SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2012; 5:689-708
Published online 23 August 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.364

RESEARCH ARTICLE

Self-protecting networking using dynamic p-cycle
construction within link capacity constraint
Weiyi Zhang’, Farah Kandah', Xiaojiang Du?* and Chonggang Wang?

! Department of Computer Science, North Dakota State University, Fargo, ND 58105, U.S.A.
2 Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.
3 NEC Laboratories America, Princeton, NJ 08540, U.S.A.

ABSTRACT

The p-cycle design problem has been extensively studied because it can provide both ring-like fast self-protection speed
and spare capacity efficiency of path protection scheme. However, p-cycle provisioning for dynamic traffic has not been
fully addressed. Most related works have not considered link capacity in the construction of p-cycles, which may cause pro-
blems in practice because the protection paths may not have enough backup bandwidth. In this paper, with the consider-
ation of link capacity, we present a sufficient and necessary condition that guarantees p-cycles for providing enough
protection bandwidth. Based on this condition, we propose an effective solution to provide connections for dynamic
requests with the property that each link used for a connection is protected by a p-cycle. Simulation results show that
our dynamic p-cycle provisioning solution outperforms the traditional path protection scheme. Copyright © 2011 John

Wiley & Sons, Ltd.

KEYWORDS

self-protecting networking; network protection and restoration; survivable path provisioning; p-cycle; link capacity

*Correspondence

Xiaojiang Du, Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.

E-mail: dux@temple.edu

1. INTRODUCTION

The method of preconfigured protection cycles, namely,
p-cycles, was proposed by Grover and Stamatelakis [1].
Intuitively, a p-cycle is a simple cycle in the network,
which can be used to protect both on-cycle links and strad-
dling links. A p-cycle can achieve ring-like fast protection
speed and mesh-like high efficiency of spare capacity. This
is because a p-cycle can provide protection not only for
on-cycle spans but also for straddling spans [1-5].

Most previous works studied the p-cycle design prob-
lem, which is how to construct a set of p-cycles for a given
traffic matrix so that the spare capacity in the p-cycles is
minimized. Integer linear programming (ILP) has been
widely used for solving the problem [6—10]. However,
ILP is very computationally intensive when the network
size is large. To reduce the computation complexity, many
works proposed heuristics to solve the problem [1,11-14].
The p-cycle concept has found extensive applications in
wavelength-division multiplexing (WDM) in recent works
[3.8,15-18]. It offers a promising approach for protection
and restoration in WDM networks because high capacity
efficiency and fast protection switching times can be
achieved [10,14,19-24].

Copyright © 2011 John Wiley & Sons, Ltd.

Although the p-cycle design problem has been
extensively studied, several issues have not been fully
solved:

* Most related works did not consider the bandwidth
issue in the construction of p-cycles for the dy-
namic traffic. Without the consideration of link
capacity, the constructed p-cycles may not be practi-
cal because links of the p-cycle may not have
enough bandwidth to provide protection. To deal with
such a problem, some related work reserves half
of the link capacity for each link on a p-cycle for
protection purpose [6]. However, it is not difficult to
see that link capacities are not used efficiently or
effectively in the scheme.

* The p-cycle concept is proposed to protect all
links that are either on or straddling the cycle.
However, a p-cycle is usually generated by a link
[and its protection path [17,25]. Although link / is
guaranteed to be protected by the p-cycle, other
links, which are either on or straddling the cycle,
may not be protected by this cycle because the
protection bandwidth for them was not considered
when the p-cycle was constructed. As a result, the

689

Self-protecting networking using dynamic p-cycle construction

p-cycle scheme reduces to the traditional link protec-
tion scheme and does not provide a good spare capac-
ity utility.

In this paper, we study the p-cycle provisioning problem,
with full consideration of the capacity of each link, for
dynamic traffics. We present an effective solution to set
up connections as well as to construct p-cycles for
protection. Our approach is applicable to WDM systems,
synchronous optical networking, and asynchronous
transfer mode for recovery from single link failure. More-
over, each p-cycle constructed in this paper is useful for
all the edges, which are either on the cycle or straddling
the cycle. Note that in this work, the terms edge and
link are interchangeable.

The rest of the paper is organized as follows: The
network model, as well as the sufficient and necessary
condition for constructing a p-cycle, is introduced in
Section 2. We then formulate the p-cycle provisioning
problem for dynamic traffics in this section. In Section 3,
a solution to p-cycle provisioning problem is proposed,
described, and analyzed. In Section 4, we present simula-
tion results comparing our solution with the traditional
dedicated path protection scheme. We conclude this paper
in Section 5.

2. NETWORK MODEL

We model the network by a undirected two-connected
graph G=(V,E), where V is a set of n vertices and E is a
set of m edges. We assume that the capacity of all
edges is the same, denoted by C. The p-cycles constructed
in this paper have a unique property; that is, each
cycle constructed protects all edges on or straddling the
cycle, not just some of the links on the cycle. Some
definitions we would use in the rest of the paper are
introduced here.

Definition 2.1. The working load of a link i, denoted by
w;, is the amount of bandwidth already used. The free
bandwidth of a link i, denoted by f, is the amount of
bandwidth that is available. As a result, w;+f; equals he ca-
pacity of link i. The free bandwidth of a path is the minimum
of the free bandwidths among all links on the path.

Definition 2.2. (feasible p-cycle) A feasible p-cycle p is a
simple cycle in G with the following properties:

(i) For each link /=(u,v), which is on p (called on-cycle
link), the working load of / is no greater than the
free bandwidth of the u—v path on p without using
[. In this case, link / is protected by the u—v path
on p without using /.

(ii) For each link /=(u,v), which is straddling p (/ is not
on p, but the two end nodes of / are on p), the work-
ing load of / is no greater than the summation of the

690

W. Zhang et al.

free bandwidths of the two disjoint u—v paths on p.
In this case, link / is protected by the two disjoint
u—v paths on p. O

Given a feasible p-cycle, we say it is a corresponding
cycle for all links, which are on or straddling it. Also, we
say such links are p-cycle protectable or are protected by
the p-cycle.

Definition 2.3. (redundant free bandwidth) Let p be a
feasible p-cycle and | be a link that is either on or
straddling p. The redundant free bandwidth of link | with
respect to the cycle p, denoted by f[,, is the maximum

amount by which w; can be increased while maintaining
p as a feasible p-cycle. In this paper, when the p-cycle p
is known, we use f|" to represent f;, for simplicity. O

We have used feasible p-cycle, which takes into
account the capacity consideration, to distinguish from
the commonly used p-cycle. In this paper, we are only
interested in feasible p-cycles and will drop the word
“feasible” in the rest of the paper without confusion.

We illustrate the give definitions using the network in
Figure 1, which includes 8 nodes and 15 links.

C, the capacity of each link in the graph, is 20. The
free bandwidth of each link is noted on the link. There
is a feasible p-cycle 2-3-4-5-6-2 in the graph, marked
by the thick red edges. We can see that each on-cycle
link can be protected by the path composed of all other
links on the cycle. For example, link (2,6), whose working
load is 8, can be protected by path 2-3-4-5-6, whose
free bandwidth is 10. Meanwhile, the cycle can provide
protection for two straddling links, (3,5) and (2,5). For
example, the working load of (2,5) is 18 and could be pro-
tected by path 2-6-5 and path 2-3-4-5. The two paths have
free bandwidths 12 and 10, respectively, and totally provide
at most 22 for protection.

In this p-cycle, the redundant free load of link
(5,6) is 8. If we use more than 8 of its free bandwidth to
accommodate future connections, (5,6)’s free bandwidth
will be reduced to less than 10. It shall not be able
to protect links (2,3) and (4,5) because both have
working load of 10. Meanwhile, (5,6)’s working load
will be more than 10 and cannot be protected by the path
5-4-3-2-6 whose free bandwidth is no more than 10.

Figure 1. An example graph and free bandwidths of edges.

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

W. Zhang et al.

Therefore, if we increase (5,6)’s working load by more
than 8, cycle 2-3-4-5-6-2 will not be a feasible p-cycle
any more.

2.1. Sufficient and necessary condition
for feasible p-cycle

For any on-cycle link /, all other links on the p-cycle com-
prise a restoration path for /. And the free bandwidth of this
restoration path must be no less than the working load of /.
Therefore, to construct a p-cycle with the consideration of
link capacity, the necessary condition is that for any two
links, 7 and j, on a feasible p-cycle,

f>w o and f>w
&fi=zC—fi and f;=C—f;
S fi+fi=C(x)

In addition, following this condition, it is able to guar-
antee that any straddling link can also be protected by its
corresponding cycle. For each straddling link / whose
working load is w;, a p-cycle provides at most two protec-
tion paths, p; and p,. Assume the links with the minimum
free bandwidth on p; and p, are k and e, respectively.
These two paths are able to provide f;+f, for protection.
Because k and e are both on the cycle, we have f; +
f.=C (¥). Therefore, p; and p, can provide protection for
[because w,<C<f; + f,.

Therefore, the sufficient and necessary condition for
constructing a feasible p-cycle is that for any two links on
the cycle, the summation of their free bandwidths is no less
than link capacity C. Besides this, we also observe several
interesting properties for p-cycles that are very important
for our p-cycle protection design scheme:

(i) The redundant free load of a straddling link / is the
same as its free bandwidth, that is, f; = f/".

(ii)) Each on-cycle link i always has its redundant free
load less than or equal to its free bandwidth, that
is, f/ <fi.

(iii) There is at most one link on a p-cycle whose free
bandwidth is less than C/2.

2.2. Problem statement

Given a network with existing connections as well as
corresponding p-cycles for the links, we consider a dy-
namic call-by-call system with random arrivals; that is,
the requests for connection come dynamically one by
one. For each new request, we know its source node s, des-
tination node d, and the requested demand, denoted as
demd. The objective is to find a path whose links are
p-cycle protectable. In other words, every link on the path
is on or straddling a corresponding p-cycle with the
consideration of two constraints:

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Self-protecting networking using dynamic p-cycle construction

(1) Each edge is only protected by at most one p-cycle,
which means that even an edge may appear in several
p-cycles, but it is protected by only one of them.

(2) When accommodating the new requests, we do not
modify or release the p-cycles for previous connections.

If we can find such a path, we accept this connection
request and set up a p-cycle for each link on the path.
Otherwise, we drop this connection request.

3. PROPOSED SOLUTION TO
P-CYCLE PROVISIONING

In this section, we present a solution to set up a path for
each coming new request as long as there exists a feasible
path in the current network setup

1: Suppose ¢ and 7 are the incident links of s and d which
have the largest free loads, respectively;
if (f; < demd) or (f; < demd) then
drop the request and return;
end if
Aux_Graph_Construction (G', G) ;
Find a shortest path P in G’ to satisfy the connection
request;
if (there is no such a path P) then
8: drop the request and return;
9: end if

A ol

~

Algorithm 1. Connection accommodation (G, s, d, demd)

In Algorithm , we firstly check the link i (and j), which
is incident with s (and d) and has the largest free bandwidth
among all incident edges. If either i or j does not have
enough free bandwidth for the demand, we drop the con-
nection request because there is not a path between s and
d with sufficient bandwidth. Otherwise, we start to con-
struct an auxiliary graph G’ composed of all p-cycle pro-
tectable edges and then find a shortest path in it. This
path provides a connection for the coming request.

1: for (each link ¢ in G) do

2 if (¢ is in some existing p-cycle) then

3 if (f] > demd) then

4: add link 7 into G’; assign cost € to i;
5: end if

6 else

7 if (find_cycle_straddling_link(i, G)) then
8 add link 7 into G’; assign cost 1 to i;
9: else
10: if (find_cycle_with_link(i, G)) then
11: add link 7 into G'; assign cost m to i;
12: end if
13: end if
14: end if
15: end for

Algorithm 2. Auxiliary graph construction (G, G)

691

Self-protecting networking using dynamic p-cycle construction

Algorithm constructs an auxiliary graph G’ composed
of all p-cycle protectable links. If a link i is used for
existing connection(s) and has its redundant free
bandwidth with respect to its corresponding p-cycle no
less than demd, then we add link i into G’ with a small
edge cost ¢ (lines 2-5). Note that with the very small
value of €, we prefer to reuse a link for the new connection
request without constructing a new p-cycle for it. If link i
has not been used, we need to find out whether there is
a p-cycle that is able to protect 7 if i is used for the request.
If there exists such a cycle, we add link 7 into G” (lines
6-10). If a link i is protected by a p-cycle, it must be either
on the p-cycle or straddling it. Algorithms and check
these two cases, respectively.

if (f; < demd) then

return false;
end if
copy all nodes in G into a new graph G”/;
for (each link [in G) do

if (fi > C/2) then

add [into G”;

end if
end for
remove 7 if it is in G/;
if (3 a biconnected component including end nodes of
iin G”") then
12: return frue;
13: end if
14: for (each link I(# ¢) with f; < C/2in G) do
15: remove all links in G”';
16: add!into G";
17: for (each link j(# 7)) do

TV RRIDNR RN

—_

18: if (f; > C — fi) then

19: add j into G

20: end if

21: end for

22: if (4 a biconnected component including end nodes
of
iin G"') then

23: return frue;

24: endif

25: end for

26: return false;

Algorithm 3. Find cycle straddling link(i, G)

As we mentioned, the redundant free load of a
straddling link is the same as its free bandwidth, which
means that all free bandwidths of the link are able to
be used for accommodating future requests. By contrast,
on-cycle links have to reserve some free bandwidth for
protecting other links on the p-cycle. Therefore, it is
preferable to use straddling links over on-cycle links for a
connection. Algorithm seeks a p-cycle with straddling link
i. If so, we add it into G” with cost 1. Otherwise, we seek a
p-cycle with i on it in Algorithm and assign cost m,
whose value is the number of the edges in the network,
to link i.

692

W. Zhang et al.

3.1. Link i straddles some p-cycle

This case is considered in Algorithm 3. For link i, if f;<
demd, it is not necessary to check it. Otherwise, there are
two cases to be considered. In each case, we construct an
auxiliary graph G” and check whether a p-cycle straddled
by i exists in G”.

3.1.1. All links on the p-cycle have free
bandwidths 2C/2.

This case is processed in lines 5-13 in Algorithm;
the graph G” is simply composed of all links (except i)
whose free bandwidths are no less than C/2. Then we
check biconnected components of G” in linear time (lines
11-13) [26]. The found cycle must be a p-cycle because
fi + f.=C for any two links, / and e, on it. It takes O(m+n)
time to examine link 7 in this case.

3.1.2. All but one link on the p-cycle have free
bandwidths 2C/2.

From line 14 to line 25, we check each link / with
Jfi < C/2to find if there is a p-cycle including link / as well
as being straddled by i. For each link / with f; < C/2, we
construct an auxiliary graph G”. Each link in G” other than [
must have its free bandwidth >C —f; (link i cannot
be included in G”). Then in G”, we check if there is a
p-cycle being straddled by link 7 in linear time (line 22).
The total time complexity for checking link i in this case
is O(m(m+n)) because we need to repeat the mentioned
operations for each link / whose f; < C/2.

3.2. Link iis on some p-cycle

If link i does not straddle any p-cycle, it could be on a
p-cycle. In Algorithm 4, we skip i if it does not have
enough free bandwidth (lines 1-3). Otherwise, to find a
p-cycle with link i, we set up an auxiliary graph G”
containing i. We still have two cases to be considered:
(i) f; < C/2and (ii) f;>C/2. Algorithm 4 checks both cases
one by one.

3.2.1. f;isless than C/2.
In lines 6-15, given f; < C/2, for each link j (i) on the
same p-cycle with i, it must have

s i>C—fi>C/2,
e fl=demd & f; + f; — C=demd < f;i>C + demd — f;

If link i is on some p-cycle, this p-cycle is composed of
i and other links whose free bandwidths are no less
than C +demd —f; (> C/2). We construct such a
graph G” and use depth first search (DFS) [26] starting
from an end node of link i to find a cycle including i
(line 12).

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

W. Zhang et al.

Both constructing G” and finding a cycle with i in G”
by DFS only need linear time. Thus, for this case, only O
(m+n) time is needed to check link i.

3.2.2. f;is no less than C/2.
If a link { with f;>C/2 is on a p-cycle, this p-cycle must
be in one of following two forms:

(1) All links have free bandwidths >C/2.
(2) One link [of this p-cycle has free bandwidth < C/2.

Form 1 is considered in lines 17-24 in Algorithm 4;
the auxiliary graph G” is composed of i and all other
links whose free bandwidths are no less than C/2 and
C + demd — f;. In such a graph G”, we can decide whether
there is a p-cycle including i by using DFS [26] in
linear time.

From line 25 to line 39, for form 2, we check every
possible graph G” that comprises link i, a link e with
C +demd — fi<f, < C/2, and other links with free
bandwidths >C — f,(> C/2).

If there exists such a link e with C + demd — f;<f, < C/2,
in linear time, we can construct G” and try to find a
p-cycle with link i and e on it. In the worst case, we will
check O(m) such as link e to decide whether link i is
p-cycle protectable. The total time complexity for this case
is O(m(m+n)). Overall, if link 7 is on some p-cycle, in
O(m(m+n)) time, we can find such a p-cycle.

3.3. Correctness of the approach

In this section, we show the correctness of our solution by
demonstrating that all accommodated connections can sur-
vive any single link failure.

Theorem 3.1. The connections that are accommodated by
Algorithm are able to survive any single link failure. O

Proof. Initially, the network is empty; obviously, it is able
to survive any single link failure. Suppose that it is still true
for the first H accommodated requests.

Suppose that we have accommodated the (H+ 1)th con-
nection by path P. Now we need to prove that network can
still survive any single link failure. Assume that the broken
link is e and its corresponding p-cycle is g. First, we focus
on the case that e is an on-cycle link. Two types of single
link failure cases could happen:

Case 1: Link e is NOT on the chosen path P. The work-
ing load on link e is still C — f, because e is not
used for the new request. For each link /, which
is on the same p-cycle with e,

(1) If [is not on the chosen path P, its free band-
width is still f}. f, +fi=C because they both
are on a same p-cycle. f;=>C —f, indicates
that such a link / is able to protect the working
load of e even after the new path P is set up.

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Self-protecting networking using dynamic p-cycle construction

. if (f; < demd) then
return false;
end if
. copy all nodes in G into a new graph G”';
add link 7 into G”';
: if (f; < C/2) then
for (each link [in) do
if (f; > C + demd — f;) then
add [into G”;
end if
end for
if (3 a cycle including 7 in G”') then
return frue;
end if
: end if
. remove all links in G’’; add 7 into G”';
. for (each link [in G) do
if (f; > C + demd — f;) AND (f; > C/2) then
add [into G"';
end if
: end for
. if (3 a cycle including i in G’') then
return true;
: end if
: for (each link e in G) do
remove all links in G”;
27: addiinto G”';
28: if (fo > C + demd — f;) AND (f. < C/2) then
29: add e into G”;

A S ol s

[S T NS T S T S i N i N T N R e e e e e e
FUEON TS0 ITR RS0

30: for (each link / in GG) do

31: if (fi > C — fc) then

32: add [into G”';

33: end if

34: end for

35: if (3 a cycle including 7 in G”') then
36: return frue;

37: end if

38: end if

39: end for

40: return false;

Algorithm 4. Find cycle with link(i, G)

(i1) If /is on path P, then its free bandwidth is reduced
to (f;—demd) after accommodating the new request.
Because link / is on g with e, we have f; + f,=C +
demd, which means f; — demd>C — f,. So such link
[on path P has enough free bandwidth to protect
link e.

Thus, link e can be protected by all other links on g.
Case 2: Link e is ALSO on the chosen path P.

For the links that are not on the cycle ¢, we do not need
to consider them because they are not used to protect e. So
we only focus on the links that are on the cycle g. We use
dependent links of e to represent such links in the proof.
We use j to represent any dependent link of e, which is
on P, and [to represent a dependent link, which is not on

693

Self-protecting networking using dynamic p-cycle construction

P. Link e has its original free bandwidth f, reduced to
f.—demd after being used for the request. Similarly, link
J also has its free bandwidth f; decreased to f;—demd.
For link /, which is on the p-cycle but not on P, its free
bandwidth is still f,. Because of f; + f,=>C + demd and
f.<C, we have f;=>demd.

Because P contains several links that are on the same
p-cycle g, with e, let us assume path P enters ¢ at node u,
goes through all nodes on both P and ¢, and leaves the
cycle from node v. Then path P is divided into three parts:
s to u, u to v, and v to d. When link e fails, only the part
from u to v represented as {u...v} is affected because
link e is in this part. On the p-cycle g, there are two paths
from u to v. One of them, say p,, includes link e. And
the other path, say p;, does not. After e fails, we can use
pr to replace {u...v}. Then the backup path P’, which is
composed of s to u, p;, and v to d, is used for the
recovery of path P. For recovery of the link e, we need to
show two things:

(1) p; is able to accommodate the demand of P.

(2) After the recovery, the links on ¢ still have enough
free bandwidths to recover the original working
load on e.

For each link on p;, if it were on {u...v}, we say
it is link j. After the recovery, its free bandwidth is
still f;—demd, which is not less than C —f, because
Je +f;=C + demd. This implies that it can accommodate
path P as well as provide protection for the original
working load, C — f,, on link e. On the other hand, if the
link was not on {u...v}, we say it is link /. As shown
before, we have f;=>demd, which means that / can accom-
modate path P. Moreover, we know f, — demd>C — f;
because e and [both are on ¢. Therefore, we have
fi=C — f, + demd and then know that / can also provide
protection to the original working load on link e.

If e is a straddling link, following the same analysis, we
can also prove the theorem. So all H+1 accommodated
connections can survive single link failure. Therefore, we
can conclude that all connections provided by our solution
can survive any single link failure. m

We use Figure 2 to illustrate our proof. For simplicity,
the figure only shows part of the whole network. Each
curved dashed link represents a path between two end nodes,
which may go through several nodes and links in the network
but is not drawn in the figure. The link capacity of the

Figure 2. lllustration of the proof of Theorem 3.1.

694

W. Zhang et al.

network is also 20. Each edge’s current free bandwidth is
noted on the link. The demand of the new request is 5.

In Figure 2, each link on the p-cycle -2-3-4-5-1 has
enough redundant free bandwidth for the request with de-
mand 5.

Suppose that the found path P is s---1-2---4-3---d,
marked by the thick red edges. Two links on P, (1,2) and
(4,3), are dependent links. When we set up this connection,
the free bandwidth of link (1,2) will reduce to 3, and the
free bandwidth of link (4,3) will decrease to 12.

Let us see an example for case 1. In Figure 2, if link
(1,5), which is not on P, failed, its working load 3 needs
to be recovered. Links (2,3) and (4,5), which are not on
path P, obviously can be used for the protection. Links
on P, (1,2) and (3,4), whose free bandwidth values are
at least 3, can also protect the link (1,5) even after both
have been used for P.

Now let us see an example for case 2. If link (4,3) is
broken, this link failure is recovered by the following
steps: Nodes 1 and 3 represent the nodes u and v in our
proof, respectively. Path P is divided into s---1, 1-2---4-3,
and 3---d. Because link (3,4) is broken, segment /-2---4-3
fails. We replace it with another segment /-2-3 for the re-
covery of path P (with demand 5). Obviously, links (1,2)
and (2,3) on /-2-3 both can provide the protection. Be-
sides the demand 5 of path P, the original working load
3 on (3,4) also needs protection. (1,2) and (2,3) have free
bandwidth 3 and 15, respectively, and they both can pro-
tect this working load. Other links on the cycle are not used
on path P and can protect (3,4)’s original working load.
Therefore, (3,4) can still be protected by the p-cycle,
1-2-3-4-5-1. It is worth noting that the protection approach
in the proof extends the p-cycle concept to path segment
protection, which is also presented in Ref. [27].

4. NUMERICAL EVALUATION

In this section, we implemented our solution (denoted by
PC in the figures) and compared it with the traditional path
protection scheme [28-30] (denoted by PP in the figures)
because, to our best knowledge, this work is the first one
to study dynamic p-cycle setup with link capacity consid-
eration. It is worth noting that the goal of path protection
is to protect a path from failure at any point along its routed
path. Under path protection, the path of the protection path
is completely disjoint from the path of the working path.
The advantage of path protection is that the backup path
protects the working path from all possible link and node
failures along the path. Because the path selection is end-
to-end, path protection may be more efficient in terms of
resource usage than link protection [28,29]. Because we
do not allow backup bandwidth sharing in our solution,
dedicated path protection [30] was implemented. All tests
were performed on a 2-4-GHz Linux PC with 2GB of
memory. As in Ref. [31], we used random network topol-
ogies generated in Ref. [32] to study the suitability and
computational time complexity of the algorithms. The edge

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

W. Zhang et al.

capacity is 20. A connection request is generated at each
time unit with random source node and destination node
and has a life time that is set to a random integer uniformly
distributed in [1,100]. The request demands are randomly
distributed between [1,20] per request. Our numerical
results are presented in Figures 3-20, where each figure
shows the average of 10 runs.

To measure the performance of our solution and com-
pare it with the traditional path protection scheme, we pro-
pose our first scenario, which consists of a fixed number of
nodes with a different number of edges. Figure 3 presents
the satisfied ratio of the PC and the PP schemes by deploy-
ing 200 nodes with a different number of edges, ranging
from 1600 to 2000 edges in the same playing field. We
tested this network configuration with 2000, 3000, and
4000 requests. These results are shown in Figure 3(a, b,
and c, respectively).

Our PC scheme, in all the three cases mentioned before,
performed better than the traditional path protection
scheme. For example, with 200 nodes with 1600 edges,
by deploying our PC scheme, we can satisfy 1412 requests
out of 2000 requests compared with 776 satisfied requests
out of 2000 requests by the use of PP scheme. This can be
seen in Figure 3(a).

The satisfied ratio of 4000 requests is shown in Figure 3
(c). Still, it is obvious that our PC scheme can satisfy more
requests compared with the PP scheme. For example, with
2000 edges, we can satisfy 32% more requests by deploy-
ing our PC scheme.

By increasing the number of edges in the network, we
increase the possibility that the requests can be handled
on different paths. For example, for the same number of
nodes (200 nodes) with 1700 edges, by the use of our PC
scheme, we can satisfy 60% compared with 68% when in-
creasing the number of edges to 2000 edges. This can be
seen in Figure 3(b), where it shows the satisfied ratio of
3000 requests.

There are two main reasons for better performance of
p-cycle solution. First, in the p-cycle scheme, one p-cycle
can potentially protect multiple connections. Second,
p-cycle scheme always prefers to use straddling links.
Straddling links do not need to reserve any spare band-
width on the existing p-cycles, whereas each backup path
has to reserve spare bandwidth in path protection scheme.
Moreover, each straddling link can be protected by at most
two paths, but path protection, by contrast, generally
allows only one backup path for each working path. These
properties bring more flexibilities to the p-cycle protection,
save bandwidths for future request, and consequently im-
prove the connection satisfaction ratio.

To evaluate the performance of our PC and the PC
scheme with different numbers of nodes, we studied their
performance with 300, 400, and 500 nodes in Figures 4,5,
and 6, respectively.

Figure 4 presents the performance evaluation of both
tested schemes with their different numbers of requests.
Figure 4(a) shows the satisfied ratio of the PC and the PP
schemes with 300 nodes, with an edge range from 1600

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Self-protecting networking using dynamic p-cycle construction

80
Il rC
Crep
__ 70} 1
&2
L
T 60|]
o
°
2
@
= 50 J
©
n
40 1
1600 1700 1800 1900 2000
Number of edges
(@) 200 nodes - 2000 request
Il rC
PP
60 - N . 4
S
2 5
= L - ! j
o
o
2
E 40 + | [4
©
n
30 1
1600 1700 1800 1900 2000
Number of edges
(b) 200 nodes - 3000 request
Il rC
crep
50 1
N3
]
T 40 f 1
o«
°
2
230} :
©
(7]
20 1

1600

1700 1800 1900
Number of edges

(c) 200 nodes - 4000 request

2000

Figure 3. Performance comparisons between p-cycle protection
and path protection—200 nodes without timeout.

to 2000 edges. In this scenario, we allow 2000 requests
to come at random. The results show that by using our
PC, we can satisty more number of requests compared with
that of the PP scheme. For example, in case of 2000 edges,
we can satisfy 604 more requests when we use our PC scheme.

695

Self-protecting networking using dynamic p-cycle construction

70 13 e

2]
o

Satisfied Ratio (%)
8 3

30

1600 1700 1800 1900 2000
Number of edges
(a) 300 nodes - 2000 request

60

50 -

40 -

30

Satisfied Ratio (%)

20

1600 1700 1800 1900 2000
Number of edges

(b) 300 nodes - 3000 request

Satisfied Ratio (%)

1600 1700 1800 1900 2000
Number of edges

(c) 300 nodes - 4000 request

Figure 4. Performance comparisons between p-cycle protec-
tion and path protection—300 nodes without timeout.

It can be seen from the results that our PC scheme out-
performs the PP scheme in satisfying more number of
requests, where in Figure 4(b), we try to satisfy 3000
requests, whereas in Figure 4(c), we try to satisfy 4000
requests. It can be seen in Figure 4 that by increasing the
number of edges, we can satisfy more number of requests.
For example, with 1600 edges, we can satisfy 1667

696

W. Zhang et al.

requests out of 4000 requests by the use of our PC scheme,
but when we increase the number of edges to 2000 edges,
we can satisfy 1984 requests.

We continue our performance testing through increas-
ing the number of nodes to 400 nodes. These results can
be seen in Figure 5. In here, we study the performance of
both tested scheme with 400 nodes with the number of
edges ranging from 1600 to 2000 edges to satisty 2000,
3000, and 4000 requests. The results lead us to the same
observations from the previous scenarios, where our PC
scheme outperforms the PC scheme in all cases, and also,
by increasing the number of edges, we can satisfy more
number of requests. The results in Figure 5(a, b, and c)
show the satisfied ratio to satisfy 2000, 3000, and 4000
requests, respectively.

Increasing the number of nodes in a network will pro-
vide more connectivity, through being able to have more
connections between multiple node, and that would in-
crease the network ability to handle more user’s requests.
But having the number of edges fixed, this will distribute
the edges of more number of nodes, and that will degrade
the number of satisfied requests because of the decrease
of the number of paths from source to destinations. For ex-
ample, using PC scheme with 400 nodes and 1600 edges,
we can satisfy 8-55% less requests compared with having
300 nodes with the same number of edges. This can be
seen in Figures 3(a) and 5(a).

The results of increasing the number of nodes to 500
nodes and the measure of the satisfied ratio to satisfy
2000, 3000, and 4000 requests can be seen in Figure 6(a,
b, and c). It is obvious that, fixing the number of nodes
while increasing the number of edges, our PC scheme out-
performs the traditional PP scheme. For example, using
our PP scheme with the availability of 1800 edges with
500 nodes, we can satisfy 48-17% of the 3000 coming
requests, whereas by the use of the PP scheme, we can sat-
isty 20-53% of the 3000 coming requests.

Satisfied ratio can be affected by increasing the number
of nodes. To study the effect on the performance of our PC
scheme and the PP scheme in satisfying coming requests,
we deployed different numbers of nodes ranging from
100 to 500 nodes. Each network topology has a number
of edges that equals three times the number of nodes.
These results can be seen in Figure 7. Note that the letter
n in the following figures indicated the number of nodes.

We tested this scenario with three different numbers of
coming requests (2000, 3000, and 4000). This can be seen
in Figure 7(a, b, and c, respectively). For the case of 2000
requests shown in Figure 7(a), we can see that increasing
the density of the network will lead us to increase the sat-
isfied ratio for both our PC and the PP schemes. For exam-
ple, with 400 nodes and 1200 edges, we can satisty 13-7%
more requests compared with that with 200 nodes and 600
edges. It is still obvious that our PC scheme outperforms
the PP scheme in satisfying more number of requests.

Increasing the number of nodes and the number of
edges will allow the network to handle more number of
user’s requests. For example, with 3000 requests in 200

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

W. Zhang et al.

B a 2]
o o o
i i i

Satisfied Ratio (%)

(2]
o
H

1600 1700 1800 1900 2000
Number of edges

(@) 400 nodes - 2000 request

(2] B a
o o o
i i

Satisfied Ratio (%)

[
o
H

1600 1700 1800 1900 2000
Number of edges

(b) 400 nodes - 3000 request

T T T T

PC
PP

[B
o o
i i

Satisfied Ratio (%)
N
o

1600 1700 1800 1900 2000
Number of edges

(c) 400 nodes - 4000 request

Figure 5. Performance comparisons between p-cycle protec-
tion and path protection—400 nodes without timeout.

nodes and 600 edges, we can satisfy 834 requests out of the
3000 coming requests with the use of our PC scheme,
whereas by the use of the traditional PP, we can satisfy
270 requests out of the 3000 requests. By making the net-
work denser, by increasing the number of nodes to 500
nodes, for example, we can satisfy 210 more number of

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Self-protecting networking using dynamic p-cycle construction

60

a
o
i

Satisfied Ratio (%)
W B
o o

20 - 1

1600 1700 1800 1900 2000
Number of edges

(a) 500 nodes - 2000 request

S
o
i

Satisfied Ratio (%)
W
o

N
o
i

1600 1700 1800 1900 2000
Number of edges

(b) 500 nodes - 3000 request

40 PC T T T. T =
PP
L0}]
]
2
©
oc
2
= 20| 1
2
2
@©
(/2]
10}]

1600 1700 1800 1900 2000
Number of edges

(c) 500 nodes - 4000 request

Figure 6. Performance comparisons between p-cycle protec-
tion and path protection—500 nodes without timeout.

requests by deploying our PC scheme. These results can
be seen in Figure 7(b).

Figure 7(c) shows the satisfied ratio of both schemes for
handling 4000 coming requests, with different numbers of
nodes ranging from 100 to 500 nodes, whereas the number
of edges equals to three times the number of nodes. It can

697

Self-protecting networking using dynamic p-cycle construction

=0 PC

(] B
o o

N
o

Satisfied Ratio (%)

100 200 300 400 500
Number of nodes
(a) 2000 requests, edges = 3n

=0 PC et
== PP Lo’
30| el 1
L ’n"‘
< L.
o R
5 .
o 20 '..']
2
7 o
s 9 3
? 10t 1
100 200 300 400 500

Number of nodes
(b) 3000 requests, edges = 3n

== PP "¢‘
O"
Eaof Lt |
° ‘,"
- .
© Lo
o R4
© o
2 .
*
5 10'? 1
(7]
100 200 300 400 500

Number of nodes
(c) 4000 requests, edges = 3n

Figure 7. Performance comparisons, edges=3n—no timeout.

be seen that our PC scheme can satisfy more number of
requests compared with the traditional PP scheme.

We study the effect when increasing the number of
edges to be four or five times the number of nodes on
how our PC scheme and the traditional PP scheme can
handle the coming requests. The results can be seen in
Figures 8 and 9, respectively.

In Figure 8, we let the number of edges to be four times
the number of nodes, and we tested how both schemes can

698

W. Zhang et al.

perform in satisfying 2000, 3000, and 4000 requests,
which can be seen Figure 8(a, b, and c, respectively).
The results show that our PC scheme still outperforms
the traditional PC scheme in satisfying more number of
coming requests. For example, in Figure 8(b), with 300
nodes, we satisfied 60-47% of the 3000 coming requests
with our PC scheme compared with 27-9% when we use
the traditional PP scheme.

Increasing the number of edges to be five times the
number of node will provide us with better performance
where in Figure 9(a), for example, with 300 nodes, we
can satisfy 12-35% more requests from the 2000 coming
requests compared with that when we had less number of
edges (four times the number of nodes). It is still noticeable
that our PC scheme out performs the PP scheme, where in
the case of 400 nodes with 4000 coming requests, we can
satisfy 1562 requests with the use of our scheme, where
we can satisfy 581 requests by using the traditional path
protection scheme. This can be seen in Figure 9(c).

We study the effect of changing the number of edges in
the network to be equal to n In(n) in Figure 10, where n
indicates the number of nodes in the network. Dashed lines
show the satisfied ratio of both tested schemes with 2000
coming requests by having a number of nodes ranging
from 100 to 500 nodes, and the asterisk marker indicates
the PC, whereas the circle marker indicates the PP scheme.
It can be seen that by increasing the number of nodes, we
increase the number of edges, and that leads to increase
the number of satisfied requests because of increased
number of available paths. The results show that our PC
scheme still out performs the traditional PP scheme.

The same observations can be seen when we allow
3000 requests to come to the network and measure how
the schemes will perform by satisfying these coming
requests; these results is shown by the solid lines in Fig-
ure 10. It can be seen that our scheme outperforms the tra-
ditional PP scheme. For example, in a 400-node network,
we can satisty 1861 requests with our PC scheme; on the
other hand, we can satisty 945 requests with the PP
scheme. The dotted lines show the case with 4000 requests
where it can be seen that our PC scheme can satisfy more
requests compared with the traditional PP scheme, where
with a 300-node network, we can satisfy 26-65% from
the 4000 coming requests by the use of our PC scheme
than the use of PP scheme.

To make this study more flexible, we studied the case
where all the coming requests have a life time; in other
words, each request, after being satisfied, will accommo-
date the path until it is timed out. The life time of the re-
quest in the following discussion will be denoted as
request timeout.

In this study, a connection request is generated at each
time unit with random source node and destination node,
and it has a life time that is set to a random integer uni-
formly distributed in [1,100]. The request demands are uni-
form but are randomly distributed in [1,20].

First, we will discuss the effect of having a fixed num-
ber of nodes while changing the number of edge and see

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

W. Zhang et al. Self-protecting networking using dynamic p-cycle construction

60

S a

o o
o
.
.

.

.

@
o
-
.
.
@

Satisfied Ratio (%)

N
o

100 200 300 400 500
Number of nodes

(a) 2000 requests, edges = 4n,

PP .”
"’

40 T L E
s R
g
o '¢'
= 30 »*
© J
o .®
o R
o .
&= .
2 20 |, b
‘(-U, [4
(7]

10

100 200 300 400 500
Number of nodes
(b) 3000 requests, edges = 4n
40 : . : —
D‘,“
:\O\ 30 ".‘ﬂﬂ
2
o ’ﬂ
i R4
*

D20
S *
2 o
= ¢ g
(7]

10

100 200 300 400 500

Number of nodes
(c) 4000 requests, edges = 4n.

Figure 8. Performance comparisons, edges=4n—no timeout.

how the PC and PP schemes perform through satisfying the
coming requests.

Our first case is shown in Figure 11, where we allow the
network to have 200 nodes and allow the number of
edges to range from 1600 to 2000 edges. Figure 11(a)
shows the satisfied ratio of both schemes for satisfying
2000 coming requests. The results show that by providing
the timeout concept for the coming requests, it is still

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

a

o
T

.
2y

B
o
@
.
S

Satisfied Ratio (%)
w
o

N
o
T

100 200 300 400 500
Number of nodes

(a) 2000 requests, edges = 5n

o
o
T

.
.
.

(2]
o
T

S
»
<

Satisfied Ratio (%)

N
o
T

-
o
T

200 300 400 500
Number of nodes

(b) 3000 requests, edges = 5n

-
(=3
o

o
40} Lenl
Q et
2
S a0f o)
*
3 |
= .
[/2] .
5 20g-
n
10}
100 200 300 400 500

Number of nodes
(C) 4000 requests, edges = 5n

Figure 9. Performance comparisons, edges=>5n—no timeout.

obvious that our PC scheme outperforms the traditional
PP scheme.

Increasing the number of requests allows to satisfy
more number of requests because of the possibility that
the source and the destination might have more paths
between them. Figure 11(b and c¢) shows the same observa-
tions as before, but when we allow the network to handle
3000 and 4000 requests, respectively.

699

Self-protecting networking using dynamic p-cycle construction

80 [T PC2000 | i
-G PP 2000 JPeL 4
70 || =% PC 3000 semt
-©- PP 3000 K.
Q % PC 4000 L*
& 60t o ppaoo ¢
]
= 50
1
B 40
&=
k]
= 30
(/2]

1 0 200 300 400 500

Number of nodes

Figure 10. Performance comparisons, edges=n In(n)— no
timeout.

It can be seen that our PC scheme performs better than
the PP scheme in all the cases, through providing a higher
satisfied ratio. For example, in Figure 11(b) with 1800
edges, we can satisfy 41-54% more requests when we ap-
ply our PC scheme compared with that of the PP scheme.

In Figure 12, we measure the satisfied ratio that can be
provided with both tested schemes in a 300-node network
with the number of edges ranging from 1600 to 2000 edges.
By allowing each request to have a life time, we can satisfy
more number of requests. After the request is timed out, it will
release the path, and its previous workload will be added back
to the path free bandwidth, and that will allow the network to
handle more number of requests.

The same observations can be seen in Figure 12(a); hav-
ing 2000 requests, we can satisfy more requests by apply-
ing our PC scheme compared with that when we apply the
traditional PP scheme. For example, with 1900 edges, we
can satisfy 83-4% out of the 2000 coming requests with
our scheme, whereas with the PP scheme, we can satisfy
53-9% out of the 2000 coming requests.

In Figure 12(b), we show the satisfied ratio when we ap-
ply our PC scheme and compared it with the traditional PP
scheme with 3000 coming requests. The results show that
by applying our PC scheme, we can satisfy more requests
than that when we apply the traditional path protection
scheme. Also, in Figure 12(c), we present the performance
of both tested schemes with 4000 randomly coming
requests with the timeout concept. It is obvious that our
scheme still performs better than the traditional path pro-
tection scheme.

In our study, we realize that by applying our scheme in
a larger network, we still can accommodate more number
of requests compared with that when we apply the tradi-
tional path protection scheme. The results for 400 and
500 nodes can be seen in Figures 13 and 14, respectively.

In Figure 13(a), we can see that with our PC scheme and
1800 edges, we can satisty 35-2% more requests out of the
2000 coming requests compared with that when we use the
PP scheme. Also, it can be seen that increasing the number
of edges allow the network to handle more number of requests;

700

W. Zhang et al.

70 1

60 f v]

Satisfied Ratio (%)

40| 1

1600 1700 1800 1900 2000
Number of edges

(a) 200 nodes - 2000 request

On
E

70

60

50

40

Satisfied Ratio (%)

30

20
1600 1700 1800 1900 2000

Number of edges
(b) 200 nodes - 3000 request

PP

60 [|
9
< 50]
2
:
©
o
- 40 1
2
:
2
:
© ! 1
3 30

20 1

1600 1700 1800 1900 2000
Number of edges

(c) 200 nodes - 4000 request

Figure 11. Performance comparisons between p-cycle protec-
tion and path protection—200 nodes with timeout.

for example, in Figure 14(b), with 1700 edges, we can sat-
isty 47-97% of the 3000 requests with our PC scheme,
whereas by increasing the number of edges to 300 edges
more, we can increase the satisfied ratio by 8-3%.
Changing the density (the number of nodes in one
square unit) can affect the satisfied ratio in both the PC

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

W. Zhang et al.

80 T T T T]

Satisfied Ratio (%)
a1 [<2] ~
o o o

B
o
L

(2]
o

1600 1700 1800 1900 2000
Number of edges

(a) 300 nodes - 2000 request

B a [=2]
o o o
i i i

Satisfied Ratio (%)

(2]
o
i

1600 1700 1800 1900 2000
Number of edges

(b) 300 nodes - 3000 request

50 | 1

Fy
o
i

Satisfied Ratio (%)
[
o

20 1

1600 1700 1800 1900 2000
Number of edges

(c) 300 nodes - 4000 request

Figure 12. Performance comparisons between p-cycle protec-
tion and path protection—300 nodes with timeout.

and PP schemes. We studied this effect with different
numbers of networks where the number of nodes ranges
from 100 to 500 nodes, whereas allowing the coming
requests to have a life time.

The results in Figure 15 show the satisfied ratio of both
schemes in different networks with different numbers of

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Self-protecting networking using dynamic p-cycle construction

Satisfied Ratio (%)
8 3

W
o
H

N
o

1600 1700 1800 1900 2000
Number of edges

(a) 400 nodes - 2000 request

T T T T

Satisfied Ratio (%)
w S a
o o o

N
o
H

-
o

1600 1700 1800 1900 2000
Number of edges

(b) 400 nodes - 3000 request

T T T T

Fy
o
i

Satisfied Ratio (%)
3 8

10 1

1600 1700 1800 1900 2000
Number of edges

(c) 400 nodes - 4000 request

Figure 13. Performance comparisons between p-cycle protec-
tion and path protection—400 nodes with timeout.

coming requests, whereas the number of edges in each
network equals to three times the number of nodes. In
Figure 15(a), we present the satisfied ratio of different
networks for handling 2000 requests. The results show
that our PC scheme performs better than the traditional
PP scheme; for example, with 300 nodes, the PC scheme

701

Self-protecting networking using dynamic p-cycle construction

Satisfied Ratio (%) Satisfied Ratio (%)

Satisfied Ratio (%)

Figure 14. Performance comparisons between p-cycle protec-

satisfied 568 more requests compared with that when we

60

50

a0}

30

20

50

4}

30

20 -

a0t

30

20

10}

1600

1700 1800 1900
Number of edges

(a) 500 nodes - 2000 request

2000

1600

1700 1800 1900
Number of edges

(b) 500 nodes - 3000 request

2000

PC
PP

1600

T T T T

1700 1800 1900
Number of edges

(c) 500 nodes - 4000 request

2000

tion and path protection—500 nodes with timeout.

use the traditional path protection scheme.

We tested both schemes to handle 3000 and 4000
requests with setting the number of edges to be equal to
three times the number of nodes. and each request has a life
time, where it can release the path after it timed out. The

702

W. Zhang et al.

50 . . ST
I e
—~ 40 ot |
< 40
o ."
2 -
e 301 i 1
o R
0 *
K
2 20f p
T
(/2]
10 1
100 200 300 400 500
Number of nodes
(@) 2000 requests, edges = 3n.
40 o
"“"
L30r ST A]
i) Lot
® K.
I ”
Q200]
Y *
) .
TU' []
@ b
10 1
100 200 300 400 500
Number of nodes
(b) 3000 requests, edges = 3n
30 et d
“.‘
—_ ,"‘
* _Q“
w 201 K as 1
o o
B R
2 o
= R
(2] .
- 9
& 10} ,
100 200 300 400 500

Number of nodes
(C) 4000 requests, edges = 3n

Figure 15. Performance comparisons, edges=3n—with timeout.

results in Figure 15(b and c) show that it is still noticeable
that our scheme outperforms the PP scheme.

The case of having a request life time and more dense
networks is shown in Figure 16, where for each network,
we set the number of edges to be four times the number
of nodes. We tested this configuration and measure its
performance to handle 2000, 3000, and 4000 requests.
Figure 16(a) shows the results for 2000 requests. It can

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

W. Zhang et al.

! -
-0 PC L@t
- pp , Lot

2]
o
.

a
o
T

[N
S
Ly

Satisfied Ratio (%)
[~})
o o

N
o
T

-
o
T

100 200 300 400 500
Number of nodes
(a) 2000 requests, edges = 4n,

-0 PC L.t
50 |L==_PP : et
—_— .'—"
9 .
S a0t gt
° i d
m *
5 300t
-9 O'
a ¢’
w20 | ’
(/2]
10
100 200 300 400 500
Number of nodes
(b) 3000 requests, edges = 4n
-0 PC It
= PP o
Y et
S o0
o
g 30 | ’.,'
] ¢"‘
2 R
@ 2047
=
©
(/2] >
10
100 200 300 400 500

Number of nodes
() 4000 requests, edges = 4n

Figure 16. Performance comparisons, edges=4n—with timeout.

be seen that by increasing the number of edges in the net-
work, we can satisfy more number of requests using our
PC scheme compared with the usage of the PP scheme.
From the figure, it can be seen that with 500 nodes and
2000 edges, for example, we can satisfy 33-3% more
requests out of the 2000 coming requests by the use of
our PC scheme compared with the protection path scheme.

Our scheme in these configurations can still handle
more number of requests, where in Figure 16(b), we allow

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Self-protecting networking using dynamic p-cycle construction

3000 requests to come to the network, and it is obvious that
our PC scheme performs better than the traditional PP
scheme. The results for allowing 4000 requests to come
to the network are shown in Figure 16(c). For example,
with 400 nodes, our scheme can satisfy 41:83% out of
the 4000 requests, whereas the PP scheme can satisfy
13-18% out of the 4000 requests.

Also, it can be seen from the previous figures that by in-
creasing the density of the network, we can satisfy more
number of requests when using the same scheme, for ex-
ample, in Figure 16(b) with 2000 nodes and 800 edges,
when we applied our PC scheme, we can satisfy 732
requests; on the other hand, when we increase the number
of nodes to 300 nodes and 1200 edges, we can satisfy 900
requests with using the same scheme.

We got the same observations when we increased the
number of edges to be five times the number of nodes.
These results can be seen in Figure 17. In Figure 17(a),
with 2000 requests in a 200-node network, our PC scheme
performs better than the PP scheme. While increasing the
number of requests, we can still satisfy more coming
requests by the use of our PC scheme. Figure 17(b) show
the results when we allow the network to handle 3000
requests. It is obvious that our scheme still performs better
than the traditional path protection scheme. With 400
nodes, our scheme can handle 1804 requests, whereas the
PP scheme can handle 765 requests.

By adding more user’s request to the network, our PC
scheme still can satisfy more requests compared with the
other scheme. In Figure 16(c), we present the satisfied ratio
of both schemes when we increase the number of coming
requests to 4000 requests. Increasing the density of the net-
work will allow to increase the satisfied ratio for both the
tested scheme, but still, our PC scheme outperforms the
traditional PP scheme. For example, in Figure 17(b), with
200 nodes, by our PC scheme, we can satisfy 1332
requests, whereas by increasing the network density to
400 nodes with 2000 edges, we can satisfy 472 requests
more.

In Figure 18, we change the number of edges in each
network to be n In(n), where n is referred to the number
of nodes in the network. We study the performance of
our PC scheme and compared it with the traditional PP
scheme in different networks where we set the number of
nodes to range from 100 to 500 nodes. We tested this con-
figuration with 2000, 3000, and 4000 requests. We denoted
our PC scheme with the asterisk marker and the PP scheme
with the circle marker on the lines in Figure 18. The results
with 2000 requests are shown using the dashed lines. With
this configuration, our PC scheme can satisfy more
requests compared with that when we use the PP scheme.
For example, a 200-node network with our PC scheme
can satisfy 786 more requests compared with that with
the use of PP scheme.

Moreover, by applying our PC scheme, we can satisfy
more requests even if we increased the number of coming
request. The results with 3000 and 4000 requests are
shown by the solid and the dotted lines, respectively.

703

Self-protecting networking using dynamic p-cycle construction

-0 PC pemmntt
70 == PP : ____-'f"
ﬂ”'—
&\i 60 ’_,v'
o R
g 50 |- ’," >
3 40%
=
2
© 30
]
20 ~
100 200 300 400 500
Number of nodes
(a) 2000 requests, edges = 5n
=0 PC __."'
60 |L== PP : ‘_“.-
L 50} ae®"
o .°
oc 40 - "O'
° .
2 .*
@ 30t b
=
©
»
20 -
10 i i ;
100 200 300 400 500
Number of nodes
(b) 3000 requests, edges = 5n
=0 PC ‘_¢"‘
== PP 0"
50 - seett
2 40} St
=
© *
[id ',"
B 30|
= .
73)
2 3
S 20t
10
100 200 300 400 500

Number of nodes
() 4000 requests, edges = 5n

Figure 17. Performance comparisons, edges=5n—with timeout.

Increasing the number of the coming requests to the net-
work has an effect on the gap between the satisfied ratio
of the PC scheme and the PP scheme, where, for example,
with 500 nodes and 2000 requests, our PC scheme can sat-
isfy 18-6% more requests out of the 2000 requests,
whereas this gap has been increased to 34-6% out of the
3000 requests; moreover, it had increased to 35-7% with
4000 coming requests.

704

W. Zhang et al.

90 [% PC 2000
< pP2000 [i
80 [| =¥ PC 3000 |: Le¥e T

-©- PP 3000 .-t
70 || ¥ PC 4000 |: N
Q' PP 4000

Satisfied ratio (%)

100 200 300 400 500
Number of nodes

Figure 18. Performance comparisons, edges=n In(n) — with
timeout.

To make the comparison clear, we combine some of the
results discussed before in Figures 19 and 20. In this dis-
cussion, we made some comparisons between our pro-
posed PC scheme and the traditional path protection
scheme in two cases. On one hand, we measure the perfor-
mance of both scheme when the coming requests have no
life time; in other words, if the user request has been satis-
fied and it accommodates a path, it will stay accommodat-
ing that path until the end of the simulating time. This case
is indicated in the figures as (no Timeout). On the other
hand, we let each coming request to have a life time that
has been set randomly between 1 and 20s, where each re-
quest, if it granted a path, will stay there until its life time
runs out. This has been denoted in the figures as (with
Timeout).

In Figure 19, we measure the performance of both
schemes with 3000 randomly coming requests. Figure 19
(a) shows the performance comparisons with having 200
nodes with different numbers of edges (1600-2000). The
solid lines indicated the satisfied ratio when we allow each
request to have a life time, whereas the dashed line indi-
cates the case where the requests have no life time. It can
be seen that our PC scheme outperforms the traditional
PP scheme in both cases. For having 2000 edges with no
life timed requests, our scheme satisfies 68% out of the
3000 coming requests, whereas the PP satisfies 35% out
of the 3000 requests. On the other hand, our scheme still
outperforms the tractional PP scheme when allowing the
requests to be timed out. For example, with 2000 requests,
our scheme can satisfy 1693 requests, whereas the PP
scheme satisfies 1196 requests.

Providing each request with a timeout concept, we
enforce the request after being granted a path to release
the path after it is timed out, and that allows us to satisfy
more requests compared with that when not having a
request life time. Let us consider the case when we have
1700 edges; we can see that the PC scheme with the
timeout concept provides 69-47% of satisfied ratio com-
pared with 60% of satisfied ratio when there is no
timeout concept.

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

W. Zhang et al.

~
o
T

nan®

Self-protecting networking using dynamic p-cycle construction

2]
o

: o
PSP
i
Lemn-
L.

2}
o
@

50

=0 ' PC no Timeout

(3]
o

-
-
"—
**

=@ ' PC no Timeout

=@ ' PP no Timeout
= PC with Timeout
=B= PP with Timeout

Satisfied ratio (%)
=Y
o

PR
-am="
~ .-=="0

1800 1900

1600 1700 2000
Number of edges
(a) 200 nodes
60
:\? 50
~ -=®
o amm="
.ﬁ ¢
; 40 =0 PC no Timeout
Q =0 PP no Timeout
% =8 PC with Timeout
— =B PP with Timeout
© 30
(/2]
20 e

1600 1700 1800

Number of edges
(c) 400 nodes

1900 2000

'S
o

=0 ' PP no Timeout

=8- PC with Timeout
== PP with Timeout

Satisfied ratio (%)

(2]
o
T

20

1600 1900

1800
Number of edges
(b) 300 nodes

1700 2000

a
o

oy
o
L4

=0 PC no Timeout
=0 PP no Timeout
=8 PC with Timeout
== PP with Timeout

(%]
o

Satisfied ratio (%)

N
o
T

1600 1700 1800

Number of edges
(d) 500 nodes

1900 2000

Figure 19. Performance comparisons—fixed nodes with 3000 requests.

The same observations can be seen with larger net-
works, where we studied the cases of having 300, 400,
and 500 nodes with the same previous configurations,
where we set the number of edges to range from 1600 to
2000 edges and the number of requests to be 3000
requests. These results can be seen in Figure 19(b, ¢, and
d). In all the cases, we can see that our PC scheme outper-
forms the traditional path protection scheme in satisfying
more number of requests in both cases, when we allow
all the requests to (have or not have) a life time concept.
For example, with 400 nodes in Figure 19(c), it can be seen
that with 1800 edges, our PC scheme can satisfy 1711
requests when we allow the requests to have a life time;
on the other hand, it can satisfy 1500 no timed out requests,
and that outperforms the satisfied ratio provided by the tra-
ditional path protection scheme.

Our next comparison consists of making the net-
work more dense through increasing the number of
nodes and the number of edges; we tested these sce-
narios with 3000 coming requests. These results can
be seen in Figure 20; in each scenario, we compared both
our PC scheme and the PP scheme. We considered the case
that each request, after being granted a path, accommo-
dates the path until the end of the simulation, and that is

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

denoted in the figures by (no Timeout). Also, we consider
the case that each request has a life time, where after the re-
quest timed out, it will release the path that had been
granted to it, and the workload will be added back to the
free bandwidth of the links; this is denoted in the figures
by (with Timeout).

In Figure 20(a), we set the number of edges to be three
times the number of nodes, where n denoted the number of
nodes. Our results show that the PC scheme outperforms
the PP scheme in all the cases, and that can be improved
by allowing the coming requests to have a life time, be-
cause of the path release. For example, with 300 nodes
and 900 edges with no timeout concept, we can satisfy
26-33% out of the 3000 requests by using our PC scheme
compared with 8-77% out of the 3000 requests with the
PP scheme. On the other hand, by allowing the requests
to be timed out, we can increase the satisfied ratio by
9:54% with the use of our scheme compared with the in-
crease of 0-:96% with the use of the traditional PP scheme.

Increasing the density has a better effect on both
schemes, where in Figure 20(b), we increased the number
of edges to be four times the number of nodes. The results
show that our PC scheme still outperforms the traditional
PP scheme. By allowing the requests to have a life time

705

Self-protecting networking using dynamic p-cycle construction

45

Il PC no Timeout
40 }{ =1 PP no Timeout

PC with Timeout
PP with Timeout

35

30

25
20
15

Satisfied ratio (%)

10

100 200 300 400 500
Number of nodes

(a) Number of edges = 3n

Il PC no Timeout
[PP no Timeout

PC with Timeout
PP with Timeout

60

50

40

30

Satisfied ratio (%)

20

10

100 200 300 400 500
Number of nodes

(c) Number of edges = 5n

W. Zhang et al.

Il PC no Timeout
[PP no Timeout

PC with Timeout
PP with Timeout

W
o

Satisfied ratio (%)
N
o

-
o

100 200 300 400 500
Number of nodes

(b) Number of edges = 4n

Il PC no Timeout
70 H] PP no Timeout

60 | PC with Timeout
PP with Timeout

50

40

30

Satisfied ratio (%)

20

10

100 200 300 400 500
Number of nodes

(d) Number of edges = n In(n)

Figure 20. Performance comparisons—different nodes with 3000 requests.

in a 200-node network, by our PC scheme, we can satisfy
1098 requests, whereas with the PP scheme, we can satisfy
300 requests. These results can be improved by making the
network more dense, for example, doubling the number of
nodes to 400 nodes while keeping the number of edges to
be four times n; with our scheme, we can satisfy 1494
requests compared with 495 requests with the PP scheme.

We increased the number of edges to be five times the
number of nodes to make the network more dense; we
can still have a better satisfied ratio. Whereas with 500
nodes and 2500 edges, we can satisfy 66-97% out of the
3000 requests with timeout concept when we use our PC
scheme, whereas this ratio was 60-13% when we had the
same number of nodes, but the number of edges were four
times the number of nodes. These results can be seen in
Figure 20(c and b), respectively.

With this network density, we still outperform with our
PC scheme the traditional PP scheme, where in a 200-node
network, we can satisfy 1131 requests out of the 3000
coming requests with no timeout scheme with our scheme
compared with 428 requests with the PP scheme. And this
can be even better with allowing the requests to have a

706

timeout concept where we can increased the number of sat-
isfied requests by 201 more requests with our PC scheme
compared with 39 requests with the use of PP scheme.

Our last comparison consists of different numbers of
nodes ranging from 100 to 500 nodes with setting the num-
ber of edges to be equal to n In(n). These results can be
seen in Figure 20(d). Changing the number of edges from
5n to n In(n) can provide us with better satisfied ratio; for
example, with 500 requests and 3000 requests with timeout
concept, we can see that by setting the number of edges to
be 5n, we can satisfy 2010 requests by using our PC
scheme, whereas by setting the number of edges to n In
(n), we can increase the number of satisfied requests by
294 requests.

It is still obvious that by setting the number of edges to
be n In(n) with our PC scheme, we still outperform the tra-
ditional PP scheme in both cases, where we allow the
requests to stay until the end of the simulation time, or
we allow them to have a specific life time, where each re-
quest after timeout will release the path to be used later to
satisfy other requests. With 400 nodes and no timeout
requests, we can have a satisfied ratio of 62-:03% with the

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

W. Zhang et al.

use of our PC scheme, whereas with the PP scheme, we
have a satisfied ratio of 31-:53%. These ratios can be im-
proved by allowing the requests to release the path after
they timed out, whereas with our PC scheme, we can in-
crease the satisfied ratio by 7-6% and 2-77% by the use
of the traditional path protection scheme.

5. CONCLUSIONS

In this paper, we studied the dynamic p-cycle provisioning
problem. We presented a necessary and sufficient condi-
tion for constructing a p-cycle with link capacity consider-
ation. Base on this condition, we provided an efficient
approach for computing a path for each incoming connec-
tion request, with the guarantee that each link on the path is
p-cycle protectable. Simulation results demonstrated that
our p-cycle provisioning scheme is comparable with tradi-
tional path protection scheme. In our future work, we will
study the case where each p-cycle protects part of the links
with backup bandwidth sharing.

REFERENCES

1. Grover W, Stamatelakis D. Cycle-oriented distributed
preconfiguration: ring-like speed with mesh-like ca-
pacity for self-planning network restoration. In /EEE
ICC, Vol. 1, 1998; 537-543.

2. Blouin F, Sack A, Grover W. Benefits of p-cycles in a
mixed protection and restoration approach. In /EEE
DRCN, 2003; 203-210.

3. Grover W. p-Cycles, ring-mesh hybrids, and mining:
options for new and evolving optical transport net-
works. In JEEE OFC, 2003; 201-203.

4. Grover W, Stamatelakis D. Bridging the ring-mesh
dichotomy with p-cycles. In IEEE DRCN, 2000;
92-104.

5. Stamatelakis D, Grover W. IP layer restoration and
network planning based on virtual protection cycles.
IEEE Journal on Selected Areas in Communications
2000; 18: 1938-1949.

6. He W, Fang J, Somani A. A p-cycle based survivable
design for dynamic traffic in WDM networks. In IEEE
GLOBECOM, 2005; 1869-1873.

7. Kang J, Reed MJ. Bandwidth protection in MPLS net-
works using p-cycle structure. In JEEE DRCN, 2003;
356-362.

8. Li T, Wang B. Optimal configuration of p-cycles in
WDM optical networks with sparse wavelength conver-
sion. In IEEE GLOBECOM, 2004; 2024-2028.

9. Wu B, Yeung KL, Lui KS, Xu S. New ILP-based p-
cycle construction algorithm without candidate cycle
enumeration. In /EEE ICC, 2007, 2236-2241.

10. Zhong W, Zhang Z. Design of survivable WDM net-
works with shared-P-cycles. In IEEE OFC, Vol. 1,
2004; 23-27.

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Self-protecting networking using dynamic p-cycle construction

11. Doucette J, He D, Grover W, Yang O. Algorithmic
approaches for efficient enumeration of candidate
p-cycles and capacitated p-cycle network design.
In IEEE DRCN, 2003; 212-220.

12. Liu C, Ruan L. Finding good candidate cycles for effi-
cient p-cycle network design. In IEEE ICCCN, 2004;
321-326.

13. Xue G, Gottapu R. Efficient construction of virtual p-
cycles protecting all cycle-protectable working links.
In IEEE HPSR, 2003; 305-309.

14. Zhang Z, Zhong W, Mukherjee B. A heuristic method
for design of survivable WDM networks with p-cycles.
IEEE Communications Letters 2004; 8(7): 467-469.

15. Feng T, Ruan L, Zhang W. Intelligent p-cycle protec-
tion for dynamic multicast sessions in WDM networks.
IEEE/OSA Journal of Optical Communications and
Networking 2010; 2: 389-399.

16. Schupke D, Scheffel M, Grover W. An efficient strat-
egy for wavelength conversion in WDM p-cycle net-
works. In /IEEE DRCN, 2003; 221-227.

17. Ruan L, Tang F, Liu C. Dynamic establishment of
restorable connections using p-cycle protection in
WDM networks. Optical Switching and Networking
2006; 3(3—4): 191-201.

18. Schupke D. On Hamiltonian cycles as optimal p-cycles.
IEEE Communications Letters 2005; 9: 360-362.

19. Drid H, Lahoud S, Cousin B, Molnar M. A topology
aggregation model for survivability in multi-domain
optical networks using p-cycles. In NPC, 2009;
211-218.

20. Metnani A, Jaumard B. Directed p-cycle protection in
dynamic WDM networks. In /CUMT, 2009; 1-6.

21. Schupke D. The tradeoff between the number of
deployed p-cycles and the survivability to dual fibre
dual failures. In IEEE ICC, Vol. 2, 2003; 1428-1432.

22. Schupke D, Grover W, Clouqueur M. Strategies for
enhanced dual failure restorability with static or
reconfigurable p-cycle networks. In IEEE ICC, 2004;
1628-1633.

23. Shen G, Grover W. Design and performance of pro-
tected working capacity envelopes based on p-cycles.
OSA Journal of Optical Networking 2005; 4(7):
361-390.

24. Yadav R, Yadav RS, Singh HM. Quality enhancement
in p-cycles using optimized restoration path (ORP) al-
gorithm. In ARTCom, 2009; 549-553.

25. Zhang H, Yang O. Finding protection cycles in
DWDM networks. In /IEEE ICC, 2002; 2756-2760.

26. Tarjan R. Depth-first search and linear graph
algorithms. SIAM Journal on Computing 1972; 1:
146-160.

27. Shen G, Grover W. Extending the p-cycle concept to
path segment protection for span and node failure

707

Self-protecting networking using dynamic p-cycle construction

28.

29.

708

recovery. IEEE Journal on Selected Areas in Commu-
nications 2003; 21(8): 1306-1319.

Huang C, Sharma V, Owens K, Makam V. Building
reliable MPLS networks using a path protection mech-
anism. [EEE Communications Magazine 2002; 40(3):
156-162.

Awduche D, Chiu A, Elwalid A, Widjaja I, Xiao X.
RFC3272: Overview and Principles of Internet Traffic
Engineering, May 2002.

30.

31.

32.

W. Zhang et al.

Ramamurthy S, Mukherjee B. Survivable WDM mesh
networks—Part I: Protection. In I[EEE INFOCOM,
1999; 744-751.

Xue G, Zhang W, Tang J, Thulasiraman K. Polyno-
mial time approximation algorithms for multi-con-
strained QoS routing. IEEE/ACM Transactions on
Networking 2008; 16: 656—-669.

BRITE. [Online]. Available from: http://www.cs.bu.
edu/brite/

Security Comm. Networks 2012; 5:689-708 © 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

