
Two Vulnerabilities in Android OS Kernel

Xiali Hei, Xiaojiang Du and Shan Lin
Department of Computer and Information Sciences

Temple University

Philadelphia, PA 19122, USA

Email: {xiali.hei, dux, shan.lin}@temple.edu

Abstract—Android Honeycomb operating system is widely
used for tablet devices, such as Samsung Galaxy Tab. The
Android system programs are usually efficient and secure in
memory management. However, there has been a few security
issues reported that show Android’s insufficient protection to
the kernel. In this work, we reveal a new security pitfall in
memory management that can cause severe errors and even
system failures. Existing security software for android do not
detect this pitfall, due to the private implementation of Android
kernel. We then discuss two vulnerabilities introduced by this
pitfall: 1) malicious programs can escalate the root-level privilege
of a process, through which it can disable the security software,
implant malicious codes and install rootkits in the kernel; 2)
deny of service attacks can be launched. Experiments have been
conducted to verify these two vulnerabilities on Samsung Galaxy
Tab 10.1 with Tegra 2 CPU. To protect systems from these
vulnerabilities, we proposed a patching solution, which has been
adopted by Google.

Index Terms—Android Honeycomb OS; Kernel privileges ele-
vating; DoS; Nvidia Tegra

I. INTRODUCTION

As the mobile computing technology advances, the Linux-

based Android operating system specially designed for touch

screen mobile devices are becoming more and more popular.

International Data Corporation [2] believes that Android will

maintain its overall leadership position in mobile device mar-

ket throughout 2016, but competition among BlackBerry, iOS,

and Windows Phone will shift position each year. Secure and

reliable Android operating system is critical for its success.

A central principle of the Android security architecture is

that no application, by default, has permission to perform any

operation that would adversely impact other applications, the

operating system, or the user [24]. To meet this principle,

Android sandboxes each application by combining Virtual

Machines together with the Linux access control. These two

mechanisms are well studied to achieve a high level of security.

Basically, each application is considered as an individual

Linux user. However, the Linux kernel that Android built upon

may still hide unchecked vulnerabilities. Such kernel level

vulnerabilities could be fatal.

We reveal a previously unknown pitfall in the Tegra 2 CPU

driver of the Android Honeycomb operating system. All of

the early dual-core Android devices were running on Nvidia’s

Tegra 2 platform, such as Samsung Glaxy Tab, LTE Galaxy

Tab 10.1, and Motorola Atrix and Droid X2 [1], etc.. Using this

pitfall, malicious memory access can be executed for system

breach. In particular, we present two new vulnerabilities raised

by this security issue in Android OS: 1) a malicious user

can overwrite a system parameter to escalate his privilege

to the root level, then he can disable the antivirus-software

and deploy malware and other programs to collect critical

system users’ information. 2) a malicious user can force the

system to shut down unexpectedly, and even launch a Denial-

of-Service (DoS) attack. The DoS attack can make the device

completely unresponsive. These vulnerabilities potentially can

be exploited remotely. In the worst case, thousands of Android

devices could be affected.
Android requires each app to explicitly request permissions

before accessing personal information and phone features.

The requested permissions allow a user to evaluate the app’s

capability and determine whether or not to install the app

firstly. Due to the dominant role of the permission-based

model in running Android apps, it is critical that this model

is properly enforced in existing Android smart phones. If

malicious applications exploit the two vulnerabilities in our

paper, all the users run this kind of malicious applications

will be out of service.
To overcome these two vulnerabilities, we propose a so-

lution that requires small changes in the Android OS. We

have reported these two vulnerabilities to Google. Google has

verified and accepted them. Moreover, our proposed solution

has been adopted; and a security patch will be published to

fix the problem.
We conducted experiments on Android Honeycomb 3.1

using the Samsung Galaxy Tab 10.1 with Nvidia Tegra CPU.

And the results show that we can easily exploit these vulner-

abilities and we can solve them with our fix methods.
The contributions of our work is summarized as follows:

• We revealed a security pitfall in the Tegra 2 CPU driver

program on the Android operating system. A couple

severe security vulnerabilities are exposed by exploiting

this pitfall.

• We demonstrated how to perform system privilege es-

calation and denial-of-service attack using real Samsung

Galaxy Tablet.

• We proposed a solution to fix the pitfall, our report to the

problem has been accepted by Google.

The rest of the paper is organized as follows. In Section

II we provide a brief background introduction on Android

OS. In Section III, we discuss two identified vulnerabilities

in Android kernel. In Section IV we illustrate two solutions

respectively. In Section V we present real system experimental

978-1-4673-3122-7/13/$31.00 ©2013 IEEE

IEEE ICC 2013 - Wireless Networking Symposium

6123

2

results that verify the two vulnerabilities and their solutions.

In Section VI we investigate works related to this work. We

conclude the paper in Section VII with some final remarks.

II. BACKGROUND

A. The Android Architecture

The Android Architecture consists of 5 layers. Other than

the Linux kernel at the bottom layer, there are four Android-

specific layers. From top to bottom, they are the Application

layer, the Application Framework layer, the Android Runtime

layer, and the Libraries layer. In this study, we focus on the

Linux kernel layer of the system. We also briefly introduce

the Android developer bridge and the Nvidia Tegra 2 in this

section. The Android developer bridge allows a basic physical

attack approach to the system. And the Nvidia Tegra 2 CPU

driver in Linux kernel layer is where we found the security

pitfall.

B. The Linux Kernel Layer

Android Honeycomb relies on Linux kernel version 2.6.36

for core system services, such as process management, inter

process communication, security service, memory manage-

ment, network stack, and driver models. Linux is a macro-

kernel operating system. The CPU and IO drivers are located

within the kernel (the same address space) for high efficiency.

However, the kernel is exposed to more security risks, es-

pecially when kernel components, like drivers, have security

issues.

The hardware abstraction layer (HAL) library works on

the kernel and interact with the Linux kernel through system

calls. Some of the system calls exposed by the Motorola

Droid Bionic are normally not available to user space because

they’re excluded by the use of the #ifdef KERNEL and

#endif guards. By including a system call in its new C library,

Android can define any system call to the kernel from the user

space as a “normal system call”. So many kernel function are

exposed to Android users.

C. Android Developer Bridge (ADB)

Android Debug Bridge (ADB) is a command line tool that

allows your local computer to communicate with an connected

Android-powered device or an emulator. It is a client-server

program that includes a client, a daemon, and a server. ADB

makes a connection between your telephone or other personal

wireless devices and a local computer, creating the possibility

to interact with your telephone or tablets on your desktop

through the command line. An attacker can obtain privileged

access through physical access to a device that has ADB

enabled [25]. If the attacker can access the physical computer,

he/her can easily determine whether ADB is enabled or not

by executing adb get-serialno on the computer. The device’s

serial number would be returned if the ADB is enabled. Once

the attacker knows that ADB is enabled on the device, he

can use ADB’s push command to implant an exploit on the

device, and use ADB’s shell command to launch the exploit

and escalate his privilege.

An attack on an ADB enabled device does not require

any action from the user and it is more cleaner compared

with remote attacks. Privilege escalation using ADB has a

drawback that depends on the availability of an enabled debug

bridge. However, if the device is not password-protected,

the attacker could simply connect with the common device

interface and enable ADB. For instance, Super One-Click

desktop application in paper [27] can gain privileged access

from Android devices with enabled ADB and give the user

privileged access. ADB-based attacks do not need install new

application and reboot.

The lack of device modification in ADB-based attacks

makes it much more difficult to trace than other attacks. It

is unlikely to be detected by security applications on unrooted

devices.

D. Nvidia Tegra 2

Tegra developed by Nvidia is a system on a chip (SoC)

series using ARM architecture processor CPU and GPU for

mobile devices such as smart phones, personal digital assis-

tants, and mobile Internet devices. Specially, it emphasizes

low power consumption and high performance for playing

audio and video. Tegra 2 is the world’s first mobile dual-core

CPU, which integrated ARM Cortex-A9 and allowed a out-of-

order execution for more efficient processing and better overall

performance.

III. THE TWO VULNERABILITIES

We examine the source codes of two packages: GT-

P7500 OpenSource.zip and GT-P7510 OpenSource.zip

[28], and we find two vulnerabilities in the

nvhost ioctl ctrl module regrdwr function in the file

dev.c.

The nvhost ioctl ctrl module regrdwr function has

two sub-functions: nvhost write module regs and

nvhost read module regs. The first vulnerability is in the

nvhost write module regs sub-function. The Get user(offs,
offsets) in Line 561 is used to get the offset from users. The

nvhost write module regs(&ctx->dev->cpuaccess, args->id,
offs, batch, vals) in Line 569 determines the location based

on offs from users (the offs are used as offset to write in

registers). Because there is no boundary check on “offs”,

it creates a kernel buffer overflow vulnerability that allows

arbitrary memory access. Hackers can exploit the vulnerability

to escalate kernel privileges. The nvhost read module regs
sub-function has similar vulnerability.

After exploiting the vulnerability, we have full control of the

Android device, i.e., as a root user in the shell. We can access

the kernel logs during the running of a fuzzy test. We write

the source code of the fuzzy test by ourselves. By analyzing

kernel logs during that period, we find the second vulnera-

bility, which is in Line 598: BUG ON(IOC SIZE(cmd)->
NVHOST IOCTL CTRL MAX ARG SIZE). The program

fails to check the size of IOC SIZE(cmd), and this can cause

a DoS attack to crash the operation system.

6124

3

Fig. 1. The main exploit code of regrdwr.c

IV. EXPLOITING THE VULNERABILITIES

A. Exploiting Vulnerability #1

Since Android is based on a modified Linux kernel and

thus it applies the Discretionary Access Control (DAC) on the

filesystem level, which is based on user IDs (uid) and group

IDs (gid). If the uid = 0, this means that the user get root-level

privilege, which is the goal of exploiting privilege escalation

vulnerabilities.

The first vulnerability is referred to as the privilege escala-

tion vulnerability. Since we know this vulnerability related to

the address, we can scan the kallsyms log and find the offset

of the sys-setuid function. This means that we can find out

the address of the sys-setuid function. If we insert malicious

code here, then we can execute the malicious code to change

the uid. We overwrite the code of setuid using newvalues[0]

= 0 to get the root privilege, then setuid = 0. After that we

create a shell. Now, we have full control of the Android OS.

We tested the first vulnerability in regrdwr.c. Fig. 1 show the

main code of regrdwr.c.

By exploiting code as described above, we confirmed the

privilege escalation vulnerability on several currently available

versions of Android OS. We conducted the tests by using a

real Android device – a Samsung Galaxy tablet 10.1.

Fig. 1 is a screen copy of the result of exploiting the

vulnerability. Fig. 2 shows that after running the exploit code,

the uid was changed from 7d0 to 0. This validated that we

successfully escalated to root privileges.

B. Exploiting Vulnerability #2

The second vulnerability is referred to as the DoS vulner-

ability. We can easily exploit this vulnerability by a simply

fuzzy test. We tested the second vulnerability with nvfuzz.c.

Fig.3 shows the main code of nvfuzz.c. The Android OS

crashed several times. Fig.4 shows the kernel logs. If a

hacker inserts malicious codes in Android applications that are

available. to all the users, then thousands of Android devices

with Nvidia Tegra chips will crash.

If a hacker combines these two vulnerabilities, then he

can crash a lot of devices, disable anti-virus software, install

any malware, create malware, and even publish malicious

applications in Android application market with paying $25

register fee.

We confirmed the DoS vulnerability on several currently

available versions of Android Honeycomb OS by fuzzy tests.

We run the tests by using a real Android device – a Samsung

Galaxy tablet 10.1.

Fig. 2. The changing UID attack

Fig. 3. The main code of nvfuzz.c

Fig. 2 shows that after we run the exploit code, the kernel

is panic and the system is reset. If we continually run the

exploit code, the system cannot work any more. Hence, this

is an exploit that leads to the DoS attack.

We tested on different versions of Android Honeycomb

OS. For each version, we run the test many times. All our

tests have caused Android Honeycomb to crash. After we

explored the drivers source code for Tegra, we believe the two

vulnerabilities are universal in Android device with Tegra.

Fig. 4. Logs for Experiment 2 - Dos Vulnerability

6125

4

V. COUNTERMEASURES

In this Section, we describe two approaches to fix the

two vulnerabilities described in Section IV. The fix for the

privilege escalation vulnerability consists of checking whether

offs in function nvhost read module regs and function n-

vhost write module regs is out of the boundary. The fix for

DoS vulnerability is to restrict the size of IOC SIZE(cmd).

A. Fix for the Privilege Escalation Vulnerability

As mentioned in Section IV, the nvhost read module regs

and nvhost write module regs functions do not perform any

specific check on the variable offs. Hence, the fix is to add a

check of the variable offs and see if it is out of the boundary.

B. DoS vulnerability fix

Because the program fails to check the size of

IOC SIZE(cmd), a malicious user can send a very long cmd

to overflow the kernel. This will cause a kernel panic. If we

add length check to check the size of IOC SIZE(cmd), then

this problem is solved.

C. Testing the Countermeasures

We implement the two countermeasures in our Samsung

Galaxy tablet 10.1. In particular, for the Android Honeycomb

3.0.1 version, we build one patched version that includes two

patches, by recompiling Android from scratch. Our tests show

that both patches are effective and prevent the exploit codes,

thereby fixing the two vulnerabilities.

VI. RELATED WORKS

Security of Android platform has been studied by many

researchers. There are three main trends:

• static analysis

• security scheme assessment

• malware and virus detection

Static analysis includes using the white box or black box

methodologies to detect malicious behaviors in Android ap-

plications before installing them on the devices. One paper by

Enck et al. [4] have a horizontal study of Android applications

to discover stealing of personal data. Fuchs et al. [5] propose

Scandroid, which is an automatical reasoning tool to find

security violations of Android applications. Static analysis

could help identifying vulnerabilities in the kernel.

The second trend of current research is to study access

control and permission schemes of Android. For example, [6]

proposes a scheme to assess the actual privileges of Android

applications and develops a tool named Stowaway, to detect

over-privilege in compiled Android applications. Nauman et

al. [7] propose Apex, which is a policy enforcement frame-

work for Android that allows a user to fine-grained grant

permissions to applications and impose constraints on the

usage of resources. Ongtang et al. [8] present an infrastructure

named Secure Application INTeraction (SAINT) to govern

permission assignment during installation. Many works focus

on the privilege escalation issues. Bugiel et al. [9] propose a

security framework named eXtended Monitoring on Android

(XManDroid) to extend the native monitoring mechanism of

Android for detecting the privilege escalation attack. The

privilege escalation attack on Android was first proposed by

Davi et al. [10] in which they demonstrated an example of

the attack. They showed that a genuine application exploited

at runtime or a malicious application can escalate granted

permissions. However, they did not suggest any defense for

the attack in the paper. Underprivileged applications under

the malicious user’s control can perform operations indirectly

by invoking other applications possessing desired privileges.

The attacks published are unauthorized phone calls [31], text

message sending [8] to illegal downloads of malicious files

[34], and context-aware voice recording [36], [32]. Most

privilege escalation attacks exploit vulnerable interfaces of

privileged applications. This attack is often referred to as

confused deputy attack [33], [30]. However, in general, the

adversary can design his own malicious applications which

collaborate to mount a collusion attack [36]: applications with

uncritical permissions can collude to generate a joint set of

permissions that enables them to perform unauthorized actions.

Some collusion applications [32] may exploit covert or overt

channels of the Android core system to avoid detection.

Note that the Android application distribution model allows

anyone who has registered as an Android developer (and

paid $25 fee) to publish applications on the Android market.

This scheme allows adversaries to easily upload malicious

applications on the market store: For instance, the recent

Android DroidDream Trojan (containing a root exploit) has

been identified in over 50 official Android market applications

and has been downloaded more than 10,000 times before it

has been detected [29]. Literature [11] focuses on possible

threats and solutions to mitigate privilege escalation problem

proposed by literature [12].

In the third trend - virus and malware detection, Dagon

et al. [13] assess many mobile viruses and malware that

could potentially affect Android devices. Crowdroid [14] is

proposed as a malware detector executing a dynamic analysis

on application behaviors. Schmidt et al. [15] inspect Android

executables to extract their function calls and compare them

with malware executables for classification purpose. Specific

malware signatures for exploiting the vulnerabilities described

in this paper could be generated too. All these works are to

protect user’s privacy and security. The authors of paper [16]

think that we may need an original privacy mode in Android

smartphones. Literature [23] presents a DoS attack that makes

devices totally unresponsive by repeatedly forking the Zygote

process. The vulnerabilities disclosed in this paper require

that the USB development debugging function is enabled. For

devices without Android Developer Bridge enabled, malicious

users still can use the recovery boot method [26] to exploit

the two vulnerabilities.

VII. CONCLUSIONS

Android operation system is widely used in smartphones

and tablet devices. In this paper, we presented two new

vulnerabilities in Tegra driver programs located in Android

6126

5

kernel. The first vulnerability can be used to escalate the kernel

privileges. The second vulnerability can be used to launch the

deny of service (DoS) attack. To verify these vulnerabilities,

we successfully exploited the two vulnerabilities on several

versions of Android by using a real device - a Galaxy tablet

device. We reported the two vulnerabilities to the Android

security team. Furthermore, we provided security patches to

fix the two vulnerabilities and we confirmed that the patches

work.

ACKNOWLEDGMENT

This work was supported in part by the US National Science

Foundation under grants CNS-0963578, CNS-1022552, CNS-

1065444, CNS-1239108, IIS-1231680 and CNS-1218718.

REFERENCES

[1] http://soltesza.wordpress.com/2010/01/08/nvidia-leading-the-smartbook-
revolution/

[2] IDC. Worldwide Smartphone 2012-2016 Forecast and Analysis.
http://www.idc.com/getdoc.jsp?containerId=233553

[3] Gartner Group. Press Release, November 2011. Available at http://www.
gartner.com/it/page.jsp?id=1848514.

[4] W. Enck, D. Octeau, and P. McDaniel et al. A study of android application
security. In Proc. of the 20th USENIX conf. on Security, SEC’11, pp. 21-
21, Berkeley, CA, USA, 2011. USENIX Association.

[5] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. Scandroid: Automated
security certification of android applications.

[6] A. P. Felt, E. Chin and S. Hanna et al. Android permissions demystified. In
Proc. of the 18th ACM conf. on Computer and communications security,
CCS’11, pp. 627-638, 2011.

[7] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permission
model and enforcement with user-defined runtime constraints. In Proc.
of the 5th ACM Symp. on Information, Computer and Communications
Security, ASIACCS’10, pp. 328-332, New York, NY, USA, 2010. ACM.

[8] M. Ongtang, S. Mclaughlin, and W. Enck et al. Semantically rich
application-centric security in android. In In ACSAC’09: Annual Com-
puter Security Applications Conference, 2009.

[9] S. Bugiel, L. Davi, and A. Dmitrienko et al. Xmandroid: A new android
evolution to mitigate privilege escalation attacks. Technical Report TR-
2011-04, Technische Univ. Darmstadt, Apr 2011.

[10] L. Davi, A. Dmitrienko, and A. Sadeghi et al. Privilege escalation attacks
on android. In Mike Burmester, Gene Tsudik, Spyros Magliveras, and
Ivana Ilic, editors, Information Security, vol. 6531 of LNCS, pp. 346-
360. 2011.

[11] E. Chin, A. P. Felt, and K. Greenwood et al. Analyzing inter-application
communication in Android. In Proc. of the 9th Intl. Conf. on Mobile
systems, applications, and services, MobiSys’11, pp. 239-252, New York,
NY, USA, 2011. ACM.

[12] A. Shabtai, Y. Fledel, and U. Kanonov et al. Google android: A state-
of-the-art review of security mechanisms. CoRR, abs/0912.5101, 2009.

[13] D. Dagon, T. Martin, and T. Starner. Mobile phones as computing
devices: The viruses are coming! IEEE Pervasive Computing, vol. 3, no.
4, pp. 11-15, 2004.

[14] I. Burguera, U. Zurutuza, and S. Nadjm-Therani. Crowdroid: behav-
iorbased malware detection system for android. In Proceedings of the
1st ACM workshop on Security and privacy in smartphones and mobile
devices (SPSM’11), 2011.

[15] A.-D. Schmidt, R. Bye, and H.-G. Schmidt et al. Static analysis of
executables for collaborative malware detection on android. In Commu-
nications, 2009. ICC’09. IEEE Intl. Conf. on Communications, pp. 1-5,
June 2009.

[16] Y. Zhou, X. Zhang, and X. Jiang et al. Taming information-stealing
smartphone applications (on android). In Proc. of the 4th Intl. Conf. on
Trust and trustworthy computing, TRUST’11, pp. 93-107, 2011.

[17] Apple App Store. http://www.apple.com/iphone/ apps-for-iphone/.
[18] M. Egele, C. Kruegel, and E. Kirda et al. PiOS: Detecting Privacy Leaks

in iOS Applications. In Proc. of the 18th Annual Network and Distributed
System Security Symp., NDSS’11, February 2011.

[19] W. Enck, P. Gilbert, and B.-G. Chun et al. TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on Smartphones.
In Proc. of the 9th USENIX Symp. on the USENIX Symp. on Operating
Systems Design and Implementation (OSDI). Vancouver, BC, Oct. 2010.

[20] K. Mahaffey and J. Hering. App Attack-Surviving the Explosive
Growth of Mobile Apps. https://media.blackhat.com/bh-us-
10/presentations/Mahaffey Hering/Blackhat-USA-2010- Mahaffey-
Hering-Lookout-App-Genomeslides.pdf.

[21] Y. Zhou, X. Zhang, and X. Jiang et al. Taming Information-Stealing
Smartphone Applications (on Android). In Proc. of the 4th Intl. Conf. on
Trust and Trustworthy Computing, TRUST’11, June 2011.

[22] IPhone Stored Location in Test Even if Disabled.
http://online.wsj.com/article/SB10001424052748704123204576283580249
161342.html.

[23] A. Armando, A. Merlo, and M. Migliardi et al. Would You Mind
Forking This Process? A Denial of Service Attack on Android (and Some
Countermeasures). In IFIP SEC 2012 27th International Information
Security and Privacy Conf., D. Gritzalis, S. Furnell, and M. Theoharidou
(Eds.), pp. 13-24, June 2012, Heraklion, Greece, IFIP Advances in
Information and Communication Technology (AICT), Vol. 376, Springer,
2012.

[24] http://developer.android.com/guide/topics/security/security.html
[25] Rooting the droid without rsdlite. http: //androidforums.com/droid-

all-thingsroot/ 171056-rooting-droid-withoutrsd- lite-up-including-
frg83d.html, Dec. 2010.

[26] T. Vidas, C. Zhang, and N. Christin. Towards a general collection
methodology for android devices. DFRWS 2011, Aug. 2011.

[27] A. Waqas. Root any android device and samsung captivate with super
one-click app. http://www.addictivetips.com/mobile/ root-any-android-
device-and-samsungcaptivate- with-super-one-click-app/, Oct. 2010.

[28] https://opensource.samsung.com/reception/receptionSub.do?method
=list&menu item=mobile&classification1= % mobile phone
&classification2=&classification3

[29] T. Bradley. Droiddream becomes android market nightmare.
http://www.pcworld.com/ businesscenter/article/221247/droiddream
becomes android market nightmare.html, 2011.

[30] M. Dietz, S. Shekhar, and Y. Pisetsky et al. Quire: Lightweight prove-
nance for smartphone operating systems. In 20th USENIX Security
Symp., 2011.

[31] W. Enck, M. Ongtang, and P. McDaniel. Mitigating Android software
misuse before it happens. Technical Report NAS-TR-0094-2008, Penn-
sylvania State University, Sep 2008.

[32] G. Halfacree. Android trojan captures credit card details.
http://www.thinq.co.uk/2011/1/20/android- trojan-captures-credit-card-
details/, 2011.

[33] N. Hardy. The confused deputy: (or why capabilities might have been
invented). SIGOPS Oper. Syst. Rev., 22:36-38, Oct. 1988.

[34] A. Lineberry, D. L. Richardson, and T. Wyatt. These aren’t
the permissions you’re looking for. BlackHat USA 2010.
http://dtors.files.wordpress.com/ 2010/08/blackhat-2010-slides.pdf,
2010.

[35] Nils. Building Android sandcastles in Android’s sandbox. BlackHat
Abu Dhabi 2010. https://media.blackhat.com/bh-ad-10/Nils/Black- Hat-
AD-2010-android-sandcastle-wp.pdf, 2010.

[36] R. Schlegel, K. Zhang, and X. Zhou et al. Soundcomber: A Stealthy
and Context-Aware Sound Trojan for Smartphones. In Proc. of the 18th
Annual Network and Distributed System Security Symp. (NDSS), pp.
17-33, Feb. 2011.

6127

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

