SLD) of their official websites. This can be best
illustrated by Bank of America (BoA). BoA uses the entire
brand name as SLD despite its length. In special cases that
brand names are not exactly the same as SLD, e.g., “AT&T”
contains symbol in the brand name, all content-based schemes
will fail due to the mismatch of brand name “AT&T” and
SLD “att” (for legitimate URLs, special symbols are usually
not included in domain name). However, such inconsistency
can be easily solved with a mapping whitelist, in which brand
name “AT&T” is directly mapped to SLD “att”, and vice versa.

Screenshot can be used for phishing detection in both web
pages and applications. In the phishing web page detection,
we have to know the content in the screen displayed to users.
Similarly, for the detection of phishing applications, there is no
way to acquire any information related to the content of login
interface other than taking screenshots. Then, to obtain claimed
identity, OCR technique is utilized to convert the screenshot
into text. The actual identity of a mobile web page can be
obtained from the SLD. However, for mobile application,
the actual identity cannot be captured until authentication or
transmission of user credentials happens.

C. OCR Techniques

Optical character recognition (OCR) is the mechanical or
electronic conversion of an image to machine-encoded text.
We believe that the OCR technique could achieve better
performance on mobile phones because mobile phones have
smaller screen size and relatively higher pixel density. We
deploy the OCR technique into mobile platforms and show
its performance and effectiveness through real experiments.

The tool we use is Tesseract [7], which is one of the most
accurate open source OCR engines and can support over 60
languages. Our testing uses a Thinkpad T420 laptop (2.40GHz,
4GB RAM) with pixel density of 131 dpi and a Google Nexus
4 smartphone (1.5GHz, 2GB RAM) with 320 dpi.

We open the Ebay mobile login page in both mobile and
PC browsers, and each captures a screenshot. Tesseract is used
to extract text from the screenshot taken on mobile phone
while Microsoft Office Document Imaging (MODI) is used
to process the screenshot of PC browser (this tool is used in
a previous anti-phishing scheme [8]). We find that Tesseract
extracts all words correctly from the mobile screenshot, except
the “sign in” in dark blue button (Figure 3(a)). The extraction
result on PC is worse as it not only missed the dark blue
button, but also missed the word “ebay” in the logo. Besides,
the OCR extraction on mobile phones only takes 1.6 seconds,
while on PC the processing time is 4.5 seconds.

IV. THE MOBIFISH SCHEME

In this section, we present an automated lightweight
scheme for mobile phishing defense named MobiFish. Mob-
iFish consists of two independent components designed for
mobile web pages and mobile applications, called WebFish
and AppFish respectively.

A. The WebFish Scheme

The work flow of WebFish is given in Figure 4. As we can
see, the defense scheme is initiated with URL loading. When
a browser attempts to load a web page, WebFish first scans
its URL to see whether the domain name is an IP address.
Legitimate websites always use domain names as verification
of their identities while phishers are likely to list IP address in
URL to disguise their fake identities. Next, WebFish obtains
the HTML source code of the loading page and checks if
there is any form in that page. The existence of form is
important since phishers also need a form with input tag which
allows user to enter (confidential) information and then submit.
WebFish checks forms to speed up the detection, but the core



Fig. 5. The Work Flow of AppFish

module of identity extraction does not rely on any part of
HTML source code. If a form is found, WebFish starts the
identity extraction and verification. On one hand, it extracts
second-level domain name (SLD) from URL, which represents
the actual identity of the site. Then the SLD is indexed in the
Mapping White-List (MWL). If it matches any of the SLD–
Brand names in the MWL, the original SLD is replaced by
the corresponding brand name. On the other hand, it calls the
screencap native function to take a screenshot of the login
page and extract the text with the OCR tool. Note that the
URL shown in the URL bar may also be captured in the
screenshot, and it should be removed from text since it reflects
the actual identity of the site. The existance of a URL bar in the
screenshot can be determined by whether the first line contains
one of the top-level domain names (e.g. gov, edu, com, and
org). To reduce the false-positive rate, we further search for
sensitive terms such as “username”, “password”, and “credit
card number” in the text. If not found, the form may be just
used for search or general data input purposes and the page is
marked as safe. Otherwise, the last step is to search the SLD
in text. If not found, it is probably a phishing site. WebFish
shows a notification window to the user indicating the high
possibility of a phishing attack, along with the URL of the
suspected web page.

Our design is based on the assumption that if the domain
name of the phishing site appears in the fake login page of
legitimate sites, users can immediately discern the difference
and check the URL to verify the validity of this web page.
This is reasonable since as far as we know, no phishing site
uses common terms in login page like “sign”, “username”,
“password”, or “welcome” exactly as a second-level domain
name (SLD). Legitimate mobile login pages are made very
simple and clear. It is highly unlikely for these well constructed
and maintained web pages to have strange words appear on
them. Thus, users would become alerted if a web page contains
text different from the brand name or common login terms
(such as welcome). If the attacker adds the phishing domain
name in tiny font size to prevent the user from noticing, then
the OCR is not able to recognize it either, and WebFish will
still detect it as a phishing site. The key feature for WebFish
to detect a phishing URL is that the SLD is not among the

text extracted from the screenshot of the login page.

B. The AppFish Scheme

The work flow of AppFish is shown in Figure 5. AppFish
maintains a database called suspicious app set (SAS), which
contains profiles of untrusted apps including user ID (Uid),
launching time, and screenshot text. Users can add the apps
they suspect into SAS, and only apps listed in SAS are under
the monitoring of AppFish. These apps are characterized as

1. Specified for one company. This is to ensure that the app
only contacts the company’s official sites or affiliated (partners)
servers. The domain name of the collaborators are collected
and added into the SAS profile in advance. Having multiple
domains often happens to websites that need extra storage.
For example, we find in our testing that Facebook always
requests data from domains like fbcdn.net and akamaihd.net.
This is because Facebook uses them as a content delivery
network (CDN). The substantial amount of photos generated
by Facebook users are uploaded to akamaihd.net instead of
facebook.com. Whenever a user want to view a photo, the
request is actually sent to the nearest akamaihd server.

2. Have the user login. There are lots of apps that do not
need users to login, like browsers and apps for news, music,
maps, etc. In these cases, phishing attacks would not happen
at all. For browsers, web page login is protected by WebFish.

The AppFish defense scheme works in two phases: launch-
ing phase and authentication phase. In launching phase, App-
Fish obtains the name of each launching application and
searches for it in SAS. If found, the logging process begins,
in which AppFish takes a screenshot of the login interface and
extracts the text with the OCR tool. Then, the text along with
the application Uid and launching time are logged into the
profile of that app. After the user has entered the credentials
and clicks the “sign in” button, the authentication phase
begins. Legitimate applications (like Facebook and Twitter)
usually send the user’s credentials to a remote server for
authentication via HttpGet/HttpPost. Once the credentials are
verified, the application loads data belonging to the account.
On the contrary, phishing apps are not able to load user data,



(a) BOA Phishing Login Page (b) BOA Official Login Page

(c) AT&T Phishing Login Page (d) AT&T Official Login Page

Fig. 6. Experiments with WebFish on Mobile Phishing Login Page

and the only trick they can play is to tell the user that he or she
has entered the wrong password. However, after two or three
times, most users will suspect the validity of the application
and uninstall it. Hence, a phishing app is able to send out
the user credentials only during the period from submission
to uninstallation. Appfish monitors the possible paths for a
phishing app to transmit data to outside world, which include
HttpGet/HttpPost, socket, SMS and email (email is also based
on socket). If an application calls any of these ways to send out
information, AppFish checks whether it is one of the suspects
in SAS. If confirmed, http connections (HttpGet/HttpPost) are
filtered while other communications (socket/sms) are blocked.
For all URLs the suspicious app requests to connect with,
AppFish ensures that the SLD name appears among the text
or affiliated domain names stored in SAS profile. The idea
is the same as that in WebFish. Meanwhile, socket and SMS
function could be blocked for certain amount of time T, which
should be long enough for the user to discover and uninstall
the malicious app. Thus, for phishing applications, they will
not be able to send out credentials before being removed by
user.

Note that we have to compare the SLD to the text extracted
from the login page. The reason why extracted text (instead
of the application name) is used is that: for phishing attacks
based on task interception, phishers could develop an app with
the same name as the SLD of the phishing server, and can pop
up fake a login page. For instance, mobile user downloads a
phishing app named “abc” due to its tempting fancy functions.
However, this phishing app could pop up a fake Facebook
login interface as soon as the legitimate Facebook launches.

(a) Yahoo Phishing Login Page (b) Yahoo Official Login Page

(c) PayPal Phishing Login Page (d) PayPal Official Login Page

Fig. 7. Experiments with WebFish on Conventional Phishing Login Page

Once the user is spoofed, the app “abc” immediately sends the
credentials to the phishing server “abc.com”. In this example,
the foreground (fake) application name is the same as the SLD
of phishing server but instead, we would not find “abc” in the
phishing login interface.

V. PERFORMANCE EVALUATION

We implement MobiFish on a Google Nexus 4 smartphone
running the Android 4.2 operating system. We modify the
source code of the Android system so that it is able to support
MobiFish. The MobiFish scheme may be applied to other
mobile platforms as well. To evaluate the performance of
MobiFish, we conduct experiments for WebFish and AppFish
separately.

A. Experiments with WebFish

In the process of evaluating WebFish, we were not able
to collect enough phishing URLs specified for mobile web
pages. Instead, we randomly picked up 100 phishing URLs
from PhishTank.com in 2013. Although all the phishing URLs
have been blocked by PC browsers like Chrome, they are
accessible through mobile browsers (including both Android’s
built-in browser and Chrome for Android). This fact highlights
the significance of WebFish, which can provide web phishing
defense for mobile platforms. In our experiments, WebFish
can effectively mark all the phishing URLs as dangerous, and
can warn the user. Figures 6(a) and 6(c) show that WebFish
displays alertness because it is not able to find the SLD inside
the mobile phishing login pages of “Bank of America” and
“AT&T”.



Meanwhile, we have two observations for the conventional
(PC) phishing web pages. First, a large number of them are in
high similarity to their legitimate counterparts, and the input
forms in phishing login pages are often surrounded by brand
names or company logos, as legitimate login pages do. Second,
when loading large conventional web pages, mobile browsers
often display the area that contains the input form instead of
displaying an overview of the entire web page. Figure 7(a) and
7(c) show the phishing login pages of Yahoo and Paypal. As we
can see, the brand name Yahoo and Paypal logo appear more
than once in the input form area that is presented to user. Both
of them are reported as phishing sites since WebFish cannot
find the SLD in the screenshot.

To evaluate the performance of WebFish on legitimate
web pages, we use the URLs of the corresponding official
login web pages for comparison. Figures 6(b), 6(d), 7(b) and
7(d) are the official mobile login pages; WebFish successfully
verifies the validity of these pages and no warning is generated.
WebFish’s ability to verify the legitimate AT&T web page
shows that the Mapping White-List (MWL) scheme works
for company websites with different brand name and SLD.
The 19 corresponding legitimate mobile login web pages can
demonstrate WebFish’s performance on legitimate web pages.
Table I summarizes the testing results of phishing URLs
(Column 1, 2, 3) and legitimate URLs (Column 4, 5). The
“MWL” behind legitimate SLD name means that MWL is used
to convert the SLD to the brand name.

TABLE I. SUMMARY OF TESTED URLS

Website
Phishing
Samples

Phishing
Feature
Found

Legitimate
Mobile Login

SLD

Verification
of Legitimate

URLs

Amazon 6 100% amazon �

AOL 3 100% aol �

Apple 5 100% apple �

AT&T 2 100% att (MWL) �

Bank of America 10 100% bankofamerica �

Barclays 4 100% barclays �

Chase 5 100% chase �

Citi 4 100% citibank (MWL) �

Ebay 8 100% ebay �

Facebook 5 100% facebook �

Hotmail 2 100% live (MWL) �

HSBC 8 100% hsbc �

Microsoft 1 100% live (MWL) �

NAB 1 100% nab �

NatWest 3 100% nwolb (MWL) �

PayPal 12 100% paypal �

Vodafone 4 100% vodafone �

Wells Fargo 7 100% wellsfargo �

Yahoo 10 100% yahoo �
Total: 100 100% Tot: 19 100%

Table I shows that: (1) WebFish is able to find key features
of phishing web pages for 100% tested phishing URLs; and
(2) WebFish achieves 100% verification rate of legitimate
URLs. The results demonstrate the effectiveness of WebFish
in detecting mobile phishing sites.

B. Experiments with AppFish

When we conduct experiments with AppFish, there are
only a few reported phishing applications and none of them
is available online. To test the effectiveness of AppFish, we

(a) Fake Facebook App (b) Warning of Phishing App

Fig. 8. Experiments with AppFish on Mobile Applications

develop two sample phishing applications. Figure 8(a) shows
the login interface of the fake Facebook apps developed by us.
Most users would not be able to discern its being differemt
from legitimate Facebook. Our first phishing application runs
by itself and pretends to be the real Facebook app. The
second one runs when it detects that the real Facebook app is
launching, and it pops up a fake login interface to cover the real
Facebook app. After a user clicks the “Log in” button, the fake
apps send the credentials to us by HttpGet, HttpPost, socket,
SMS, and email, respectively. Meanwhile, a notice window
is displayed, informing the user of an incorrect password,
and prompts for another try. When AppFish runs, it is able
to block all the requests and warn users about the phishing
attempts. Figure 8(b) (lower part) shows the warning generated
by AppFish for the phishing attack.

VI. RELATED WORK

Web users have been suffering from phishing attacks since
their first appearance in 2003. Researchers have proposed
many solutions (such as alert protection and phishing detec-
tion) to defend against phishing attacks.

Alert protection is a simple notification when a user is
entering sensitive information. Kirda et al. proposed AntiPhish
[9], which tracks the sensitive information of a user and
generates warnings whenever the user attempts to give away
this information to a website that is considered untrusted.
However, this scheme cannot automatically check and detect
phishing attacks. Instead, users have to judge by themselves
after being warned.

In addition, many phishing detection tools have been de-
signed for phishing on PC web pages. Based on the methodol-
ogy used, they can be generally categorized into two groups:
heuristics schemes and blacklist schemes. Heuristics schemes
outperform blacklist schemes since they can deal with new
phishing sites without the need of waiting for update. Usually,
heuristics schemes for phishing detection utilize other tech-
niques such as machine learning techniques [10], [11], [12] and
search engine [12], [13]. CANTINA [13] is a content-based
approach to detecting phishing websites, and it adopts TF-IDF
information retrieval algorithms. Garera et al. [10] proposed
a heuristics-based scheme which identified several generic
features of phishing URLs, and used these features in a logistic
regression classifier. CANTINA+ [12] is a comprehensive



feature-based solution for phishing web page which combines
machine learning and search engine techniques. However,
existing heuristics used in phishing detection are all based on
features extracted from HTML source code. As we showed in
section III, HTML source code should not be trusted since it
may not reflect the actual content presented to users.

Based on the assumption that the most spoofing phishing
sites are those whose visual appearances look identical or very
similar to authentic sites [14], [15], several similarity based
phishing detection approaches are proposed. SpoofGuard [16]
uses URLs, images, links, and domain names to check the
similarity between a given page and the pages previously
stored. Afroz et al. proposed PhishZoo [17] that uses the
profiles of trusted websites’ appearances built with fuzzy
hashing techniques to detect phishing. PhishZoo makes profiles
of sites that consist of fuzzy hashes of several common content
elements (e.g. URL, images, most used texts, HTML codes,
script files, etc.), which are related to their structure and
appearance. They further enhanced their phishing detection
scheme by adding displayed images into profiles and utilizing
SIFT image-matching algorithm [18]. However, similarity-
based approaches cannot detect phishing sites with different
appearances.

GoldPhish [8] utilizes optical character recognition (OCR)
technique for phishing detection on PC browsers. OCR is
used to extract text from images found on web pages, such
as the company logo, and then it is compared to the top
ranked domains from Google’ s search service. However, OCR
performance on PC is demonstrated to be limited in both speed
and accuracy. And our lightweight scheme works with mobile
browser and does not depend on external search engine.

Mobile Phishing is emerging as a significant threat for
mobile users. iPhish [5] discusses the weaknesses caused by
the hardware limitation of mobile devices. Felt et al. [4] exam-
ined the mobile phishing threats by detailing several phishing
attack models during control transfers. In terms of solutions for
mobile phishing, we only found one piece of work proposed
by Jie et al. [19], in which they load hooks into iOS so that the
system interrupts the user when sensitive information is being
entered into applications not in the whitelist, and prompts the
user to decide whether to continue or not. However, this idea is
quite similar to AntiPhish [9], which only provides a warning,
rather than detection and defense.

VII. CONCLUSION

In this paper, we studied the important issue of mobile
phishing detection. We proposed MobiFish, a novel mobile
phishing defense scheme. We identified the weaknesses of
the heuristics-based anti-phishing schemes that highly rely on
the HTML source code of the web page. MobiFish resolves
this issue by using OCR, which can accurately extract text
from the screenshot of a mobile login interface such that the
claimed identity can be verified. Compared to existing OCR-
based anti-phishing schemes (designed for PC only), Mobifish
is lightweight as it works without using external search engines
or machine learning algorithms. We implemented MobiFish
on a Google Nexus 4 smartphone running the Android 4.2
operating system. Our experimental evaluation demonstrated
that MobiFish can effectively detect and defend against mobile
phishing attacks.

ACKNOWLEDGMENT

This research was supported in part by the US National
Science Foundation (NSF) under grants CNS-0963578, CNS-
1022552, and CNS-1065444.

REFERENCES

[1] Anti-Phishing Working Group, “Phishing activity trends report,”
http://www.antiphishing.org/reports/apwg report june 06.pdf, 2006.

[2] L. F. Cranor, S. Egelman, J. I. Hong, and Y. Zhang, “Phinding phish:
Evaluating anti-phishing tools,” In Proceedings of The 14th Annual
Network and Distributed System Security Symposium (NDSS ’07),
February, 2007.

[3] Trend Micro, “Mobile phishing: A problem on the horizon,” 2012.

[4] A. P. Felt and D. Wagner, “Phishing on mobile devices,” In Proceedings
of W2SP’11: WEB 2.0 Security and Privacy, 2011.

[5] Y. Niu, F. Hsu, and H. Chen, “iphish: phishing vulnerabilities on
consumer electronics,” in Proceedings of the 1st Conference on Usabil-
ity, Psychology, and Security, ser. UPSEC’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 10:1–10:8.

[6] C. Karlof, J. D. Tygar, and D. Wagner, “Conditioned-safe ceremonies
and a user study of an application to web authentication,” in Proceedings
of the 5th Symposium on Usable Privacy and Security, ser. SOUPS ’09.
New York, NY, USA: ACM, 2009, pp. 38:1–38:1.

[7] Tesseract OCR, http://code.google.com/p/tesseract-ocr/.

[8] M. Dunlop, S. Groat, and D. Shelly, “Goldphish: Using images for
content-based phishing analysis,” in Internet Monitoring and Protection
(ICIMP), 2010 Fifth International Conference on, 2010, pp. 123–128.

[9] E. Kirda and C. Kruegel, “Protecting users against phishing attacks with
antiphish,” in Proceedings of the 29th Annual International Computer
Software and Applications Conference - Volume 01, ser. COMPSAC ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 517–524.

[10] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for
detection and measurement of phishing attacks,” in Proceedings of the
2007 ACM workshop on Recurring Malcode, ser. WORM ’07. New
York, NY, USA: ACM, 2007, pp. 1–8.

[11] Y. Pan and X. Ding, “Anomaly based web phishing page detection,”
in Proceedings of the 22nd Annual Computer Security Applications
Conference, ser. ACSAC ’06. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 381–392.

[12] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “Cantina+: A feature-rich
machine learning framework for detecting phishing web sites,” ACM
Trans. Inf. Syst. Secur., vol. 14, no. 2, pp. 21:1–21:28, Sep. 2011.

[13] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based
approach to detecting phishing web sites,” in Proceedings of the 16th
international conference on World Wide Web, ser. WWW ’07. New
York, NY, USA: ACM, 2007, pp. 639–648.

[14] J. S. Downs, M. B. Holbrook, and L. F. Cranor, “Decision strategies and
susceptibility to phishing,” in Proceedings of the second symposium on
Usable privacy and security, ser. SOUPS ’06. New York, NY, USA:
ACM, 2006, pp. 79–90.

[15] M. Jakobsson, A. Tsow, A. Shah, E. Blevis, and Y.-K. Lim, “What
instills trust? a qualitative study of phishing,” in Proceedings of the 11th
International Conference on Financial cryptography and 1st Interna-
tional conference on Usable Security, ser. FC’07/USEC’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 356–361.

[16] N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell, “Client-
side defense against web-based identity theft,” In Proceedings of 11th
Annual Network and Distributed System Security Symposium (NDSS
’04), February, 2004.

[17] S. Afroz and R. Greenstadt, “Phishzoo: An automated web phishing
detection approach based on profiling and fuzzy matching,” Drexel
University, Tech. Rep., 03 2009.

[18] ——, “Phishzoo: Detecting phishing websites by looking at them,” in
Semantic Computing (ICSC), 2011 Fifth IEEE International Conference
on, 2011, pp. 368–375.

[19] J. Hou and Q. Yang, “Defense against mobile phishing
attack,” Computer Security Course Project, http://www-
personal.umich.edu/ỹangqi/pivot/mobile phishing defense.pdf, 2012.


