
Securing Multi-Tiered Web Applications

George Mathew, Xiaojiang Du
Department of Computer and Information Sciences

Temple University
Philadelphia, PA, 19122, USA

Email: {George. Mathew, dux}@temple.edu

Abstract - Multi-tiered architecture is very common in today's

enterprise web applications. It is necessary to secure channels

in each tier in order to secure a multi-tiered web application.

For a non-HTTP based channel, there are several options to

secure the channel. These security options have been used in a

number of applications. However, it is not clear which option

has better performance (such as delay, security strength, etc).

In our research, we conducted real-network experiments to
study the performances of several popular security protocols

that are being used for securing multi-tiered web applications.

Our experimental results provide several useful insights and

guidelines for the design and deployment of secure multi-tiered

web application.

Keywords - Security; web applications; multi-tiered applications

I. INTRODUCTION

Multi-tiered architecture is the norm in today's enterprise
web applications. A typical 3-tier application has a user
interface presentation layer, a business logic layer and a data
access layer. For example, a web based banking system may

have 3 tiers: tier 1 - the user login forms and menus of

transactions served by a web server; tier 2 - the business
logic layer served by an application server (e.g., Websphere
or W eblogic) and doing all logistics of online transactions
(e.g., electronic fund transfer to a different bank); and tier 3

- a backend database (e.g., SQL Server or Oracle). For

reasons of scalability and separation of concerns, it is a
common practice to deploy each tier on a separate

(dedicated) server. Multi-tiered web applications have a
point-to-point communication channel at each tier. To
achieve end-to-end security, each channel needs to be
secured. This is due to the fact that encryption and
decryption happens point-to-point as well as the fact that the

protocols used in each tier may be different. Since powerful
network analysis tools such as Wireshark [1] are easily (and
freely) available, sniffing packets can be easily done. Hence,

it is essential to encrypt packets in each tier.

In one of the early surveys on web security (in 1998),
Rubin and Geer [2] identified server security, mobile code,
data transfer, and user privacy as some of the particular

areas of concern. Later (in 2005), McDaniel and Rubin [3]
noted that "the investigation of Web security is in its
infancy and much work remains". Web-based attacks

978-1-4244-5849-3/10/$26.00 ©2010 IEEE

505

account for 20-30% of all network attacks [4]. Anomaly
detection [4] and trusted computing [5] have been proposed
to improve trust in web transactions. The large and growing

installation base of web sites makes them easy targets for
eavesdropping and other cyber attacks.

In our work, we studied a 2-tier web application.
However, our results apply to 3 (or more) tier applications.
A 2-tier structure is illustrated in Fig. 1. The communication
channel in tier 1 is from a client browser to the application

server. The channel in tier 2 is between the application
server and the backend directory server.

For multi-tiered web applications, it is common to have a
login component in the first tier. This is usually in the form
of a <username, password> tuple. The username and

password are used to authenticate the user against some

backend user profile (e.g., a relational database, a directory

service or some other container). A successful
authentication results in successful logging into the

application system. The first tier web communications use
HyperText Transfer Protocol (HTTP). Hypertext Transfer
Protocol Secure (HTTPS) [6] is typical used to provide
security for the first tier. HTTPS is a combination of the

Hypertext Transfer Protocol with the Secure Sockets Layer
(SSL) / Transport Layer Security (TLS) protocol and can
provide both encryption and authentication. HTTPS is
supported by most browsers (Internet Explorer, Firefox,

Safari, Chrome, Opera, etc.) and web servers (Apache, lIS,
Tomcat, Jetty, etc.). The standard ports for HTTP and
HTTPS are 80 and 443, respectively.

Clear text

�

li er 1 u nsec ured) lier 2 nsecured)

Figure I: Two-tiered web application

However, the second tier connection to a container is not
necessarily based on HTTP. For example, a relational

database uses SQL-based protocols through proprietary or
de facto standard protocols similar to ODBC. Another
example is the Lightweight Directory Access Protocol

(LDAP) [7], which uses standards-based API defined in
RFC 1823 [8]. Since the second tier could be non-HTTP
based protocols, there are several options to secure the

second tier communications. It is interesting to study
various options for protecting this tier irrespective of the

underlying communication protocols. In this project, we

study the performance of several protocols that may be used
for securing tier 2.

II. SECURITY PROTOCOLS AND IMPLEMENT A nON

In this section, we provide introductions of tier 2
protocols and their implementations in our project. LDAP is
used for directory access without security protection.
LDAPS enables LDAP over SSL and it is a secure version
of LDAP. In addition, SSH [9] (Secure Shell) and IPSec
[10] may be used to provide security for tier 2. We describe
these protocols in subsections A, B, and C, respectively.

A. LDAP and LDAPS

LDAP has its roots in Directory Access Protocol (DAP)
which was designed by International Telecommunication
Union (ITU). The design of DAP was driven by the need for
a global network based directory. This led to the X.519
standard for DAP. DAP was based on the OSI layers. The
implementation of DAP was quite big and very resource
intensive to run. The consequence of this was the birth of
LDAP, which is much lightweight and based on TPC/IP. The
initial development of LDAP was done at the University of
Michigan. Later it was accepted as an IETF standard - RFC
1487 [11]. Regular LDAP communication uses TCP over
port 389. The data is encoded in ASN.1 format while in
transit between the server and client. This encoding can be
decoded easily and the security level is as weak as plain text.
LDAPS enables LDAP run over SSL and it uses port 636
(see Fig. 2). LDAPS requires configuring the LDAP server
with certificates for secure communication.

LDAP Client

LDAP Server

Figure 2: LDAP/LDAPS communications

LDAP is primarily used as a container for user
information in an organization. One of the most widely used
standard for user profile is a schema called inetOrgPerson,
which is defined in RFC 2798 [12]. LDAP also provides a
mechanism for authenticating users by username and
password as recorded in the inetOrgPerson schema. This is a
popular authentication mechanism supported in web
browsers and other software. For example: Microsoft's
Active Directory, CAS [13] (from Yale University) and

506

Shibboleth [14] (from Inernet2) can use user credentials
from LDAP to authenticate users.

B. SSH

SSH [9] is a popular security scheme. SSH is a set of
utilities modeled after the 'r' utilities (rsh, rcp etc.) from the
traditional UNIX environment. When using rcp, rlogin, rsh,
telnet, etc., user passwords and other sensitive information
are transmitted across the Internet unencrypted. SSH
encrypts all traffic and can effectively defend
eavesdropping, connection hijacking, and other attacks.
Additionally, SSH provides secure tunneling capabilities
and several authentication methods. The openssh [15]
implementation supports all SSH protocol versions and
capabilities. SSH port forwarding transparently encrypts an
application's data stream. This transparency is achieved at
the application layer and not at the network layer. SSH port
forwarding can be used only for TCP.

In this project, we set up an SSH channel for tunneling
LDAP traffic between the application server and the
directory server. Fig. 3 shows the port redirection of the
traffic. A local port 'xyz' is chose on the loopback interface
(usually resolved by the hostname 'localhost' and has the IP
address 127.0.0.1). A port redirection is set from 'xyz' to
the port 389 on the LDAP server through the ssh tunnel.
Once this redirection is in place, the client application will
connect to port 'xyz' on the localhost and the port
redirection will channel the packets back and forth through
the SSH tunnel.

• Unencrypted channel.
389 OAP

n
I

LDAP Server

��b".----

Server

'---__ ----".� , (encrypted channel) '---__ _

Figure 3: SSH port redirection

C. IPSec

IPSec is a set of protocols and has three major

components [17]: the Internet Key Exchange (IKE),
Authentication Header (AH) and Encapsulating Security

Payload (ESP). IKE manages and distributes keys. IKE is
also responsible for setting up security assertions. The AH

and ESP provides authentication and encryption,

respectively. The IPSec protocol details are published in
RFC's 2401 through 2412. IPSec is designed to work with
both IPV4 and IPV6. In IPV4, IPSec is an add-on. IPV6

supports IPSec natively. Strictly speaking, IPSec is

mandatory for IPV6. IPSec works in two modes: Tunnel

mode and Transport mode. Tunnel mode is typically used to
tunnel traffic between two network gateways. Transport
mode is used to protect traffic between two hosts.

IPSec stack is implemented natively in the kernel or as an
add-on either as BITS (Bump In The Stack) or as BITW
(Bump In The Wire), as illustrated in Fig. 4. If a kernel does
not natively support IPSec, support can be added by
introducing a software stack between the IP stack and the
network device drivers. This mechanism is termed BITS. If
the implementation is done using an external piece of
hardware, it is called BITW. For example, the openswan
project [18, 19] developed software for IPSec to be used as
BITS.

Figure 4: IPSec details for an LDAP connection

The IPSec function can be split into two main categories:

packet handling and trust relationship management. Packet

handling is usually done by the kernel itself. The kernel
deals with packets that comes in and goes out. Security
policies dictate the management of IPSec connections that

the kernel is aware of. Security policies are stored in the
Security Policy Database. For each connection established,
the kernel has to keep track of the values of various
parameters. The set of parameter values for a single IPSec

connection is called an IPSec Security Association (SA).

The SA's are stored in a Security Association Database.
Another security aspect of IPSec is the creation of a trust

relationship between hosts by the creation of a secure

communication channel and exchange of cryptographic
keys. The details of this constitute IKE as specified in RFC

2409 [20]. IKE is implemented as a process (called userland

daemon) that runs continuously and listens for IPSec
connection requests.

507

III. PERFORMANCE EV ALUA nONS

In this research, we implemented the three security
protocols (LDAPS, SSH and IPSec) in a real network test­
bed. Furthermore, we evaluated and compared the
performance of these protocols. In this section, we present
our experiment setup and results.

A. Experiment Setup

The experiment test-bed is shown in Fig 5. This is a self­

contained environment, so it is not affected by other
network traffics. All the systems are connected using IP
addresses in the same subnet. The IP prefix is 172.16.x.x.

The OpenLDAP [21] software was installed on the LDAP
server machine. PERL with Net::LDAP [22] module was
used on the client machine. The monitoring system was
installed with Wireshark network analyzer [1] software and
was used to monitor network traffic between the LDAP

client and server.

n etwork switch

LDAP
s erver monitoring station

Figure 5: The test-bed setup

The details of the equipments are as follows:

LDAP Server machine
Intel-based server

LDAP
client

CPU: 2 CPU's 3.2GHz (each), Memory: 2 GB

OS: Centos 5
NIC - Gig Ethernet interface

Static IP: 172.16.16.15

LDAP Client machine
Intel-based server

CPU: 2 CPU's 3.2GHz (each), Memory: 2 GB

OS: Centos 5
NIC - Gig Ethernet interface
Static IP: 172.16.16.16

Monitoring station
Intel-based workstation
CPU: 1.7GHz, Memory: 512 MB
OS: Windows XP
Static IP: 172.16.16.17

Software: Wireshark network analyzer

B. Experiment Details and Results

In the experiments, we mainly studied the delay
performance of the security protocols. That is, we compared
the end-to-end delay of the protocols. We run the
experiments for different sizes of the directory, including I,
10, 20, 50, 100, 200, 500, 750 and 1000 records. For each
configuration (directory size + security protocol), the delay
was measured for 10 runs and the average result is used.

First, clear text LDAP timing was used to establish the
baseline for delay performance. A PERL program was used
to bind to the LDAP server and search all records in the
directory. The second set of experiments use LDAPS, and
the LDAP server had to be configured with SSL. For this,
OpenSSL [23] tools were used. The following tasks were
done for LDAPS experiments:

1. A local Certificate Authority (CA) was set up and root
certificates were generated for the local CA. (This was
done so that server certificates could be signed locally
instead of using a commercial CA.)

2. Server certificates were generated.

3. Server certificates were signed using root certificates of
the local CA.

4. OpenLDAP server was configured to trust the local
CA.

5. The openLDAP server configuration files were updated
to specify the location of the certificate files.

6. OpenLDAP server was started to run on port 636 (using
SSL) and on port 389 without encryption. This had to
be done as root (administrative account) because ports
up to 1024 are available only to administrator accounts.

The details of these configurations can be found in [24]
and [25]. After these steps, the PERL program was modified
to use LDAPS.

The third set of experiments was based on SSH. Port
forwarding was set from the LDAP client on port 389 to
port 389 on the LDAP server. The following command was
used:

ssh -2 -f -NL 389:localhost:389 172.16.16.15

This command also required the use of root
(administrative) account since the port number 389 is less

than 1024. Once the port forwarding was set up, the PERL

program was run using the plain text version.
Finally, IPSec was configured on both LDAP server and

LDAP client. IPSec was used in transport (host-to-host)
mode. CentOS kernel 2.6 comes with NETKEY/XFRM
IPsec stack. Since the stack supports the XFRM interface
for key management, any userland software that supports
the protocol could be used. In this project, the 'racoon'
daemon (from KAME project [26]), which implements the
IKE protocol of IPSec, was used for key management.

508

We list the comparison of network stacks and security
algorithms used by the four protocols in Tables I and II
respectively. In order to use LDAPS, we slightly modified
an LDAPS API (the function call for ldap connection had to
be modified with proper parameters for ldaps). Proper keys
had to be generated and configured for the LDAP server
side. In the case of SSH, a user account on the server system
is needed to make the connection between the client and
server systems. This user account is in fact used to log into
the server system for establishing the SSH tunnel. IPSec
does not need any change to the software. However, setting
up the IPSec transport between the two systems requires
administrative privileges on both systems.

TABLE I. COMPARISON OF NETWORK PROTOCOLS

Network Transport Port
Protocol Protocol

LDAP IP TCP 389
LDAPS IP TCP 636
SSH IP TCP 22
IPSec IP None nla

TABLE II. COMPARISON OF SECURITY ALGORITHMS

Authentication Encryption Hash
LDAP None None None

LDAPS· RSA AES256 SHAI

SSH RSA AES128 SHAI

IPSec Secure Hash 3 DES SHAI

* : Net::LDAP uses the same ciphers as OpenSSL

TABLE III. COMPARISON OF DELAYS

of LDAP LDAPS SSH SSH IPSec IPSec
records AES128 AES256 3DES AES256

1 0.178 0.222 0.180 0.181 0.180 0.180

10 0.194 0.239 0.196 0.197 0.195 0.195

20 0.210 0.257 0.212 0.213 0.211 0.212

50 0.266 0.320 0.273 0.276 0.271 0.270

100 0.377 0.442 0.394 0.398 0.387 0.390

200 0.597 0.702 0.645 0.647 0.640 0.642

500 1.236 1.454 1.367 1.369 1.353 1.364

750 1.777 2.075 1.973 1.980 1.954 1.962

1000 2.311 2.704 2.585 2.594 2.566 2.573

The end-to-end delay results of the four sets of
experiments are presented in Table III, where the unit is
second. For illustration purpose, we also plot the same
results for record 1 - 100 in Figure 6. From Table II we can
see that the default encryption algorithms used by the three
protocols are different. In order to find out how much the
encryption algorithms contribute to the delay, we also
measured the delay when SSH and IPSec use AES256. The
results of using AES256 are also reported in Table III and
plotted in Figure 7. From the experiments results, we obtain
several observations:

1) IPSec is the fastest security protocol and it always has
less delays than both LDAPS and SSH. This is mainly

because IPSec does not use public-key (RSA) authentication,
which takes some time.

2) The delays of IPSec and SSH are very close to the
clear-text protocol LDAP. That is, IPSec and SSH have very
small security overhead in terms of delay.

3) Using different encryption algorithms only has very
small effects on the end-to-end delay. For example, using
AES256 only incurs a little longer delay than AESl28 or
3DES.

4) As the number of records increases, the differences of
delay-per-record diminish among the protocols. This is
because the security overhead (encryption & authentication)
is amortized over a large number of records.

0.38
0.36
0.34

10.32
:i 0.3
� 0.28
� 0.26
't
rf. 0.24 ."

. /" "

/
/

// ./
/ /

/ /
/ / ./

,..; /
/- / /- /

h/-. / '. -... -. · - · -L-DA-P-S'
fi / ---SSH

u�/ --IPsec
b/ -·_··LDAP

./

� ® � � m � W 100
Number of records

Figure 6: Delay comparison with default encryption algorithms

2.5

0.5

____ ·········LDAPS
---SSH
--IPsec
- - - L DA P

D D � � D � � B 1�
Number of records

Figure 7: Delay comparison when using AES256

IV. CONCLUSIONS

This is paper, we studied the performance of several
popular security protocols used in multi-tiered enterprise
web applications. Specifically, we compared the end-to-end
delays of deploying LDAPS, SSH, and IPSec by real­
network experiments. Our experiments revealed several
important issues: IPSec and SSH have very small security
overhead and they are faster than LDAPS; the choice of

509

different encryption algorithms has small effects on the end­
to-end delay; the overhead of the security protocols is
amortized when the number of records is large. Our results
provide useful guidelines for the design and deployment of
large scale multi-tiered enterprise web applications.

V. ACKNOWLEDGEMENT

This research was supported in part by the US National
Science Foundation (NSF) under grants CNS-0963578,
CNS-IO02974 and CNS-1022552, and the US Army
Research Office under grant W91INF-08-1-0334.

REFERENCES

[I] Wireshark network protocol analyzer. http://www.wireshark.org

[2] Rubin, D, A., and Geer Jr., E,D., A Survey of Web Security,
Computer, Vol 31, Issue 9, Sep 1998, pp 34-41

[3] McDaniel, P., and Rubin, D.A., Web Security (editorial), Computer
Networks, Vol 48, Issue 5, August 2005, pp 697-699

[4J Kruegel, c., Vigna, G., and Robertson, W., A multi-model approach
to the detection of web-based attacks, Computer Networks, Vol 48,
Issue 9, Augut 2005, pp 71 7 -738

[5] Potter, B., High Time for Trusted Computing, IEEE Security and
Privacy, Vol. 9 No. 6, November/December 2009, pp. 54-56

[6] RFC 2818 - HTTP over TLS. http://www.ietforgirfc/rfc2818.txt

[7] RFC 1777 - LDAP - Lightweight Directory Access Protocol.
Available at http://www.ietforgirfc/rfc l 777.txt

[8] RFC 1823 LDAP Application Program Interface.
http://www.ietforgirfc/rfcI823.txt

[9] Barrett. D., Silverma, R, and Byrnes, R., SSH, The Secure Shell: The
Definitive Guide (2'uJ edition), O'Reilly Media Inc., 2005.

[10] Doraswamy, N., and Harkins, D., IPSec (2"d edition), Prentice Hall,
2003.

[II] RFC 1487 First protocol definition of LDAP.
http://www.ietforgirfc/rfc I 487 .txt

[12] RFC 2798 - Defnition of the inetOrgPerson LDAP object class.
Available at http://www.ietforgirfc/rfc2798.txt

[13] CAS - Central Authentication Service. http://www.jasig.orgicas

[14] Shibboleth Federated Single Signon Software.
http://shibboleth.internet2.edu

[15] Openssh software. Available at http://openssh.org

[16] Well known ports 0-1023. http://www.iana.orgiassignments/port­
numbers

[17] Kolesnikov, O. and Hatch, B., Building Linux Virtual Private
Networks, pp. 30, New Riders, Indiana, 2002.

[18] Wouters, P. and Bentoft, K., Building and Integrating Virtual Private
Networks with Openswan, PACKT Publishing, 2006.

[19] Openswan home page. http://openswan.org

[20] RFC 2409 The Internet Key Exchange.
http://www.ietf.orgirfc/rfc2409.txt

[21] OpenLDAP. Available at http://www.openldap.org

[22] Net::LDAP module. http://search.cpan.org/-gbarr/perl-ldap-
0.39/lib/Net/LDAP.pod

[23] OpenSSL. http://openssl.org

[24] OpenLDAP SSL Configuration - Part I
blogs.sun.com/hariblog/entry/openldap _ ssl_ configurationyart _ I

[25] OpenLDAP SSL Configuration - Part 2
blogs.sun.com/hariblog/entry/openldap _ ssl_ configuration "'part _2

[26] KAME Project home page. http://www.kame.net

