
Auditing CPU Performance in Public Cloud

Qiang Huang1, Lin Ye1, Xinran Liu2, and Xiaojiang Du3

1School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
{qhuang0409@gmail.com, hityelin@hit.edu.cn}

2School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, China, lxr@cert.org.cn
3Dept. of Computer and Information Sciences, Temple University, Philadelphia, PA, USA, dxj@ieee.org

Abstract—Cloud computing services offer elastic computing
and storage to end-users over the Internet in a pay-as-you-
go way. Many businesses have started using cloud computing.
A Service Level Agreement (SLA) between a cloud service
provider (CSP) and a user is a contract that speci�es the
resources and performances that the cloud should provide.
However, a CSP has the incentive to cheat on SLA, e.g.,
providing users with less CPU and memory resources than that
speci�ed in the SLA, which allows the CSP to support more
users and make more pro�ts. Unfortunately, there are no tools
to allow users to verify the SLA. We study the important issue
of verifying SLA in a semi-trusted (or untrusted) cloud. In
this paper, we focus on the veri�cation of CPU speed, which is
an important metric in cloud SLA. We propose a lightweight
stealthy test algorithm that can check if a CSP provides the
CPU speed as speci�ed in the SLA. Using real experiments,
we show that the algorithm can detect cloud cheating on CPU
speed (i.e., SLA violations) in a stealthy way.

Keywords-Cloud computing; auditing; CPU

I. INTRODUCTION

Cloud computing is gaining increasing attentions because
it allows users to rent computing resources in a pay-as-you-
go way. Due to the economic, �exible and elastic usage, a
number of major IT companies have started offering cloud
computing services. Meanwhile, an increasing number of
enterprises are migrating their tasks to cloud environment.

Speci�ed by Service Level Agreements (SLAs) between
cloud service providers (CSPs) and users, cloud computing
promises the users the expected resources and performances,
such as memory, CPU, storage, and so on. For example, a
small instance of the Amazon EC2 has the following con�g-
urations [1]: 1.7 GB memory, one 1.0-1.2 GHz Opteron or
Xeon processor, and 160 GB storage. The price that a user
pays to the CSP is closely related with the SLA. However,
a user’s computations run in a virtual machine (VM) in the
CSP. How does a user know if he/she is getting the physical
memory size or CPU speed as speci�ed in the SLA? A CSP
is a pro�t-based company, and it may provide less resources
to a user, which allows the CSP to support more users and
make more pro�ts.

It is dif�cult for a user to verify the SLA because the CSP
has complete controls of the resources, including physical
machines, hypervisors, VMs, and so on. An untrusted CSP
can easily defeat the existing SLA assessment techniques

by interfering with the process. In this paper, we present
a lightweight stealthy test algorithm for CPU speed ver-
i�cation. Our algorithm utilizes the relationships between
the video transcoding parameters(corresponding to the video
quality) and the conversion time. Our contributions are
summarized as follows.

• We propose a lightweight stealthy test algorithm to
detect whether the cloud provides enough CPU speed.

• Using real experiments, we show that the algorithm
can detect cloud cheating on CPU speed (i.e., SLA
violations) and the overhead is small.

The rest of this paper is organized as follows. Section II
discusses the related work on SLAs. Section III describes the
system and threat models. Section IV presents the stealthy
test algorithm on CPU speed. Section V evaluates the
effectiveness of the algorithm for detecting SLA violations
on CPU, followed by the conclusion in Section VI.

II. RELATED WORK

Brandic et. al [2] propose a layered cloud architecture
to model the bottom-up propagation of failures, and uses
it to detect SLA violations by mapping resource metrics
to SLA parameters. There are several approaches for SLA
assessment with a focus on accurately measuring or esti-
mating Quality of Service parameters. Sommers et. al [3]
propose a novel active measurement methodology to monitor
whether the characteristics of measured network path are
in compliance with performance targets speci�ed in SLAs.
Serral-Gracia et. al [4] propose a new passive traf�c analysis
method for on-line SLAs assessment, which reduces both
the need for measuring QoS metrics as well as the interac-
tions between the ingress and egress nodes in the network.
Wang and Eugene [5] present a quantitative study of the
end-to-end networking performance among Amazon EC2
from users’ perspective, and conclude that virtualization can
cause signi�cant unstable throughput and abnormal delay
variations. Li et. al [6] compare the performance and cost
of four major cloud providers (Amazon, Microsoft, Google
and Rackspace).

However, none of the previous works consider an
untrusted cloud that can interfere with the measure-
ment/monitoring process. A malicious cloud may intention-
ally modify, delay, drop, inject or preferentially treat packets

2013 IEEE Ninth World Congress on Services

978-0-7695-5024-4/13 $26.00 © 2013 IEEE

DOI 10.1109/SERVICES.2013.39

286

2013 IEEE Ninth World Congress on Services

978-0-7695-5024-4/13 $26.00 © 2013 IEEE

DOI 10.1109/SERVICES.2013.39

286

in order to disrupt the measurement. Goldburg et. al [7]
consider the presence of an adversary (located in the middle
of a path), but their threat model is different from ours where
the adversary (the cloud) is at the end of a path. In addition,
they focus on the networking SLAs (such as packet-loss rate
and delay). In this paper, we study a different SLA parameter
- the CPU speed of a VM.

III. BACKGROUND

A. System and Threat Model

There is a public cloud service provider that offers their
virtual machines to end-users over the Internet. A user
submits his/her computation-intensive tasks to the cloud,
such as video conversion tasks from video hosting websites.
The two parties sign a SLA that states the detail of the
resources and performances that the cloud should offer,
including memory size, CPU speed, storage size, and so on.
Then, the user uploads his/her data and starts the task. At
the end, the user gets the computation results and pays for
the bill.

A CSP is a pro�t-based company, and it has the incentive
to cheat on SLA. For example, a CSP may keep CPU
frequency in a low level, which allows the CSP to support
more users and make more pro�ts. In fact, an important
factor that a user cares about is the actual CPU speed to
transcode the videos. If a CSP cheats on CPU speed, it will
cause the user’s computation to run more time and the user
will have to pay more money.

We assume that the CSP has complete controls of its own
resources, including physical machines, hypervisors, VMs,
et al. If the CSP detects it is being tested, the CSP has the
ability to immediately reallocate the resources (e.g., CPU
speed) as speci�ed in the SLA. Hence, we want to make the
test stealthy.

B. Problem Statement

In order to stealthily verify the SLA of a CSP, the key
is to design a test that is relevant with (or the same as)
the computation task running in the cloud. In this paper,
we focus on one of the most important metrics - CPU,
which determines the running time of a task, especially for
computation-intensive applications. Nowadays, it is common
to use public cloud to perform massive computation, such
as matrix computation, video processing and bio-informatics
computation. As a case of study, this paper considers the
video processing applications. It is well-known that current
video hosting websites, such as YouTube and youku.com,
provide users with several different versions (e.g., standard-
de�nition, high-de�nition and full high-de�nition) of the
same video content. Users can choose a version based on
their bandwidth and preference. Video conversion requires
a lot of computations, which is suitable to run in a cloud.
Usually a user submits hundreds of original videos to the
cloud in batch, and lets the cloud process the videos. A

Figure 1. Stealthy Auditing on VM CPU

dishonest cloud may allocate less CPU speed to the user’s
VM, either for some or all of the video processing.

We want to design a test algorithm that is stealthy to the
cloud and can detect any cheating of the CSP on the VM
CPU speed.

IV. STEALTHY AUDITING ON VM CPU SPEED

To enable CPU auditing in VM under the aforementioned
models, the scheme should achieve the following security
and performance properties:

• Stealthy: To prevent a CSP from dynamically changing
CPU speed allocation, the auditing process should be
stealthy.

• Accuracy: The CPU load may �uctuate over time. The
test should measure the CPU for a suf�ciently long
duration.

• Ef�ciency: The test should have low communication
and computation overheads.

The process of stealthy test is illustrated in Fig. 1. Some
pre-selected testing videos are randomly mixed up with the
normal videos. Then the videos are uploaded to the target
VM for processing. A log records the processing time of
each video. The user knows the start time and the end time of
the video processing, and hence knows the total processing
time. The sum of the processing time of each video should
equal to the total processing time. If a dishonest CSP reduces
the log time of some video processing, it must increases
the log time of other video processing such that the total
processing time does not change.

A. Evaluation on FFmpeg

In this work, we choose the FFmpeg [8] as the tool
for video conversion. FFmpeg is a very fast audio/video
converter that can also grab audio/video from a live source.
It can convert between arbitrary sample rates and resize a
video on the �y with a high quality polyphase �lter.

We want to �nd out the impact of different parameters
on video conversion, and we conduct experiments on two
VMs VM-Low and VM-High under the Xen [9] environment,
running in two separate physical machines. The con�gura-
tions of the two physical CPUs are the same: Quad-Core
AMD Opteron Processor 2382 at 1891.020MHz. However,
we set the cap of the VM-Low CPU to 50 (which means the

287287

Table I
THE EVALUATION OF COMMON PARAMETERS

qscale framerate bitrate
Value VM-High (s) VM-Low (s) Value (fps) VM-High (s) VM-Low (s) Value (kb/s) VM-High (s) VM-Low (s)

6 69.601 156.648 24 66.231 148.844 2000 70.852 155.847
5 70.437 157.758 23 65.227 146.660 1800 69.581 155.618
4 70.927 158.290 22 64.122 146.300 1600 69.211 154.218
3 72.186 161.258 21 62.880 143.243 1400 68.462 153.124
2 73.829 165.428 20 61.839 139.902 1200 68.158 152.106

max. CPU utilization is 50%), while the cap of VM-High
is 0 (max. CPU utilization is 100%). Then, we measure the
effects of three parameters (namely qscale, framerate and
bitrate) on converting a video respectively. Table I shows the
conversion time of using FFmpeg under different parameters.
The results show that the conversion time closely depends on
the parameter settings. The parameters qscale and framerate
have more impacts on the conversion time than bitrate. From
Table I, we can get some useful rules: 1)R1: the lower the
qscale is, the longer the conversion time is; 2)R2: the higher
the framerate is, the longer the conversion time is; and 3)R3:
the larger the bitrate is, the longer the conversion time is.

B. The Stealthy CPU Testing Algorithm

The stealthy CPU testing algorithm is described below:

1) Suppose there are a total of M videos. The auditor
randomly selects r videos as the testing videos.

2) The auditor con�gures a VM in our local machine.
The VM has the same con�guration (such as CPU
speed and memory size) as the VM in the cloud.

3) The conversion of the r testing videos are run in the
local VM, and the auditor records the conversion time
as the baseline.

4) The auditor uploads the M videos into the cloud VM
for conversion.

5) The auditor requests the cloud to log the conversion
time of each video.

6) The auditor also records the start time (t1) and end
time (t2) of the conversion of all the M videos.

7) Denote the sum of each video conversion time (logged
by the cloud) as s. After all the video conversions
in the cloud are done, the auditor �rst checks if
s = t2 − t1. Then the auditor compares the logged
conversion time of each testing video with the base-
line. If the logged conversion time is much longer than
the baseline, then this indicates the cloud is cheating.

8) If the cloud does not provide enough CPU, then the
conversion time of a video would be longer than it
should be. To avoid being detected, the cloud may
change the logged conversion time to a smaller value.
For example, when the cloud is cheating (i.e., pro-
viding less CPU), the conversion time of a video is
90 seconds. To hide its cheating, the cloud records
70 seconds to the log. However, by doing so, the
sum of all the logged conversion time - s would be

smaller than t2 − t1. Hence, this kind of cheating can
be detected.

9) Another cheating that a cloud could do is to reduce
the logged time of some videos, and at the same time
increase the logged time of some other videos, such
that the sum s = t2 − t1. This cheating will have to
increase the logged conversion time of some videos. If
one of the videos is a testing video, then we can detect
the cheating (by comparing the logged conversion time
with the baseline).

10) A cloud may only cheat during part of the con-
versions (e.g., during the �rst hour), instead of the
entire conversion process. In addition to the above
main algorithm, the following approach is also used
to detect such cloud cheating: Among the total M
videos, there are videos of the same content to be
converted with different parameters, such as framerate
and qscale. The auditor places these videos at different
locations of the video batch. The conversion time of
these videos should follow the rules in Table I. After
all the conversions are done, the auditor compares the
logged conversion times of these videos and check if
they follow the rules. If not, then it indicates a cloud
cheating.

V. EXPERIMENTS

We use real experiments to evaluate the performance of
our stealthy CPU testing algorithm. We use two machines
with the same physical CPU: Quad-Core AMD Opteron Pro-
cessor 2382 at 1891.020MHz. Xen is used as the hypervisor.
We simulate the process that a user wants to convert 100
videos in a cloud, and the CSP intentionally cheats on CPU
speed by three different percentages (CPU cap 30%, 50%
and 70%). We also simulate the cheating at three different
parts of the video conversion process, that is, the cheating
happens for video indexes 1 to 33; 34 to 66; and 67 to 100;
respectively. Note if a cloud cheats during the entire video
conversion process, then it is easier to detect the cheating
than in the partial cheating case. We select 10 testing videos
and randomly mixed them with 90 other videos. In order to
also test the approach in step 10 of algorithm (subsection
IV.B), 5 of the testing videos are from the same video
content to be converted with different framerates, while
the other 5 videos are from the same video content to be
converted with different qscales. Other con�gurations of the

288288

Table II
CHEATING DURING THE FIRST 1/3 DURATION

Position Parameter
CPU Cap

30% 50% 70%
4 framerate=22 747.192 447.213 316.369
10 qscale=2 911.979 543.651 384.854
17 qscale=6 856.897 506.673 356.681
38 qscale=4 199.739 200.022 200.556
47 framerate=23 175.806 176.226 176.311
48 framerate=20 168.758 168.576 169.070
66 qscale=3 203.953 203.947 205.333
80 framerate=24 178.542 178.674 178.477
88 qscale=5 197.069 197.608 197.783
97 framerate=21 170.928 171.160 171.798

Table III
CHEATING DURING THE SECOND 1/3 DURATION

Position Parameter
CPU Cap

30% 50% 70%
4 framerate=22 172.648 173.440 173.159
10 qscale=2 210.656 210.958 210.860
17 qscale=6 194.952 195.961 195.212
38 qscale=4 873.653 515.261 363.590
47 framerate=23 758.009 453.018 320.639
48 framerate=20 725.665 431.945 305.670
66 qscale=3 887.431 524.622 372.145
80 framerate=24 177.922 178.522 178.122
88 qscale=5 196.821 197.716 197.232
97 framerate=21 170.207 171.940 170.504

Table IV
CHEATING DURING THE LAST 1/3 DURATION

Position Parameter CPU Cap
30% 50% 70%

4 framerate=22 173.633 174.085 173.716
10 qscale=2 211.234 210.608 210.546
17 qscale=6 195.715 196.026 195.342
38 qscale=4 200.182 200.111 199.275
47 framerate=23 176.185 176.134 176.150
48 framerate=20 168.866 169.047 168.421
66 qscale=3 204.394 203.956 203.809
80 framerate=24 772.088 456.599 325.124
88 qscale=5 857.710 513.485 360.064
97 framerate=21 739.306 437.646 312.514

virtual machines are the same. We log the video conversion
times.

The experimental results are given in Table II, III, and IV.
The results show that when cloud is cheating the conversion
time is much longer than the baseline (when there is no
CPU cheating). For example, the conversion time of video
4 is 747s, 447s, and 316s when the CPU cap is 30%, 50%
and 70% (i.e., Position 4 in Table II), respectively, which
are much larger than the conversion time (about 178s) of
the same video when no cheating (i.e., Position 80 in Table
II). In addition, according to the rule R2, the conversion
time of Position 4 in Table II should be smaller than that of
Position 47. However, the logged times in Table II do not
satisfy the rules, which indicates a cloud CPU cheating.

VI. CONCLUSION

In this paper, we presented a lightweight stealthy test
algorithm on VM CPU speed. The algorithm is designed

for video batch processing applications and may be applied
to other computations as well. By randomly selecting a few
testing tasks in the batch, our algorithm can detect SLA
violations of cloud on CPU speed. Note the testing tasks are
part of the original computation tasks, which need to be run
in the cloud anyway. Hence, the overhead of our algorithm
is very small. Our experimental results demonstrated that
the algorithm can effectively detect cloud SLA violations
on CPU speed.

ACKNOWLEDGMENT

This research was supported in part by the China Na-
tional Basic Research Program (973 Program) under grants
2011CB302605, the China National High Technology Re-
search and Development Program (863 Program) under grant
2011AA010705, the National Science Foundation of China
(NSF) under grants No. 61100188 and No. 61173144; and
by the US National Science Foundation under grants CNS-
0963578, CNS-1022552, and CNS-1065444.

REFERENCES

[1] Amazon EC2 Instance Types, [Online]. Available:
http://aws.amazon. com/ec2/instance-types

[2] I. Brandic, V. C. Emeakaroha, M. Maurer, S. Dustdar, S.
Acs, A. Kertes, and G. Kecskemeti, “LAYSI: A layered
approach for SLA-violation propagation in self-manageable
cloud infrastructures,” Proceedings of 34th Annual IEEE
Computer Software and Applications Conference Workshops,
pp. 366-370, 2010.

[3] J. Sommers, P. Barford, N. Duf�eld, and A. Ron, “Multi-
objective monitoring for SLA compliance,” IEEE/ACM Trans-
actions on Networking, vol. 18, issue. 2, IEEE Press: NY,
USA, pp. 652-665, 2010.

[4] R. Serral-Gracia, M. Yannuzzi, Y. Labit, P. Owezarski, and
X. Masip-Bruin, “An ef�cient and lightweight method for
Service Level Agreement assessment,” Computer Networks,
vol. 54, issue. 17, Elsevier: New York, NY, USA, pp. 3144-
3158, 2010.

[5] G. Wang and N. T. Eugene, “The impact of virtualization on
network performance of Amazon EC2 data center,” Proceed-
ings of the 29th IEEE Conference on Computer Communica-
tions, pp. 1163-1171, 2010.

[6] A. Li, X. Yang, S. Kandula, and M. Zang, “CloudCmp:
comparing public cloud providers,” Proceedings of the 10th
Internet Measurement Conference, ACM: New York, NY,
USA, pp. 1-14, 2010.

[7] S. Goldburg, D. Xiao, E. Tromer, B. Barak, and J. Rexford,
“Path-quality monitoring in the presence of adversaries,”
Proceedings of the 2008 ACM SIGMETRICS on Measurement
and Modeling of Computer Systems, ACM: New York, NY,
USA, pp. 193-204, 2008.

[8] FFmpeg, [Online]. Available: http://www.ffmpeg.org

[9] Xen Hypervisor, [Online]. Available: http://www.xen.org

289289

