
An Effective Online Scheme for Detecting Android

Malware

Shuang Liang, Xiaojiang Du and Chiu C. Tan

Dept. of Computer and Information Science,

Temple University, Philadelphia, PA 19122, USA

{shuang.liang2012, dux, cctan}@temple.edu

Wei Yu

Dept. of Computer and Information Science,

Towson University, Towson, MD 21252, USA

wyu@towson.edu

Abstract—The growing popularity of Android-based smart-
phones have led to the rise of Android based malware. In partic-
ular, profit-motivated malware is becoming increasingly popular
in Android malware distribution. These malware typically profit
by sending premium-rate SMS messages and/or make premium-
rate phone calls from infected devices without user consent. In
this paper, we investigate the telephony framework of the Android
operating system and propose a novel process user-identification
(UID) based online detection scheme. Our scheme can effectively
detect premium-rate and background SMS messages as well as
premium-rate phone calls initiated by malware. We implemented
our detection system on a Samsung Google Nexus 4 running
Android Jelly Bean and tested the effectiveness of detecting
real malware from Android markets. The experimental results
show that our scheme is efficient and effective in detecting
background messages and premium-rate messages and phone
calls. Our scheme can detect and block all the background and
premium-rate SMS messages and phone calls initiated by popular
malware.

Keywords—Android; smartphone; malware detection; security

I. INTRODUCTION

Android has become the world’s most popular mobile
platform operating system [1]. As of the second quarter of
2013, the Android operating system (OS) occupies 79.3% of
the total smartphone operating system market share [2]. The
rapid growth brings a significant profit boost for Android
smartphone vendors such as Samsung and LG [3]. Unfor-
tunately, the popularity of the Android mobile platform has
also attracted malware developers to design Android-based
malware. According to the statistics of the computer security
company F-Secures mobile threat report [4], the third quarter
of 2013 has seen a fast growth of profit-motivated threats,
which typically make monetary profit by sending premium-
rate SMS messages from infected mobile devices without user
consent. As reported by Android malware researchers and anti-
virus companies, a large number of malware families have
been spreading in official and unofficial Android markets.
Example of some popular Android malware includes Geinimi
[5], DroidKungFu [6], and AnserverBot [7]. Also in existence
are SMS-sending trojan families such as FakeInst [8], OpFake
[9], and SmsSend [10]. Such malware can cause financial loss
and privacy leakage for mobile users.

Most of the current Android malware detection schemes
are offline [11], [12]. This means that they identify malware
by examining the source code and/or the permission file of
Android application (App) package. If the source code is not
available, these schemes have to obtain the source code by re-
verse engineering. The limitation of this approach is that some

malware is starting to use code obfuscation, java reflection
functions, or native libraries to circumvent the vetting process
[13].

In this paper, we consider a different approach and develop
an online malware detection tool named Droid Sentinel, which
can detect and block background SMS messages and phone
calls initiated by malware. Droid Sentinel sends an alarm
to the user when background SMS messages, background
phone calls, or premium SMS messages or phone calls are
detected. Through our experimental study on commercial An-
droid phones, we found that in order to send SMS messages
using the system SMS application or to make phone calls
using the system dial application, the sequence of the system
service UIDs (program user ID) is fixed for a specific Android
OS version. Based on this finding, we propose the following
detection mechanism: we record the UID sequences of normal
usage for sending SMS and making phone calls. Then, the
normal UID sequences are used to detect background/premium
SMS messages and phone calls initiated by malware, which
have different UID sequences. Our experimental data using
real malware shows that our developed system is effective
and efficient. In our experiments, Droid Sentinel can detect
and block all background/premium SMS messages and phone
calls. Droid Sentinel can also send the user an alarm for
background/premium SMS and background phone calls.

The contributions of this paper are summarized as follows:

• We propose a novel UID-sequence-based online mal-
ware detection scheme, which can effectively detect
and block background/premium SMS messages and
phone calls initiated by malware.

• Our proposed online malware detection scheme is
orthogonal to existing offline detection schemes. Our
proposed scheme may be used in addition to the offline
schemes. Furthermore, our proposed scheme cannot
be circumvented by code obfuscation and other tricks
played by malware authors.

• We implement the online malware detection scheme
in the Android Jelly Bean version. Then, we conduct
experiments with real malware samples on Android
smartphones and real-world cellular networks.

• The experimental data shows that our detection
scheme is effective and efficient.

The rest of this paper is organized as follows: In Section
II, we discuss popular premium-rate SMS message and phone
call related malware families and their threats to mobile users.

978-1-4799-3572-7/14/$31.00 ©2014 IEEE

Fig. 1. Android Telephony System Components Interactions

In Section III, we present our online malware detection scheme
Droid Sentinel. In Section IV, we describe the evaluation of our
online detection scheme which used real Android platforms.
We summarize lessons learned from Droid Sentinel and some
recommendations for dealing with Android malware in Section
V. We discuss related work in Section VI and conclude the
paper in Section VII.

II. THREATS FROM SMS AND PHONE CALL RELATED

MALWARE

From our investigation of different types of Android mal-
ware, we found that most of the malware that can cause
financial loss are premium-rate SMS related. This observation
is consistent with the data published by Zhou et al.[14]. For
the 1,260 malware samples collected by [14], 571 malware
samples sign up for premium services by sending SMS mes-
sages, 315 malware samples block incoming SMS confirmation
messages, and 138 malware samples steal personal information
through SMS messages. In the real world, SMS and phone
call related malware and Trojan applications spread widely
and upgrade quickly [15], [16], [17], [18]. This kind of
malware can send premium SMS messages in the background
and intercept incoming SMS messages from service providers
without being noticed by the user. We analyzed most of the
premium-SMS-message related malware and found that they
share some common features:

• They need a user to push a button to trigger the SMS
sending event.

• Most of the malware requests SMS related permis-
sions.

• They inject their malicious code into popular Android
Apps.

• They intercept incoming confirmation messages such
that the event is not noticed by the user.

New malware variations are developed rapidly to avoid
being detected by existing security schemes. Some malware

also adopted obfuscation (transforming program code to con-
ceal its purpose or logic), which makes it more difficult
for static analysis. For example, Android.Gamex [19] uses a
trivial encryption (byte XOR with 0x12) to hide a package
in assets/logos.png. As described by Collberg et al. [20], a
number of automatic code obfuscation methods have been
developed, showing that the analysis of code and reverse en-
gineering become challenging. Rastogi et al. evaluated several
commercial mobile anti-malware products for Android and
tested how resistant they are against various common obfus-
cation techniques [21]. The experimental data showed that all
the anti-malware products evaluated would be susceptible to
common evasion techniques. To address this urgent issue, in
this paper, we propose a new approach for detecting SMS
related malware. We designed and implemented Droid Sentinel
- an online tool that runs in real time to detect and block SMS
messages and phone calls initiated by malware. The details of
Droid Sentinel are given in the following sections.

III. DROID SENTINEL - AN ONLINE REAL-TIME

MALWARE DETECTION SCHEME

A. Architecture Overview

Android is an open-source software stack created for a wide
array of devices with different forms of factors [22]. Figure
1 illustrates the interactions of Android telephony system
components. The Android system is built on the Linux kernel.
It does not include the full feature set of standard Linux kernel
and the native windowing system. In addition, there is no
standard glibc support. As shown in Figure 2, on top of the
underlying hardware, a typical Android system consists of the
Applications (Apps) on the top, the Application Framework,
the Native Libraries, and the Linux Kernel on the bottom.
Our developed tool, the Droid Sentinel, has two components
spanning the Applications layer and the Libraries layer. The
component residing on the Applications layer is the Droid
Sentinel App that is used to obtain the recent process UIDs. It
then determines whether the captured event, by the correspond-
ing component in the Libraries layer, is background/premium
SMS messages or phone calls. The other component is the one

Fig. 2. The Architecture of Droid Sentinel

found in the Libraries layer. We modified the radio library and
embedded our event detection component in that layer. When
the telephony events (sending SMS messages, making phone
calls) happen, the Libraries-layer program component reports
the event to the corresponding Application layer part.

We implemented Droid Sentinel in the application layer
of an Android system. Android telephony system components
are shown in Figure 1. We extended the Radio Interface Layer
(RIL) Daemon and the Libraries with ‘libril-log’ to support
SMS and phone call detection and reporting. As shown in
Figure 1, all telephony related phone Apps such as Dialer, Call
Tracker, SMS, etc., go from the top Telephone Service layer to
the RIL Daemon and Libraries layer. From there, the Apps go
to the Linux Kernel and Device Driver layer, and finally, end
at the modem hardware. All of the phone Apps are started
during the system boot up phase. These Apps are tied up
with the Android telephony framework services. The telephony
framework provides APIs to access the Phone services. All
queries from the application layer through APIs are directed
to the RIL of the Android system by these services.

Generally speaking, RIL is the bridge between the Android
phone framework services and the hardware. It consists of two
basic components: the RIL daemon (RILD) and vendor specific
RIL library. The RILD is initialized during the system boot up
phase. It detects the running environment to check whether it
is running in an emulator or on a real phone. libreference-
ril.so is loaded if it is running in an emulator; otherwise,
the vendor RIL library is loaded. Because we implemented
our online detection scheme on real-world hardware instead
of the virtual emulator, we used the vendor specific RIL
library. For the Google Nexus 4 phone, it is the Qualcomm
modem library libril-qc-qmi-1.so. In the end, the procedure
RIL startEventLoop is invoked and the program control goes
to the dynamically linked library libril.so. We extended the
dynamically linked library to support event logging and re-
porting with an additional library, referred to as the libril-
log, that we built. Before sending requests from high layer
telephony services to the modem hardware driver, libril-log
sends them to its counterpart service in the Android application

AID_ROOT 0 /* traditional unix root user */

AID_SYSTEM 1000 /* system server */

AID_RADIO 1001 /* telephony subsystem, RIL */

AID_BLUETOOTH 1002 /* bluetooth subsystem */

AID_GRAPHICS 1003 /* graphics devices */

AID_INPUT 1004 /* input devices */

AID_AUDIO 1005 /* audio devices */

AID_CAMERA 1006 /* camera devices */

AID_LOG 1007 /* log devices */

AID_COMPASS 1008 /* compass device */

AID_MOUNT 1009 /* mountd socket */

AID_WIFI 1010 /* wifi subsystem */

AID_ADB 1011 /* android debug bridge (adbd) */

AID_INSTALL 1012 /* group for installing packages */

AID_MEDIA 1013 /* mediaserver process */

AID_DHCP 1014 /* dhcp client */

Fig. 3. Snippet of Android UIDs and GIDs

layer (i.e. Droid Sentinel in Figure 2). Droid Sentinel then
analyzes the requests and determines whether it is a malware
initiated SMS/phone call.

B. Online Scheme for Detecting Background SMS and Phone
Calls

Linux uses process UIDs to prevent one process from
accessing the space of another process. From a security point
of view, Android also takes advantage of this Linux user-ID
based protection mechanism to identify and isolate application
resources. This approach is different from other operating sys-
tems (even different from the traditional Linux configurations)
where multiple applications run with the same user permission
[23].

We designed our online UID-based detection scheme by
exploiting the fact that each Android application or service
has its own unique user ID (UID). This is used to isolate
one application/service from another. In an Android system,
UIDs less than 10,000 are reserved for system users, devices,
or daemons with 10,000 being the first application UID [24].
Figure 3 lists some of the reserved UIDs. “AID RADIO” is
the UID for the telephony subsystem which is our focus.

Our detection scheme may be extended to use other
reserved Android system UIDs for detecting other malware
families, including malware that can take photos from the
background without user notice. Through experiments on
real phones, we found that in order to complete one action
such as dialing, sending SMS messages, or taking photos, a
number of system services and applications will be called.
The UIDs of these services and applications for dialing and
sending SMS messages are unique after the applications are
installed. For making phone calls and sending SMS messages,
we use the most recent two UIDs (from the UID sequence)
as the signature UID sequence. We obtain the normal UID
sequence for dialing and sending SMS events by using our self-
written Application which automatically detects and records
the invoked UID sequences when sending SMS messages and
making phone calls on a Google Nexus 4 phone. Table I shows
the normal UID signatures for dialing and sending SMS events
and their corresponding Android package names. The column
UID1 is the UID of the most recent invoked program or service
and its corresponding App name. For different Android system
versions, the signatures may be different. Hence, when a

different version of Android is used, the normal UID signature
profile should be defined first.

TABLE I. NORMAL UID SIGNATURES FOR DIALING AND SENDING

SMS MESSAGES

Event UID1 UID2

Dial 1001 (App Phone) 10000 (App Contacts)

SMS 10022 (App Messaging) 10018 (App Launcher)

Any UID sequence inconsistent with the normal UID sig-
natures will be considered as background (without interacting
with users) SMS messages or phone calls. Table II shows the
abnormal UID signatures captured during execution of our self-
written test bench. For the dialing event, the UID2 is different
from that in Table I. For the SMS event, UID1 is different
from that in Table I. When these events are detected, an alert
will be shown on the user’s phone to draw attention. Note that
the alert message shows the destination number and the name
of the App that initiated the operation. At the same time, the
outgoing phone call will be blocked automatically and SMS
messages will be held waiting for the user’s approval or denial.

TABLE II. ABNORMAL UID SIGNATURES CAPTURED IN TEST BENCH

Event UID1 UID2

Dial 1001 (App Phone) 1001 (App Phone)

SMS 10044 (App TestBench) 10018 (App Launcher)

In addition, if a background SMS sending or call dialing
event is detected, the destination number is checked against
premium number prefixes. Our current implementation consid-
ers only premium numbers in the United States, which have the
form 1-900-###-#### or 900-###-####. Note that our designed
system can be easily extended to include other premium
numbers. Droid Sentinel will notify the phone owner about
a premium-number event that may be more harmful than the
background events. In the following, we will demonstrate the
implementation of our proposed UID-based detection scheme
and the algorithm in detail.

C. Implementation on Android System

As discussed in the architecture overview in Section III-A,
our system consists of two components that span from the
phone applications layer to the user libraries layer of Android.
These two components communicate with each other using
the socket interface for system programs provided by Android
[25]. We now discuss the implementation details and how
our developed online malware detection scheme works. In the
following description, we use Droid Sentinel to refer to the
App component at the phone applications layer of Android
and we use RIL-log to refer to the phone call/SMS message
logging and reporting component located at the user libraries
layer of Android.

The detection activity is started by Droid Sentinel by
initiating the socket connection and sending “START” com-
mand to RIL-log. As shown in the flow diagram in Figure
4, Droid Sentinel first connects to the RIL-log by using
socket communications in the UNIX domain. After getting
the connection request, RIL-log obtains the file handler of this
socket and starts receiving commands from Droid Sentinel.
After receiving the “START” command, RIL-log enables the
logging and reporting feature. After successfully enabling RIL-
log, Droid Sentinel starts the socket monitoring thread and

Fig. 4. Flow Diagram of Droid Sentinel

waits for the phone events from RIL-log. Upon receiving the
phone event, Droid Sentinel extracts the event type code from
the message by parsing the Parcel message container sent from
RIL-log. Parcel is designed as a high-performance IPC (Inter-
Process Communication) transport and can be used for data
serialization [26].

In our current implementation, Droid Sentinel supports
detecting two types of events: dialing and sending SMS
messages. If it is a dialing event, Droid Sentinel employs
the UID-based detection scheme (discussed in the previous
subsection) to check whether it is a background event. If this
event is a background dialing event, Droid Sentinel extracts the
target phone number and determines whether it is a premium
phone number by checking the prefix of the number. Droid
Sentinel then notifies the phone user about the background
dialing threat with the number showing in the message. In
addition, the phone call is automatically blocked. On the other
hand, if it is not a background phone call, Droid Sentinel sends
a “PASS” command to RIL-log that allows the phone call to
continue. If it is an SMS-sending event, Droid Sentinel applies
the same UID-based detection scheme and decides whether it
is a background SMS message. Different from the background
dialing event, Droid Sentinel asks the user whether he/she
wants to block the SMS message instead of automatically
blocking the message. If the user still wants to send this
message, Droid Sentinel sends a “PASS” command to let the
message be sent; otherwise, the message is blocked.

For the aforementioned UID-based detection scheme, we
design it as a two-step algorithm. The first step is to obtain

the UID sequences for malware detection on the current
platform. Because the system-reserved UIDs may be different
for different Android OS versions, our algorithm first makes a
profile of the new system environment. The profiling process is
done by Droid Sentinel. We first send an SMS message using
the normal Android system SMS-sending App (as well as other
non-malicious SMS-sending Apps) and Droid Sentinel records
the normal UID sequence after detecting the SMS-sending
event. For the background SMS message sending sequence,
we launch popular background SMS-sending malware and our
test bench to capture the UID sequences. Afterwards, we apply
the UID-based detection scheme as described in Algorithm 1
to obtain a UID feature vector which we obtain by comparing
the normal UID sequence with the UID sequences generated
by the malware.

In the UID-based detection algorithm, we start the normal
UID-signature detection with a signature length of 1 (denoted
as sign len in the algorithm). For all of the malicious UID
sequences (denoted as obtained malware uid seqs) that we
obtained, we compare them with the normal UID sequence of
length sign len. We also try different signature lengths to
find the shortest length signature that can distinguish between
all malware UID-sequences and the normal UID sequence.
We use the notation sign weak to indicate that the current
signature length is not long enough to distinguish malicious
UID sequences from the normal UID sequence. The same
algorithm is used to obtain background phone-call UID feature
vectors. The second step is to use the obtained UID feature
vectors as signatures to detect background/premium phone
calls and SMS messages.

The other component of our detection scheme is RIL-log
which is implemented as a user library in the library layer of
Android. First, RIL-log is registered by the system daemon
‘rild’ and waits for a socket connection from Droid Sentinel.
After RIL-log receives the “START” command from Droid
Sentinel, it starts the monitoring process and reports SMS
sending and phone dialing requests to Droid Sentinel. We
insert our code before the telephony requests are sent to the
Android processing functions. Hence, when RIL-log receives
the requests, it parses the request data and extracts the request
number, target phone number, and the message from the SMS-
sending request. Next, RIL-log wraps the data in a single
packet and sends it to Droid Sentinel and then waits for the
response from Droid Sentinel before moving forward. There
are two types of responses from Droid Sentinel: “BLOCKING”
or “PASS”. On receiving a “BLOCKING” command, RIL-
log blocks the SMS sending/dialing request. If the response
is “PASS”, RIL-log dispatches the pending request to the
corresponding processing function. Figure 5 illustrates the flow
diagram of the RIL-log request logging and reporting process.

IV. PERFORMANCE EVALUATION

A. Experimental Environment

We conducted two sets of experiments: one with our self-
written test bench and the other with real-world malware
downloaded from Contagio [27]. We installed and tested our
online malware detection scheme on Android 4.2.2 (Jelly
Bean). The test bench, Droid Sentinel, and the real-world
malware were installed on a Google Samsung Nexus 4 Android

Fig. 5. Flow Diagram of RIL-log

Algorithm 1 UID-based Detection Scheme Algorithm

1: sign len← 0
2: sign weak ← false
3: for sign len = 1 to 10 do
4: for all malicious seq ∈

obtained malware uid seqs do
5: if malicious seq[sign len] =

normal seq[sign len] then
6: sign weak ← true
7: break
8: end if
9: end for
10: if not sign weak then
11: break
12: end if
13: end for
14: if not seq to test[sign len] = normal seq[sign len]

then
15: return background event = true
16: else
17: return background event = false
18: end if

phone. We used the Android Debug Bridge (adb) tool [28] to
set up the Android phone experimental environment and show
debugging information on a laptop. The experimental setup
is shown in Figure 6. In the experiment, we used a Nexus 4
phone with number 267-403-**** to send SMS messages and
make phone calls to an iPhone 5 with number 215-301-****.
The SMS messages and phone calls went through real cellular
networks, including T-Mobile and AT&T.

Fig. 6. Online Scheme Experiment Environment

B. Experiments with Self-Written App

In order to test the capability of detecting background SMS
messages and phone calls, we developed an Android App as
a test bench. Our test bench app can initiate background SMS
messages and phone calls. A warning message will pop up on
a user’s phone as a notification if background SMS or phone
calls are detected. Figure 7 shows notifications of a background
SMS and phone call. For premium numbers, we test our
detection scheme by calling some numbers that start with 900
and 1-900. As shown in Figure 8, the alerts for premium SMS
messages and phone calls are shown as notifications on the
user’s phone. When a background or premium SMS message
is detected, the user can press the notification button and a
dialog pops up asking the user whether to send or block the
SMS message. This is shown in Figure 9.

(a) Background SMS (b) Background Phone Call

Fig. 7. Background SMS and Phone Call Notifications

(a) Premium SMS (b) Premium Phone Call

Fig. 8. Premium SMS and Phone Call Notifications

C. Experiments with Real Malware Sending Premium SMS

We also ran experiments with some real-world malware
that send premium SMS messages. The details are given below.

(a) Background SMS (b) Premium SMS

Fig. 9. Blocking Background/Premium SMS

1) HippoSMS: HippoSMS is a premium SMS-sending mal-
ware family listed by Jiang’s research team at NCSU [15].
This malware family can cause additional phone charges by
sending SMS messages to a hard-coded premium number
(1066******) located in China. Jiang et al. tested the malware
using several leading mobile Anti-Virus software. However,
none of them detected this malware. Even though it was
published in the alternative Chinese Android App markets,
HippoSMS could affect many Android users in China because
most users in China download free Apps from third party
Android markets. We tested our framework with one sample
of this malware family. Our experimental data shows that
Droid Sentinel can detect and block SMS messages sent by
HippoSMS. Figures 10a and 10b demonstrate the malware and
the notification when premium SMS messages are sent in the
background.

(a) Hippo Malware Sample (b) Hippo Initiated SMS Notifica-
tion

Fig. 10. Experiment with a Premium SMS Malware - HippoSMS

2) Android.Qicsomos: Android.Qicsomos is a modified
version of an open source project which tends to detect Carrier
IQ on a device. It has additional code to send SMS to a
premium-rate number located in France. Analysis of the blog
from Symantec gives some details about the malware [16].
The malicious code will be triggered when the user presses
the “uninstall” button to remove the App. Once pressed,
SMS messages are sent to 81168 which is a premium-rate
number. The Trojan follows up by executing an uninstall
routine to remove the App. Figures 11a and 11b demonstrate
the malware and the corresponding notification generated by

our tool indicating that the background premium number SMS
is sent. In our experiment, the notification appears immediately
after the uninstall button is pressed. This is consistent with
the analysis from Symantec [16]. In other words, the malware
immediately sends premium SMS messages when the uninstall
button is clicked.

(a) Qicsomos Malware Sample (b) Qicsomos Initiated SMS Noti-
ficaton

Fig. 11. Experiment with a Premium SMS Malware - Android.Qicsomos

V. LESSONS LEARNED

In this paper, we designed an efficient and effective online
malware detection scheme based on Android’s UID mech-
anism. Through the implementation of our scheme and the
experiments on existing premium SMS-sending malware, we
learned lessons from both the system and the application
aspects. Below are some of the lessons that we learned:

• Some system APIs such as SMS sending APIs can
be misused by malware authors to perform malicious
activities. Hence, API designers and/or Android sys-
tem developers should add more constraints for using
these powerful APIs.

• We found that nearly all of the premium SMS sending
malware requests some form of SMS related permis-
sions. Hence, a user should be cautious when he/she
installs Apps that request SMS related permissions
such as WRITE SMS and SEND SMS. Special care
must also be taken when Apps are installed from
alternative Android Apps Markets because these may
be Trojans that can send premium messages.

• We found that most SMS sending actions are triggered
by pressing buttons such as “INSTALL” or “PRO-
CEED” . Hence, a user should be careful when he/she
presses buttons on newly installed Apps.

VI. RELATED WORK

In the following, we review related literature. There are
a number of detection approaches to defend against Android

malware. For example, Zhou et al. proposed a permission-
based behavioral footprint scheme and a heuristics-based fil-
tering scheme to detect both new samples of known Android
malware families and unknown malware families [29]. Their
proposed schemes were implemented in DroidRanger which
is a scalable and efficient offline analysis tool. DroidRanger
uses permissions to filter out some good Apps that do not
request specific permissions. In their investigation, in order
to send premium SMS messages without a user’s knowledge,
malware needs to monitor received SMS messages and remove
billing-related messages. Hence, they used the SEND SMS
and RECEIVE SMS permissions to filter out most of the SMS
related malware. Nevertheless, this permission and behavioral
footprint based detection scheme can be circumvented by
malware with root permissions, native code, or obfuscated
code. Differently, our UID-based detection scheme deployed
on real mobile platforms generates immediate notifications
when malicious activities are detected. We also implemented
the online detection scheme on real Android smartphones.
Our experimental data shows that our developed scheme can
detect and block background/premium SMS messages and
phone calls in real time, leading to the protection of users
from financial loss and privacy leakage. In addition, our work
belongs to a real time scheme, which is orthogonal to offline
schemes (e.g. [29]).

Most of the static malware detection techniques are per-
mission and/or signature based. More complex analysis by
information flow and data flow analysis on the App source
code can also protect the data and enhance the security of
the Android system. Examples that fall in this category are
TaintDroid [30] and D2Taint [31]. In these proposed schemes,
in order to keep track of the data, data needs to be marked and
monitored by using tags to detect information leakage at run
time. Because of this, these schemes are not energy-efficient
and are not suitable for resource-constrained platforms such as
mobile phones and tablets. Differently, our detection scheme is
triggered only when SMS and phone call requests are received
from the telephony service of the Android system, leading to
less energy consumption.

For online malware detection, Enck et al. proposed Kirin
[32] to conduct security protection during application instal-
lation time. Particularly, Kirin injects security rule checking
into the Android Application Installer and supplies certifi-
cates during installation time. Instead of using general rules,
Kirin relies on well-constructed security rules. Nevertheless,
defining security rules for Kirin requires security experts with
a thorough understanding of threats and existing protection
mechanisms in Android systems. Differently, our scheme uses
UID-sequence based rules and does not need experts to define
the rules. The signatures can be automatically generated by
the profiling process of Droid Sentinel.

As shown in [33], more and more vulnerabilities in the
Android kernel have been disclosed. Hence, it is urgent and
crucial to protect Android at the system level. To this end,
CrowdDroid [34] presented a framework that keeps moni-
toring Linux system calls and uses these calls as detection
features. They used k-means clustering algorithms to differ-
entiate benign Apps from malicious Trojan Apps. Note that
monitoring system calls consumes copious amounts of energy
and resources from a mobile device. Isohara, Takemori et al.

proposed a kernel log analysis framework to detect malicious
activities [35]. They used behavioral signatures to match log
information. Nevertheless, there are only a limited number of
signatures. Differently, we use a generic feature of Android
systems, the UID-sequence, to generate signatures and use
signatures to carry out malware detection online.

VII. CONCLUSIONS

In this paper, we investigated background/premium SMS
message and phone-call related malware on the Android plat-
form. By exploiting Android’s application isolation mechanism
that assigns unique user IDs (UID) to each Application and
system service, we designed a UID-sequence based online
malware detection scheme. We implemented our online de-
tection system (Droid Sentinel) on real Android platforms
and smartphones. Droid Sentinel is an online detection tool
that detects and blocks background/premium SMS messages
and phone calls in real time. Our experimental data on real
phones, real cellular networks, and real malware demon-
strated that Droid Sentinel can effectively detect/block back-
ground/premium SMS messages or phone calls. In our exper-
iments, Droid Sentinel detected and blocked all the malware
samples that we downloaded from the Internet. As ongoing
work, we are extending our developed system to detect other
types of malware such as those that take photos in the
background.

ACKNOWLEDGMENT

This research was supported in part by the US National
Science Foundation (NSF) under grants CNS-1022552, CNS-
1065444, and CNS-1156574.

REFERENCES

[1] “Android,” http://www.android.com/.

[2] I. D. Corporation, “Apple cedes market share in smartphone operating
system market as android surges and windows phone gains,” http://
www.idc.com/getdoc.jsp?containerId=prUS24257413.

[3] S. Analytics, “Samsung captures 95 percent share of global android
smartphone profits in q1 2013,” https://www.strategyanalytics.com/
default.aspx?mod=pressreleaseviewer&a0=5362.

[4] I. D. Corporation, “Mobile threat report july-september 2013,”
http://www.f-secure.com/static/doc/labs global/Research/Mobile
Threat Report Q3 2013.pdf.

[5] “Geinimi,” http://www.symantec.com/security response/writeup.jsp?
docid=2011-010111-5403-99.

[6] X. Jiang, “Droidkungfu,” http://www.csc.ncsu.edu/faculty/jiang/
DroidKungFu.html.

[7] X. Jiang, “Anserverbot,” http://www.csc.ncsu.edu/faculty/jiang/
AnserverBot/.

[8] JoeSecurity, “Analyzing ”android-trojan/fakeinst”: Plug & play
premium sms fraud,” http://joe4mobile.blogspot.com/2013/10/
analyzing-android-trojanfakeinst-plug.html.

[9] Symantec, “Malware charges a fee for free apps on
google play,” http://www.symantec.com/connect/blogs/
malware-charges-fee-free-apps-google-play.

[10] A. ThreatLabs, “Android/smssend,” http://www.avgthreatlabs.com/
virus-and-malware-information/info/android-smssend/.

[11] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, “Analysis of
android applications’ permissions,” in 2012 IEEE Sixth International
Conference on Software Security and Reliability Companion. IEEE,
2012, pp. 45–46.

[12] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and api calls tracing,” in
2012 Seventh Asia Joint Conference on Information Security. IEEE,
2012, pp. 62–69.

[13] Symantec, “Obfuscating embedded malware on android,” http://www.
symantec.com/connect/blogs/obfuscating-embedded-malware-android.

[14] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on Security

and Privacy, may 2012, pp. 95 –109.

[15] X. Jiang, “Security alert: New android malware – hipposms,” http://
www.csc.ncsu.edu/faculty/jiang/HippoSMS/.

[16] I. Asrar, “The day after the year in mobile malware?” http://www.
symantec.com/connect/blogs/day-after-year-mobile-malware.

[17] “Detailed analysis of android.arspam,” http://forensics.spreitzenbarth.
de/2011/12/22/detailed-analysis-of-android-arspam/.

[18] X. Jiang, “Security alert: New beanbot sms trojan discovered,” http:
//www.csc.ncsu.edu/faculty/jiang/BeanBot/.

[19] Symantec, “Android.gamex,” http://www.symantec.com/security
response/writeup.jsp?docid=2012-051015-1808-99.

[20] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[21] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: evaluating android
anti-malware against transformation attacks,” in Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communica-

tions security, 2013, pp. 329–334.

[22] “Android open source project,” http://source.android.com/source/index.
html/.

[23] “Android security overview,” http://source.android.com/devices/tech/
security/.

[24] “Android uids and gids,” http://android-dls.com/wiki/index.php?title=
Android UIDs and GIDs.

[25] “Localserversocket,” http://developer.android.com/reference/android/
net/LocalServerSocket.html.

[26] “Parcel — android developers,” http://developer.android.com/reference/
android/os/Parcel.html.

[27] “Contagio,” http://contagiominidump.blogspot.com/.

[28] “Android debug bridge,” http://developer.android.com/tools/help/adb.
html.

[29] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets,” in Proceedings of the 19th Annual Network and Distributed
System Security Symposium, 2012.

[30] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th

USENIX conference on Operating systems design and implementation,
2010, pp. 1–6.

[31] B. Gu, X. Li, G. Li, A. C. Champion, Z. Chen, F. Qin, and D. Xuan,
“D2taint: Differentiated and dynamic information flow tracking on
smartphones for numerous data sources,” Technical Report, Tech. Rep.,
2012.

[32] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM conference
on Computer and communications security, 2009, pp. 235–245.

[33] X. Hei, X. Du, and S. Lin, “Two vulnerabilities in android os kernel,” in
Proceedings of the IEEE International Conference on Communications,
2013.

[34] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” in Proceedings of the 1st

ACM workshop on Security and privacy in smartphones and mobile

devices, 2011, pp. 15–26.

[35] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analy-
sis for android malware detection,” in Proceedings of the 2011 Seventh

International Conference on Computational Intelligence and Security,
2011, pp. 1011–1015.

