
Practical and Privacy-assured Data Indexes for

Outsourced Cloud Data

Hongli Zhang
1
, Zhigang Zhou

1
, Xiaojiang Du

2
, Panpan Li

1
, Xiangzhan Yu

1

1School of Computer Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China

e-mail: { zhanghongli, zhouzhigang, lipan, yxz}@ pact518.hit.edu.cn
2Dept. of Computer and Information Sciences, Temple University, Philadelphia, PA, 19122, USA

e-mail: dux@temple.edu

Abstract—Cloud computing allows individuals and

organizations outsource their data to cloud server due to the

flexibility and cost savings. However, data privacy is a major

concern that hampers the wide adoption of cloud services. Data

encryption ensures data content confidentiality and fine-grained

data access control prevents unauthorized user from accessing

data. An unauthorized user may still be able to infer privacy

information from encrypted data by using indexing techniques.

In this paper, we investigate the problem of sensitive information

leakage caused by orthogonal use of these two kinds of techniques.

Based on that, we propose "core attribute"-aware techniques

that can ensure privacy of outsourced data. The techniques focus

on confidential attribute set of outsourced data. We adopt k-

anonymity technique for the attribute indexes to prevent user

from inferring privacy from unauthorized data. We formally

prove the privacy-preserving guarantee of the proposed

mechanism. Our extensive experiments demonstrate the

practicality of the proposed mechanism, which has low

computation and communication overhead.

Keywords—privacy-assured; data indexes; cloud computing;

data outsourcing; k-anonymity

I. INTRODUCTION

With a number of advantages: location independent data

storage, ubiquitous data access and on-demand high quality

services, cloud computing has become a popular computing

service for both individuals and enterprises, who outsource

their data to the cloud for the flexibility and cost savings [1].

On the other hand, data owner outsourcing data to the cloud

relinquishes direct control of the system devices, which

inevitably brings in potential security problems: Data may

contain sensitive information (e.g., health records [2], credit

card records [3], etc.), while commercial clouds do not provide

data security guarantee. The security concern has been

aggravated by recent incidents of Gmail data breach and

Amazon outages.

A natural solution for ensuring privacy-preserving to

outsourced cloud data uses data encryption. Encryption

provides both data integrity as well as content confidentiality,

since only the authorized users know the decryption key. The

assurance that data confidentiality is protected is desired by the

data owner. Meanwhile, in order to make cloud server offer

data retrieval service for authorized users, the outsourced

encrypted data are usually associated with indexing

information which can be exploited by the cloud server that

executes data retrieval requests. Several indexing approaches

for encrypted data have been proposed for supporting efficient

retrieval services (e. g., [4-6]).

While data confidentiality is essential for outsourced data,

fine-grained data access control as an orthogonal aspect

becomes the focus of concern of several recent papers [7, 10,

and 11]. With key derivation technique and user hierarchy

grouping, fine-grained data access control can provide different

data views to different users. At the user side, one user only

needs store little information to derive the access key.

The combined use of the two techniques, however, could

cause privacy breach, because the current commercial clouds

(e.g., Amazon's EC2 and S3) only offer storage services but

don’t guarantee strict data access control that separates user

information according to user's privilege. As the matter of fact,

a user’s retrieval pattern is privacy information and should be

protected, and hence data owners do not outsource the access

matrix to the cloud server. It potentially opens a door for users

to infer encrypted data by the visibility of data indexes even if

the users can not access the data. The authors of [9] solve this

problem by building conflict graph according to the

relationship among tuples, and then combine users' access

privilege to construct the index system. However, it causes the

"multilingual queries" problem, in which a user has to send n

time retrieval requests using different keys for one original

query, and this is not acceptable.

Similar to [9], in this paper, data are organized in a

relational table and indexes are defined as attributes.

Meanwhile our proposal can be adapted to generic resource

scenes. In this paper, we investigate the problem of privacy-

assured data index and we propose a suit of novel techniques to

solve this issue. First, we formally prove that the impact of

different attributes varies (details given in the Section III).

Some attributes play an important role in making a decision,

and they are referred to as the core attribute set; while other

attributes (referred to as unrelated attributes) do not affect the

decision. The disclosure of unrelated attributes does not

provide any additional knowledge to an attacker. For the core

attributes, we apply k-anonymity to the corresponding indexes.

Different from the traditional k-anonymity [12], our scheme

does not reduce the description precision of the attribute value.

We just generalize the pointing domain of indexes. In addition,

to protect outsourced data from statistic attacks, we introduce

extra dummy entries in indexes using random tuples such that

Globecom 2013 - Communication and Information System Security Symposium

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 671

the retrieval results for each search have the same length. We

formally prove the privacy-preserving guarantee of our

proposed scheme, and our extensive experiments demonstrate

the efficiency of the proposed solution.

The remainder of the paper is organized as follows. Section

II describes the system and threat model. In Section III, we

present our secure data indexing mechanism and the security

analysis. In Section IV, we give the experimental results.

Section V overviews related work, followed by the concluding

remarks in Section VI.

II. PROBLEM FORMULATION

A. System Model

Fig. 1 illustrates a high-level architecture for cloud

storage/retrieval services, which involves three different

entities: the data owner, authorized users, and the cloud server.

Here, the data owner may represent an individual or enterprise,

which has a relation table of relation schema

to be outsourced to the cloud server, where denotes object set

 ; is attribute set , is the

decision attribute; is the relation set between and ,

 , where is the value range of ;

and is the index set , where is the

corresponding index for attribute . To keep data content

confidential from unauthorized entities, the data owner should

encrypt the relation table before outsourcing it. The encrypted

relation is defined as follows.

Fig. 1. Architecture of data retrieval over outsourced data

Definition 1 (Encrypted Relation). Let be a relation of

schema . is the encrypted relation of . The

corresponding encrypted relation schema is ,

where is the identifier set for object set ; for ,

 ; and is the encrypted version of .

According to Definition 1, we notice that the data

encryption granularity is one tuple (record). To initialize the

service, we assume that the data owner has assigned the search

request keys to authorized users. An authorized user uses his

key to generate a data retrieval request, and submits it to the

cloud server. The cloud server implements the request over

outsourced data and sends back the results.

B. Threat Model

The security threats faced by our system model primarily

come from unauthorized parties (e.g., the cloud server, and

unauthorized users). We consider them as "honest-but-curious",

i.e. the cloud server will follow the protocol but may attempt to

derive additional information from the received retrieval

requests. On the user side, a user with limited data access

retrieves data followed by the mechanism that combines

encryption and fine-grained data access control. There are

financial incentives for unauthorized users to inferring

additional information from data stored in the cloud.

For instance, Table I is a data set for fitting contact lenses,

which has eliminated single attribute identifier, while Fig. 3

illustrates the knowledge of user Adam for example, providing

his view over the encrypted relation. For simplify expression,

we use upper-latin letters to denote encrypted records. Here,

grey cells in the relation denote the records that Adam is

authorized to access. It's easy to see that Adam can infer the

content of records he is not authorized to access. When direct

indexes are used, the authorized information exposes all the

cells having the same plaintext values as the ones that the user

knows, since each plaintext value is always represented by the

same index value. Here, light red cells represent the

information in Table I infered by Adam exploiting such index

values.

TABLE I. PAYOFF MATRIX OF DATA AUDIT GAME

 young myope normal yes hard

 old myope reduce no hard

 young myope normal yes hard

 young hyperope reduce no none

 young hyperope reduce no none

 young hyperope more no soft

 young hyperope reduce no none

 young hyperope more no soft

 : age {young, old}

 : spectacle-prescrip {myope, hyperope}

 : tear-prod-rate {reduced, normal, more}

 : astigmatism {no, yes}

 : contact-lenses {soft, hard, none}

Fig. 2. The infered knowledge of user Adam according to the authorized

information

III. THE SECURE AND EFFICIENT INDEXING MECHANISM

In this section, we first discuss how to find core attributes,

which play an important role in making decision over attributes.

Using the core attributes could minimize the security overhead.

Based on the core attributes, we apply the k-anonymity and

Globecom 2013 - Communication and Information System Security Symposium

672

data balance techniques over the attribute index values

according to the user access matrix.

A. The Core Attributes

The process of seeking core attributes is to find attributes

that have the most important factors for decision making, while

other attributes contain nothing for decision making. A quasi-

identifier (QID) is an attribute set that can identify one (or a

class of) object. First, we present a few definitions and

theorems related with core attributes.

Definition 2 (Equivalence Partition). On the schema

 , is an equivalence partition on ,

 () . Here, we use

 to express the equivalence partition set over attribute set ,

and the element of satisfy: for []
,

[]
 and ⋃

 .

Definition 3 (Core Attributes). On the schema ,

for attribute set , where . , and

for , , we call attribute set as a core attribute

over .

According to Definition 2 and 3, we have Theorem 1.

Theorem 1. On the schema , the core attributes

 is the quasi-identifier, while contain nothing from the

decision attribute .

Proof: First let’s prove core attributes is the quasi-

identifier. For any , , there does not exist

proper subset of that makes , i.e. ; there

exist , making . Let , if for any

 , making , it means is the core attribute

set. Otherwise, there exists , making , let

 , repeat the process above. is limit set, it can

find in limit steps, making . Thus, the core

attribute set exists surely. Combing the Definition 2 and
 , the core attributes is QID.

Let be the core attribute set, suppose , i.e., is

non-core attribute, making , which is a

contradiction with Definition 3. That means contains nothing

from the decision attribute . □
In Algorithm 1, we provide a formal description of finding

the core attribute set. The algorithm uses two concepts:

discernibility matrix and attribute hypergraph, which are

defined below.

Definition 4 (Discernibility Matrix). On the schema

 ， | , ([])

{
 | () [] []

，

where ([]) is the attribute discernibility set about

 and[] . ([]) | [] is the

discernibility matrix over .

Definition 5 (Attribute Hypergraph). Attribute hypergraph

 , where denotes vertex set

which is consisted by all the attributes in , |

 denotes hyperedge. One hyperedge represents one item in

the discernibility matrix.

Now we briefly explain Algorithm 1. First we construct the

equivalence class of the attribute set and , respectively.

Then we use the attribute hypergraph reducing method to

identify the core attributes of different equivalence classes

based on identification matrix. Here, the steps of hypergraph

reducing are: 1) choosing one hyperedge that is contained by

the most hyperedges; 2) deleting all hyperedges containing the

chosen one; 3) repeating steps 1) and 2) until there is no

hyperedge. For the example in Table I, First, we establish the

equivalence class of the attribute set and on object

set: , and
 . Then we find the

discernibility matrix that can identify various attributes of

different equivalence classes.

[

]

 (1)

Fig. 3. Attribute hypergraph of Table I

We propose an attribute hypergraph digestion method to

obtain the QID, as illustrated in Fig. 3(a). The rules of the

hypergraph digestion are given below: (1) finding a hyperedge

that is contained by the most hyperedges; (2) deleting all

hyperedges containing the chosen one; (3) repeating step (1)

until there is no hyperedge. According to the hypergraph

digestion rules, first, is chosen, deleting all hyperedges

containing attribute , and we have Fig. 3(b). Second,

choosing , and deleting it, and we have Fig. 3(c).

Now, we can get . That is,
 , .

Algorithm 1 Finding Core Attributes

INPUT:

HE{∑ ∑ 𝐷 𝑗
 +

 }

OUTPUT:

MAIN

1: ← 0, 𝑢 ← 0, ← 0, ← , Edge←

2: while HE do

3: for each do

4: Temp←

5: for ← 0 to | | do

6: if then

7: 𝑢 ← 𝑢 +

Globecom 2013 - Communication and Information System Security Symposium

673

8: Temp← 𝑇 𝑚𝑝 ∪

9: if c<count then

10: c ←count, e←k, Edge←Temp

11: HE←HE  Edge

12: C← /* “ ” denotes Cartesian product */

13: return

B. Attribute Partition

Note that, according to Definition 3, the core attribute set is

not unique. Next, our work is to partition the core attributes

into two parts, making the attributes satisfy: for ,
 . The maximal attribute fragmentation problem (Max-AF) is

NP-hard. We present a heuristic Algorithm 2 for solving it.

Theorem 2. The Max-AF problem is NP-hard.

Proof: The proof is a reduction from the NP-hard problem

of vertex covering, formulated as follows: given a graph
 , determing a minimum vertex covering of which is a

subset , such that if 𝑢 , then 𝑢 or or

both. That is, each vertex covers its incident edges, and a vertex

cover for is a set of vertices that covers all the edges in .

Given a schema , where denotes a set of

core attribute sets, the correspondence between the Max-AF

problem and the vertex covering problem can be defined as

follows. For , , and is a complete

subgraph. , such that if () , then or

 or both. The Max-AF . Hence, the Max-

AF problem is NP-hard. □

Algorithm 2 Max-AF

INPUT:

OUTPUT:

1: ←

2: ←
3: while do

4: let (𝑗 𝑘) be an arbitrary edge of

5: ← ∪ 𝑗 𝑘

6: remove edges incident on either 𝑗 or 𝑘

7: ←
8: return

Discussions. Algorithm 2 is a heuristic algorithm for

attribute partition, which ensures no QID exists in the

fragmentation. According to Theorem 2, for covering every

edge in , any vertex covering must contain at least one vertex

of every edge, while line 5 of Algorithm 2 add one edge (two

vertexes) to the essential attributes. Therefore, the maximal

deviation between and is

.

C. The k-Anonymity Mechanism for Index Pointers

By the essential attributes location process above, we

minimize the processed attribute set . After that, we

implement k-anonymity and search balance operation for index

pointers corresponding to . Our scheme is different from the

traditional k-anonymity technique, and it has several features: 1)

we do not implement generalization operation on data, thus the

accuracy of data is not reduced; 2) the value of the threshold

"k" does not depend on expert experiences, the value is

dynamically set based on user resource access distribution and

the attribute index balance tree.

Definition 6 (User Access Matrix). User access matrix is

a table that describes the relationship between authorized users

 𝑢 𝑢 and the corresponding resources allowed to

access -

 , where (𝐷(𝑢
)|𝑢

 .

Definition 7 (User Resource Access Distribution).

 is a relation schema, where ⋃

,

 .
 is user resource access distribution over attribute

 , where
 {

 | .

Definition 8 (Index Balance Tree). The index balance tree

is a statistic structure. The root node represents the metadata of

the essential attributes. Each internal node represents a

specialized value (or a generalized value interval) of its parent

node. Each leaf node can be expressed as a tuple (, count),

where means that index can retrieve the data ID,

count is a statistic that records the number of parent nodes

having the value in the dataset. For any two leaf nodes,
| 𝑢 | .

According to Definition 7, the data owner can build indexes

over every attribute before outsourcing. Note that, attribute

index is not related with , but depending one user resource

access distribution. To prevent unauthorized parties from

inferring new knowledge, we propose a data retrieval balance

strategy based on the index balance tree. Algorithm 3 describes

the index-creating strategy for an arbitrary attribute .

Algorithm 3 Index_Creating

INPUT:

Index_Balance_Tree root[]

Object 𝑡

Object

security_factor 𝛿

OUTPUT:

 𝑡

MAIN

1: Scanning 𝑡
 to build Index_Blacnce_Tree root[]

2: Setting 𝑘

 1) 𝑤 𝑢 , 𝑤 denotes the maximum count

in all leaf nodes

 2) 𝑘 ⌈𝑤 + 𝛿 ⌉
3: Balancing root[]

 For any leaf node 𝑙 that its 𝑢 < 𝑤, randomly

select and ∉ 𝑙 , insert into 𝑙 , until

all leaf node’s 𝑢 𝑤.

4: Creating index for every leaf node 𝑙 and encrypting it

5: return 𝑡

Theorem 3. Algorithm 3 guarantees that the rate of referring

new knowledge of unauthorized users is not higher than L.

Proof: Based on the threat model, the proof consists of two

parts. For cloud server, all data and the corresponding indexes

Globecom 2013 - Communication and Information System Security Symposium

674

are encrypted. Suppose the encryption is secure, then the cloud

server doesn’t know the data and the semantic information.

Due to the data retrieval balance process that makes all records

as k-anonymity, the cloud server cannot infer statistic

information from user’s queries. Specifically, let 𝑤 be the

maximum number of records in all class records, 𝛿 be the

confusion factor, 𝑤 is the non-balanced data set in user’s one

time data retrieval, and 𝑤 is the authorized data corresponding

with 𝑤 . Therefore, for any specific retrieval, the sensitive

information leak probability

 +
. For unauthorized

user, the condition is similar with the former. That is omitted

here. In addition, the joining of a new user or permission

change of an existing user likely triggers the execution of

Algorithm 3, since the trigger condition of Algorithm 3 is:

|∆count|>1, where |∆count| is the difference value of the

contained data records among any two leaf nodes. Thus, for

data requests with the same query condition, the result to

different users may be different because the requests may be

processed at different trigger cycles and may be added with

different noises. This can further reduce the leakage of privacy

information. □

IV. EXPERIMENTAL RESULTS

To verify the effectiveness and practicality of the proposed

mechanism, we conduct a series of experiments on our cloud

testbed. To simulate a real database, we generate a test dataset

following the TPC-H benchmark specifications [8]. We build

our testbed as follows: there are three nodes, and each one has

8-core 2.93 GHz Intel Xeon CPU, 24 GB memory, 500 GB

local disk and installed with Linux 2.6.18. Our proposed

algorithms are implemented in Python. For each configuration,

we run experiments multiple times and report the average.

First we evaluate the performance of Algorithm 1 - finding

core attributes. We choose different record collections from the

IDE data set [13], where the number of a collection ranges

from 10,000 to 100,000. Fig. 4 shows that the time of finding

core attributes increases linearly with the number of data.

Though the time is in the order of seconds, we should note that

the core attributes search process is just a one-time cost and can

be conducted off-line. Fig. 3 plots the time of attribute partition,

which is a linear function, and the attribute count varies from

100 to 1,000, in steps of 100. Fig. 5 matches Algorithm 2’s

running time: + .

Fig. 4. Time of finding core attributes

Fig. 5. Time for attribute partition

Fig. 6 and Fig. 7 show the impact of the number of

attributes on the efficiency of creating index and the auxiliary

storage space, respectively. As the number of attributes grows,

the time overhead increases, but not at the same rate. This is

consistent with Algorithm 3. The time of building attribute

index depends on the specific attribute value distribution in the

entire spatial range due to the data balance operation. There is

some similarity between the time overhead and storage

overhead when number of attributes increases. We use security

index provided by literature [9] as the baseline. The result

shows that our index creating time is faster than the literature

[9]'s while the space overhead is smaller.

Fig. 6. Time of creating index

Fig. 7. Auxiliary storage overhead

Fig. 8 plots the size of retrieval set returned by the cloud for

different amount of data. We include a general data retrieval

method as the baseline. Since the baseline scheme does not

Globecom 2013 - Communication and Information System Security Symposium

675

need to return any noise data, its result-set is smaller than that

of our mechanism. We notice that the result-set size of our

mechanism is very close to that of the baseline scheme. Our

mechanism supports secure search without privacy breaches,

hence our mechanism is still quite efficient.

Fig. 8. Evaluation of returning result-set size

V. RELATED WORK

Several research efforts have been performed in the context

of data outsourcing [14]. In [5] the authors propose bucket-

based index techniques which map multiple plaintext values to

the same index value, thus generating collisions that prevent

frequency-based attacks. However， the direct and bucket-

based indexing techniques do not support range queries. In [6]

the authors propose a flattened indexing method that exploits

B-trees for supporting both equality and range queries. All

these solutions provide support for the evaluation of queries

over encrypted data, but do not take access control restrictions

into account. In [15], the authors introduce the definition of B-

tree indexes, one for each different access control list (acl) in

the system. To guarantee confidentiality, the B-tree index of

each acl is encrypted with a key that only the users in the acl

know. This solution suffers from a high client side overhead in

query evaluation, since the user submitting the query must visit

all the B-trees associated with the acls to which she belongs.

The authors of [9] solve this problem by building conflict graph

according to the relationship among tuples, and then combine

users' access privilege to construct the index system. However,

it causes the "multilingual queries" problem. Our work is

complementary to these proposals since it addresses the

problem of ensuring that users cannot withdraw any inferences

on the data they are not authorized to access by observing

indexes associated with the data.

VI. CONCLUDING REMARKS

In this paper, we studied the problem of secure and efficient

data retrieval over outsourced cloud data. For effective

searching outsourced data without jeopardizing data privacy,

we first exploited "core attribute"-aware technique, and then

adopted k-anonymity technique for indexes of these attributes

to prevent any entity from inferring unauthorized data. We

formally proved the privacy-preserving guarantee and the

correctness of the proposed mechanism under rigorous security

treatment. The experiment results further demonstrated the

validity and practicality of the proposed mechanism.

ACKNOWLEDGMENT

This work is supported by the project of National Natural

Science Foundation of China (60903166, 61100188,

61173144), National Basic Research Program (973 Program)

of China (2011CB302605) and National High Technology

Research and Development Program (863 Program) of China

(2010AA012504), and by the US National Science Foundation

under grants CNS-0963578, CNS-1022552 and CNS-1065444.

REFERENCES

[1] M. Armbrust et al., “A view of cloud computing,” Communications of

the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] Health Insurance Portability and Accountability Act. http://www. hhs.

gov/ocr/privacy/.

[3] Payment card industry (PCI) data security standard. https://www.

pcisecuritystandards.org/documents/pci dss v2.pdf.

[4] R. Agrawal et al.. Order preserving encryption for numeric data. In Proc.

of SIGMOD 2004, Paris, France, June 2004.

[5] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P.

Samarati. Balancing confidentiality and efficiency in untrusted relational

DBMSs. In Proc. of CCS 2003, Washington, DC, USA, October 2003.

[6] H. Wang and L. V. S. Lakshmanan. Efficient secure query evaluation

over encrypted XML databases. In Proc. of VLDB 2006, Seoul, Korea,

September 2006.

[7] S. De Capitani di Vimercati et al.. Overencryption: Management of

Access Control Evolution on Outsourced Data.VLDB: 123-134. Vienna,

Austria, September 2007.

[8] The transaction processing performance council (TPC) benchmark H.

http://www.tpc.org/tpch/.

[9] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P.

Samarati. Private Data Indexes for Selective Access to Outsourced Data.

10th Workshop on Privacy in the Electronic Society (WPES):69-

80.October 2011.

[10] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S.

Paraboschi, and P. Samarati. Modeling and assessing inference exposure

in encrypted databases. ACM TISSEC, 8(1):119–152, February 2005.

[11] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P.

Samarati. Balancing confidentiality and efficiency in untrusted relational

DBMSs. In Proc. of CCS 2003, Washington, DC, USA, October 2003.

[12] Kisilevich Slava et al.. Efficient multidimensional suppression for k-

anonymity. IEEE Transactions on Knowledge and Data Engineering.

334-347, March 2010.

[13] DARPA Intrusion Detection Evaluation. http:// www. ll.mit.edu

/mission/communications/ist/corpora/ideval/data/1999data.html.

[14] P. Samarati and S. De Capitani di Vimercati. Data protection in

outsourcing scenarios: Issues and directions. In Proc. of ASIACCS 2010,

Beijing, China, April 2010.

[15] E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes. Designing secure

indexes for encrypted databases. In Proc. of DBSec 2005, Storrs, CT,

USA, August 2005.

Globecom 2013 - Communication and Information System Security Symposium

676

