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Abstract—Cloud computing allows individuals and 

organizations outsource their data to cloud server due to the 

flexibility and cost savings. However, data privacy is a major 

concern that hampers the wide adoption of cloud services. Data 

encryption ensures data content confidentiality and fine-grained 

data access control prevents unauthorized user from accessing 

data. An unauthorized user may still be able to infer privacy 

information from encrypted data by using indexing techniques. 

In this paper, we investigate the problem of sensitive information 

leakage caused by orthogonal use of these two kinds of techniques. 

Based on that, we propose "core attribute"-aware techniques 

that can ensure privacy of outsourced data. The techniques focus 

on confidential attribute set of outsourced data. We adopt k-

anonymity technique for the attribute indexes to prevent user 

from inferring privacy from unauthorized data. We formally 

prove the privacy-preserving guarantee of the proposed 

mechanism. Our extensive experiments demonstrate the 

practicality of the proposed mechanism, which has low 

computation and communication overhead.  

Keywords—privacy-assured; data indexes; cloud computing; 

data outsourcing; k-anonymity 

I. INTRODUCTION 

With a number of advantages: location independent data 

storage, ubiquitous data access and on-demand high quality 

services, cloud computing has become a popular computing 

service for both individuals and enterprises, who outsource 

their data to the cloud for the flexibility and cost savings [1]. 

On the other hand, data owner outsourcing data to the cloud 

relinquishes direct control of the system devices, which 

inevitably brings in potential security problems: Data may 

contain sensitive information (e.g., health records [2], credit 

card records [3], etc.), while commercial clouds do not provide 

data security guarantee. The security concern has been 

aggravated by recent incidents of Gmail data breach and 

Amazon outages. 

A natural solution for ensuring privacy-preserving to 

outsourced cloud data uses data encryption. Encryption 

provides both data integrity as well as content confidentiality, 

since only the authorized users know the decryption key. The 

assurance that data confidentiality is protected is desired by the 

data owner. Meanwhile, in order to make cloud server offer 

data retrieval service for authorized users, the outsourced 

encrypted data are usually associated with indexing 

information which can be exploited by the cloud server that 

executes data retrieval requests. Several indexing approaches 

for encrypted data have been proposed for supporting efficient 

retrieval services (e. g., [4-6]). 

While data confidentiality is essential for outsourced data, 

fine-grained data access control as an orthogonal aspect 

becomes the focus of concern of several recent papers [7, 10, 

and 11]. With key derivation technique and user hierarchy 

grouping, fine-grained data access control can provide different 

data views to different users. At the user side, one user only 

needs store little information to derive the access key. 

The combined use of the two techniques, however, could 

cause privacy breach, because the current commercial clouds 

(e.g., Amazon's EC2 and S3) only offer storage services but 

don’t guarantee strict data access control that separates user 

information according to user's privilege. As the matter of fact, 

a user’s retrieval pattern is privacy information and should be 

protected, and hence data owners do not outsource the access 

matrix to the cloud server. It potentially opens a door for users 

to infer encrypted data by the visibility of data indexes even if 

the users can not access the data. The authors of [9] solve this 

problem by building conflict graph according to the 

relationship among tuples, and then combine users' access 

privilege to construct the index system. However, it causes the 

"multilingual queries" problem, in which a user has to send n 

time retrieval requests using different keys for one original 

query, and this is not acceptable. 

Similar to [9], in this paper, data are organized in a 

relational table and indexes are defined as attributes. 

Meanwhile our proposal can be adapted to generic resource 

scenes. In this paper, we investigate the problem of privacy-

assured data index and we propose a suit of novel techniques to 

solve this issue. First, we formally prove that the impact of 

different attributes varies (details given in the Section III). 

Some attributes play an important role in making a decision, 

and they are referred to as the core attribute set; while other 

attributes (referred to as unrelated attributes) do not affect the 

decision. The disclosure of unrelated attributes does not 

provide any additional knowledge to an attacker. For the core 

attributes, we apply k-anonymity to the corresponding indexes. 

Different from the traditional k-anonymity [12], our scheme 

does not reduce the description precision of the attribute value. 

We just generalize the pointing domain of indexes. In addition, 

to protect outsourced data from statistic attacks, we introduce 

extra dummy entries in indexes using random tuples such that 
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the retrieval results for each search have the same length. We 

formally prove the privacy-preserving guarantee of our 

proposed scheme, and our extensive experiments demonstrate 

the efficiency of the proposed solution. 

The remainder of the paper is organized as follows. Section 

II describes the system and threat model. In Section III, we 

present our secure data indexing mechanism and the security 

analysis. In Section IV, we give the experimental results. 

Section V overviews related work, followed by the concluding 

remarks in Section VI. 

II. PROBLEM FORMULATION 

A. System Model 

Fig. 1 illustrates a high-level architecture for cloud 

storage/retrieval services, which involves three different 

entities: the data owner, authorized users, and the cloud server. 

Here, the data owner may represent an individual or enterprise, 

which has a relation table   of relation schema              

to be outsourced to the cloud server, where   denotes object set 

            ;   is attribute set             ,   is the 

decision attribute;   is the relation set between   and  , 

           , where    is the value range of         ; 

and   is the index set             , where    is the 

corresponding index for attribute   . To keep data content 

confidential from unauthorized entities, the data owner should 

encrypt the relation table   before outsourcing it. The encrypted 

relation is defined as follows.  

 
Fig. 1.  Architecture of data retrieval over outsourced data 

Definition 1 (Encrypted Relation). Let   be a relation of 

schema             .    is the encrypted relation of  . The 

corresponding encrypted relation schema is              , 

where     is the identifier set for object set  ; for      , 

   
    ; and    is the encrypted version of   .  

According to Definition 1, we notice that the data 

encryption granularity is one tuple (record). To initialize the 

service, we assume that the data owner has assigned the search 

request keys to authorized users. An authorized user uses his 

key to generate a data retrieval request, and submits it to the 

cloud server. The cloud server implements the request over 

outsourced data and sends back the results.  

B. Threat Model 

The security threats faced by our system model primarily 

come from unauthorized parties (e.g., the cloud server, and 

unauthorized users). We consider them as "honest-but-curious", 

i.e. the cloud server will follow the protocol but may attempt to 

derive additional information from the received retrieval 

requests. On the user side, a user with limited data access 

retrieves data followed by the mechanism that combines 

encryption and fine-grained data access control. There are 

financial incentives for unauthorized users to inferring 

additional information from data stored in the cloud.  

For instance, Table I is a data set for fitting contact lenses, 

which has eliminated single attribute identifier, while Fig. 3 

illustrates the knowledge of user Adam for example, providing 

his view over the encrypted relation. For simplify expression, 

we use upper-latin letters to denote encrypted records. Here, 

grey cells in the relation denote the records that Adam is 

authorized to access. It's easy to see that Adam can infer the 

content of records he is not authorized to access. When direct 

indexes are used, the authorized information exposes all the 

cells having the same plaintext values as the ones that the user 

knows, since each plaintext value is always represented by the 

same index value. Here, light red cells represent the 

information in Table I infered by Adam exploiting such index 

values. 

TABLE I.  PAYOFF MATRIX OF DATA AUDIT GAME 

                

   young myope normal yes hard 

   old myope reduce no hard 

   young myope normal yes hard 

   young hyperope reduce no none 

   young hyperope reduce no none 

   young hyperope more no soft 

   young hyperope reduce no none 

   young hyperope more no soft 
 

  : age                                  {young, old} 

  : spectacle-prescrip           {myope, hyperope} 

  : tear-prod-rate                  {reduced, normal, more} 

  : astigmatism                     {no, yes} 

 : contact-lenses                   {soft, hard, none} 
 

 
Fig. 2.  The infered knowledge of user Adam according to the authorized 

information 

III. THE SECURE AND EFFICIENT INDEXING MECHANISM 

In this section, we first discuss how to find core attributes, 

which play an important role in making decision over attributes. 

Using the core attributes could minimize the security overhead. 

Based on the core attributes, we apply the k-anonymity and 
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data balance techniques over the attribute index values 

according to the user access matrix. 

A. The Core Attributes 

The process of seeking core attributes is to find attributes 

that have the most important factors for decision making, while 

other attributes contain nothing for decision making. A quasi-

identifier (QID) is an attribute set that can identify one (or a 

class of) object. First, we present a few definitions and 

theorems related with core attributes.  

Definition 2 (Equivalence Partition). On the schema 

          ,       is an equivalence partition on  , 

                           (  )        . Here, we use 

   to express the equivalence partition set over attribute set  , 

and the element of    satisfy: for        [  ] 
,       

[  ] 
   and ⋃      

 
     . 

Definition 3 (Core Attributes). On the schema           , 

for attribute set     , where     .          , and 

for      ,     , we call attribute set   as a core attribute 

over  . 

According to Definition 2 and 3, we have Theorem 1. 

Theorem 1. On the schema           , the core attributes 

  is the quasi-identifier, while   contain nothing from the 

decision attribute  . 

Proof: First let’s prove core attributes   is the quasi-

identifier. For any    ,          , there does not exist 

proper subset   of   that makes      , i.e.    ; there 

exist    , making          . Let         , if for any 

    , making            , it means    is the core attribute 

set. Otherwise, there exists     , making            , let 

          , repeat the process above.   is limit set, it can 

find     in limit steps, making      . Thus, the core 

attribute set exists surely. Combing the Definition 2 and    
  , the core attributes   is QID. 

Let   be the core attribute set, suppose     , i.e.,   is 

non-core attribute, making          , which is a 

contradiction with Definition 3. That means   contains nothing 

from the decision attribute  .                                    □ 
In Algorithm 1, we provide a formal description of finding 

the core attribute set. The algorithm uses two concepts:  

discernibility matrix and attribute hypergraph, which are 

defined below. 

Definition 4 (Discernibility Matrix). On the schema 

          ，          |     ,  (      [  ] )  

{
     |          (  )       [  ]            [  ]  

                                                                                                 
，

where  (      [  ] ) is the attribute discernibility set about 

     and[  ] .     (      [  ] ) |      [  ]      is the 

discernibility matrix over  . 

Definition 5 (Attribute Hypergraph). Attribute hypergraph 

         , where             denotes vertex set 

which is consisted by all the attributes in  ,       |   

   denotes hyperedge. One hyperedge represents one item in 

the discernibility matrix. 

Now we briefly explain Algorithm 1. First we construct the 

equivalence class of the attribute set   and  , respectively. 

Then we use the attribute hypergraph reducing method to 

identify the core attributes of different equivalence classes 

based on identification matrix. Here, the steps of hypergraph 

reducing are: 1) choosing one hyperedge that is contained by 

the most hyperedges; 2) deleting all hyperedges containing the 

chosen one; 3) repeating steps 1) and 2) until there is no 

hyperedge. For the example in Table I, First, we establish the 

equivalence class of the attribute set   and   on object 

set:                                      , and    
                               . Then we find the 

discernibility matrix   that can identify various attributes of 

different equivalence classes. 

  

 

[
 
 
 

                
                

                    
                 

                 
                    

                    

                  ]
 
 
 
  (1) 

 

 
Fig. 3.  Attribute hypergraph of Table I 

We propose an attribute hypergraph digestion method to 

obtain the QID, as illustrated in Fig. 3(a). The rules of the 

hypergraph digestion are given below: (1) finding a hyperedge 

that is contained by the most hyperedges; (2) deleting all 

hyperedges containing the chosen one; (3) repeating step (1) 

until there is no hyperedge. According to the hypergraph 

digestion rules, first,         is chosen, deleting all hyperedges 

containing attribute    , and we have Fig. 3(b). Second, 

choosing          , and deleting it, and we have Fig. 3(c). 

Now, we can get             . That is,     
       ,           . 
 

Algorithm 1  Finding Core Attributes 

INPUT: 

HE{∑ ∑ 𝐷    𝑗  
   + 

 
   }  

OUTPUT: 

  

MAIN 

1:  ← 0,   𝑢   ← 0,  ← 0,  ←  , Edge←   

2:  while HE    do 

3:       for each     do 

4:           Temp←   

5:           for   ← 0 to |  | do    

6:               if          then 

7:                      𝑢   ←   𝑢  +   
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8:               Temp← 𝑇 𝑚𝑝 ∪     

9:               if c<count then  

10:                  c ←count, e←k, Edge←Temp 

11:  HE←HE  Edge 

12:  C←            /* “ ” denotes Cartesian product */ 

13:  return   

B. Attribute Partition 

Note that, according to Definition 3, the core attribute set is 

not unique. Next, our work is to partition the core attributes 

into two parts, making the attributes   satisfy: for   ,     
 . The maximal attribute fragmentation problem (Max-AF) is 

NP-hard. We present a heuristic Algorithm 2 for solving it. 

Theorem 2. The Max-AF problem is NP-hard. 

Proof: The proof is a reduction from the NP-hard problem 

of vertex covering, formulated as follows: given a graph   
     , determing a minimum vertex covering of   which is a 

subset     , such that if  𝑢     , then 𝑢     or      or 

both. That is, each vertex covers its incident edges, and a vertex 

cover for   is a set of vertices that covers all the edges in  . 

Given a schema            , where   denotes a set of 

core attribute sets, the correspondence between the Max-AF 

problem and the vertex covering problem can be defined as 

follows. For      ,               , and     is a complete 

subgraph.     , such that if (       )    , then        or 

       or both. The Max-AF         . Hence, the Max-

AF problem is NP-hard.                           □ 
 

Algorithm 2  Max-AF 

INPUT: 
   
OUTPUT: 

    
1:   ←   

2:   ←       
3: while      do 

4:       let (  𝑗    𝑘) be an arbitrary edge of    

5:         ←   ∪    𝑗   𝑘  

6:       remove edges incident on either   𝑗 or   𝑘 

7:    ←      
8: return     

 

Discussions. Algorithm 2 is a heuristic algorithm for 

attribute partition, which ensures no QID exists in the 

fragmentation. According to Theorem 2, for covering every 

edge in   , any vertex covering must contain at least one vertex 

of every edge, while line 5 of Algorithm 2 add one edge (two 

vertexes) to the essential attributes. Therefore, the maximal 

deviation between     and    is 
  

 
. 

C. The k-Anonymity Mechanism for Index Pointers 

By the essential attributes location process above, we 

minimize the processed attribute set   . After that, we 

implement k-anonymity and search balance operation for index 

pointers corresponding to   . Our scheme is different from the 

traditional k-anonymity technique, and it has several features: 1) 

we do not implement generalization operation on data, thus the 

accuracy of data is not reduced; 2) the value of the threshold 

"k" does not depend on expert experiences, the value is 

dynamically set based on user resource access distribution and 

the attribute index balance tree. 

Definition 6 (User Access Matrix). User access matrix   is 

a table that describes the relationship between authorized users 

   𝑢    𝑢   and the corresponding resources allowed to 

access -        
      

 , where   (𝐷(𝑢     
)|𝑢  

     
    . 

Definition 7 (User Resource Access Distribution). 

             is a relation schema, where    ⋃    

  
  

, 

     .    
 is user resource access distribution over attribute 

  , where    
 {      

 |       . 

Definition 8 (Index Balance Tree). The index balance tree 

is a statistic structure. The root node represents the metadata of 

the essential attributes. Each internal node represents a 

specialized value (or a generalized value interval) of its parent 

node. Each leaf node can be expressed as a tuple (   , count), 

where     means that index        can retrieve the data ID, 

count is a statistic that records the number of parent nodes 

having the value in the dataset. For any two leaf nodes, 
|   𝑢  |   . 

According to Definition 7, the data owner can build indexes 

over every attribute before outsourcing. Note that, attribute 

index is not related with  , but depending one user resource 

access distribution. To prevent unauthorized parties from 

inferring new knowledge, we propose a data retrieval balance 

strategy based on the index balance tree. Algorithm 3 describes 

the index-creating strategy for an arbitrary attribute   . 
 

Algorithm 3  Index_Creating 

INPUT: 

Index_Balance_Tree root[  ] 

Object   𝑡
 

Object    

security_factor  𝛿 

OUTPUT: 

  𝑡
  

MAIN 

1: Scanning   𝑡
 to build Index_Blacnce_Tree root[  ] 

2: Setting 𝑘 

        1) 𝑤        𝑢   , 𝑤 denotes the maximum count 

in all leaf nodes 

        2) 𝑘  ⌈𝑤    + 𝛿 ⌉ 
3: Balancing root[  ] 

        For any leaf node 𝑙  that its   𝑢  < 𝑤, randomly 

select       and   ∉ 𝑙      , insert    into 𝑙 , until 

all leaf node’s   𝑢   𝑤. 

4: Creating index for every leaf node 𝑙  and encrypting it  

5: return   𝑡
  

 

Theorem 3. Algorithm 3 guarantees that the rate of referring 

new knowledge of unauthorized users is not higher than L.  

Proof: Based on the threat model, the proof consists of two 

parts. For cloud server, all data and the corresponding indexes 
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are encrypted. Suppose the encryption is secure, then the cloud 

server doesn’t know the data and the semantic information. 

Due to the data retrieval balance process that makes all records 

as k-anonymity, the cloud server cannot infer statistic 

information from user’s queries. Specifically, let 𝑤  be the 

maximum number of records in all class records, 𝛿  be the 

confusion factor, 𝑤  is the non-balanced data set in user’s one 

time data retrieval, and 𝑤  is the authorized data corresponding 

with 𝑤 . Therefore, for any specific retrieval, the sensitive 

information leak probability  
     

   +     
. For unauthorized 

user, the condition is similar with the former. That is omitted 

here. In addition, the joining of a new user or permission 

change of an existing user likely triggers the execution of 

Algorithm 3, since the trigger condition of Algorithm 3 is: 

|∆count|>1, where |∆count| is the difference value of the 

contained data records among any two leaf nodes. Thus, for 

data requests with the same query condition, the result to 

different users may be different because the requests may be 

processed at different trigger cycles and may be added with 

different noises. This can further reduce the leakage of privacy 

information.            □                                                                                       

IV. EXPERIMENTAL RESULTS 

To verify the effectiveness and practicality of the proposed 

mechanism, we conduct a series of experiments on our cloud 

testbed. To simulate a real database, we generate a test dataset 

following the TPC-H benchmark specifications [8]. We build 

our testbed as follows: there are three nodes, and each one has 

8-core 2.93 GHz Intel Xeon CPU, 24 GB memory, 500 GB 

local disk and installed with Linux 2.6.18. Our proposed 

algorithms are implemented in Python. For each configuration, 

we run experiments multiple times and report the average. 

First we evaluate the performance of Algorithm 1 - finding 

core attributes. We choose different record collections from the 

IDE data set [13], where the number of a collection ranges 

from 10,000 to 100,000.  Fig. 4 shows that the time of finding 

core attributes increases linearly with the number of data. 

Though the time is in the order of seconds, we should note that 

the core attributes search process is just a one-time cost and can 

be conducted off-line. Fig. 3 plots the time of attribute partition, 

which is a linear function, and the attribute count varies from 

100 to 1,000, in steps of 100. Fig. 5 matches Algorithm 2’s 

running time:    +   . 

  

Fig. 4.  Time of finding core attributes 
 

  

Fig. 5.  Time for attribute partition 

Fig. 6 and Fig. 7 show the impact of the number of 

attributes on the efficiency of creating index and the auxiliary 

storage space, respectively. As the number of attributes grows, 

the time overhead increases, but not at the same rate. This is 

consistent with Algorithm 3. The time of building attribute 

index depends on the specific attribute value distribution in the 

entire spatial range due to the data balance operation. There is 

some similarity between the time overhead and storage 

overhead when number of attributes increases. We use security 

index provided by literature [9] as the baseline. The result 

shows that our index creating time is faster than the literature 

[9]'s while the space overhead is smaller. 
 

  

Fig. 6.  Time of creating index 

   

Fig. 7.  Auxiliary storage overhead 

Fig. 8 plots the size of retrieval set returned by the cloud for 

different amount of data. We include a general data retrieval 

method as the baseline. Since the baseline scheme does not 
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need to return any noise data, its result-set is smaller than that 

of our mechanism. We notice that the result-set size of our 

mechanism is very close to that of the baseline scheme. Our 

mechanism supports secure search without privacy breaches, 

hence our mechanism is still quite efficient. 
 

  

Fig. 8.  Evaluation of returning result-set size 

V. RELATED WORK 

Several research efforts have been performed in the context 

of data outsourcing [14]. In [5] the authors propose bucket-

based index techniques which map multiple plaintext values to 

the same index value, thus generating collisions that prevent 

frequency-based attacks. However， the direct and bucket-

based indexing techniques do not support range queries. In [6] 

the authors propose a flattened indexing method that exploits 

B-trees for supporting both equality and range queries. All 

these solutions provide support for the evaluation of queries 

over encrypted data, but do not take access control restrictions 

into account. In [15], the authors introduce the definition of B-

tree indexes, one for each different access control list (acl) in 

the system. To guarantee confidentiality, the B-tree index of 

each acl is encrypted with a key that only the users in the acl 

know. This solution suffers from a high client side overhead in 

query evaluation, since the user submitting the query must visit 

all the B-trees associated with the acls to which she belongs. 

The authors of [9] solve this problem by building conflict graph 

according to the relationship among tuples, and then combine 

users' access privilege to construct the index system. However, 

it causes the "multilingual queries" problem. Our work is 

complementary to these proposals since it addresses the 

problem of ensuring that users cannot withdraw any inferences 

on the data they are not authorized to access by observing 

indexes associated with the data. 

VI. CONCLUDING REMARKS 

In this paper, we studied the problem of secure and efficient 

data retrieval over outsourced cloud data. For effective 

searching outsourced data without jeopardizing data privacy, 

we first exploited "core attribute"-aware technique, and then 

adopted k-anonymity technique for indexes of these attributes 

to prevent any entity from inferring unauthorized data. We 

formally proved the privacy-preserving guarantee and the 

correctness of the proposed mechanism under rigorous security 

treatment. The experiment results further demonstrated the 

validity and practicality of the proposed mechanism. 
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