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Abstract

One practical goal of sensor deployment in the design of distributed sensor systems is to achieve an optimal monitoring and surveil-
lance of a target region. The optimality of a sensor deployment scheme is a tradeoff between implementation cost and coverage quality
levels. In this paper, we consider a probabilistic sensing model that provides different sensing capabilities in terms of coverage range and
detection quality with different costs. A sensor deployment problem for a planar grid region is formulated as a combinatorial optimiza-
tion problem with the objective of maximizing the overall detection probability within a given deployment cost. This problem is shown to
be NP-complete and an approximate solution is proposed based on a two-dimensional genetic algorithm. The solution is obtained by the
specific choices of genetic encoding, fitness function, and genetic operators such as crossover, mutation, translocation for this problem.
Simulation results of various problem sizes are presented to show the benefits of this method as well as its comparative performance with

a greedy sensor placement method.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Distributed wireless sensor networks are becoming
increasingly pervasive in many practical applications for
either military or civil purposes, with the operational costs
and characteristics of these networks considerably depend-
ing on the application. Sensors of different types are often
deployed in these applications to meet strategic goals such
as optimal surveillance and target detection. For optimal
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surveillance, the sensors must be deployed in a given region
to achieve the maximum detection probability of potential
targets with the total deployment expense constrained
under a specified budget; for target detection, the sensors
are positioned in such a way that every point in the surveil-
lance region is covered by a unique subset of sensors [1,2].
The work presented in this paper is focused on the former.

Some theoretical problems that are closely related to the
sensor deployment problem have been the subject of an
enormous literature. For example, a typical facility-loca-
tion problem, which is also regarded as a clustering prob-
lem, is to place a set of supply objects in an area of
interest to serve a given set of demand points with the goal
of minimizing certain cost functions. The Euclidean k-cen-
ter cost function minimizes the maximum distance between
a demand point and its nearest supply object. A corre-
sponding decision version of this problem is to determine
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whether a given set of demand points can be covered by the
union of k discs or balls of radius r. The cost function min-
imizing the sum of distances between each demand point
and its nearest supply object leads to the Euclidean k-med-
ian problem, which is shown to be NP-hard for any dimen-
sion d = 2 [3]. The special case of k=1 in a plane is the
classical Fermant—Weber problem that traces back to the
seventeenth century. A number of ¢-approximation algo-
rithms have been recently proposed to compute an approx-
imate solution for the k-median problem [4-6].

Some sensor deployment problems with more practical
considerations have also been studied in-depth for decades
in a variety of scenarios. In the adaptive beacon placement,
the strategy is to place a large number of sensors and then
turn off some of them based on their localization informa-
tion. In this context, Bulusu et al. [7,8] presented an adap-
tive algorithm based on measurements by considering the
evaluations for spatial localization based on radio fre-
quency-proximity. In a related area, Guibas et al. [9] pre-
sented a unique solution to the visibility-based pursuit
evasion problem in robotics applications. In wireless sensor
networks with the global knowledge of node positions,
Meguerdichian et al. used a Voronoi diagram to compute
the maximal breach path for the worst-case coverage and
Delaunay triangulation to compute the maximal support
paths for the best-case coverage [10]. Voronoi diagrams
were also used in [26] by Wang et al. to discover coverage
holes and several sensor deployment protocols were
designed to provide high coverage by moving sensors from
densely deployed areas to sparsely deployed areas. Both
static and mobile sensor deployment schemes were consid-
ered in [27] to optimize sensing coverage and secure con-
nectivity. In [22], sensor deployment strategies were
investigated to provide sufficient coverage for distributed
detection. Martinez and Bullo [24] studied optimal sensor
placement and motion coordination strategies for mobile
sensor networks in a target tracking scenario. To improve
the integrity of sensed data and minimize the energy con-
sumption for data communications, Ganesan et al. [25]
tackled the combined optimization problem of sensor
placement and transmission structure for data gathering.

Note that the problems described above in either theo-
retical or practical contexts are based on a simplistic service
model of supply objects or sensor devices with binary
deterministic detection capability. In other words, a point
of interest is either covered or missed, solely depending
on its distance from the center of a service point. In reality,
however, the sensor coverage is not only determined by the
geometrical distance [9], but also other factors such as envi-
ronmental conditions and noise. In general, the probability
of successful target detection by a sensor decreases in some
way as the target moves further away from the sensor
because of less received power, more noise and environ-
mental interference. Therefore, the sensor detection is
“probabilistic”’, which is the focus of this paper.

Moreover, the solutions to the above theoretical or
practical problems do not consider the different expenses

incurred by choosing different types of services and the
number of service points is usually explicitly given as an
input. Such a uniform sensor model with identical cost is
not able to adequately capture the tradeoffs between the
reliability and cost of a real sensor network. In practice,
network implementers may choose from several available
types of sensors with different detection qualities and costs,
and the total expense of network implementation is usually
limited by a total budget Moreover, the next-generation
sensor networks must go beyond the deterministic coverage
techniques to perform the assigned tasks such as online
tracking/monitoring in unstructured environments.

Sensor deployment is a complex task in distributed sen-
sor networks because of factors such as different sensor
types and coverage ranges, sensor deployment and opera-
tional costs, and considerations for local and global cover-
age [11,12]. Essentially, the sensor deployment is an
optimization problem, which often belongs to the category
of multi-dimensional and nonlinear problems with compli-
cated constraints. When the deployment locations are
restricted to (discrete) grid points, this problem becomes
a combinatorial optimization problem but still is computa-
tionally very difficult. In particular, this problem contains a
considerable number of local maxima, and it is very diffi-
cult for the conventional optimization methods to obtain
its global maximum [13].

In this paper, we formulate a generic sensor deploy-
ment problem over the planar grid to capture a sub-class
of sensor network problems. We consider sensors of differ-
ent types, wherein each type is characterized by a detec-
tion region and an associated detection probability
distribution. Each sensor detects a target located in its
detection region with certain probability and incurs cer-
tain cost for its deployment. We consider a Sensor
Deployment Problem (SDP) that deals with choosing a
set of sensors from an available pool of sensor types
and placing them at various grid points to maximize the
average detection probability while keeping the total
expense under a specified limit.

We first show that this sensor deployment problem is
NP-complete, and hence there is no polynomial-time algo-
rithm that solves it exactly. We then present an approxi-
mate solution to this problem using a two-dimensional
genetic algorithm (GA) for the case where the sensor detec-
tion distributions are statistically independent. Our solu-
tion is based on specifying the components of the genetic
algorithm to suit the SDP. In particular, we specify the
genetic encoding and fitness function to match the optimi-
zation criterion, and also specify the crossover, mutation
and translocation operators to facilitate the search for
the near-optimal solutions. In practice, near-optimality is
often sufficient for this class of problems. We present sim-
ulation results for 50 x 50 or larger grids with five or more
available sensor types when the a priori distribution of tar-
get is uniform. The proposed solution is quite effective in
yielding solutions with high detection probability and low
cost. We compare our method to a greedy approach of
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uniformly placing the sensors over the grid, and our
method achieved significantly better detection probability.

The main focus of this paper is to conduct a theoretical
study on a generic sensor deployment problem. We sum-
marize the contributions of our work as follows:

e We adopt a probabilistic sensing model to characterize
sensors’ real performance in terms of coverage range,
detection quality, and deployment cost.

e We formulate the sensor deployment problem using
multiple sensors of different types over the planar grid
with a budget constraint as a combinatorial optimiza-
tion problem.

e We prove that the formulated sensor deployment prob-
lem is NP-complete.

e We successfully implemented and applied a two-dimen-
sional genetic algorithm to the problem and obtained good
suboptimal results. Comparison with a greedy approach
of uniform deployment is conducted to demonstrate the
performance superiority of the proposed solution.

The rest of this paper is organized as follows. In Section
2, we formulate the sensor deployment problem and con-
struct a sensor model with probabilistic detection capabil-
ity. We show this problem to be NP-complete by reducing
the Knapsack problem to one of its special cases. In Section
3, we present an approximate solution based on a two-
dimensional genetic algorithm. In Section 4, we discuss
the experimental results and compare the performances of
the genetic algorithm with those produced by a greedy algo-
rithm. Then we conclude our work in Section 5.

2. Sensor deployment problem

We formulate the SDP in this section by specifying the
surveillance region and sensor models, and then show it
to be NP-complete.

2.1. Surveillance region

A planar surveillance region R is to be monitored by a
set of sensors to detect a target 7 if located somewhere in
the region (our overall method is applicable to the three-
dimensional space). The planar surveillance region is
divided into a number of uniform contiguous rectangular
cells with identical dimensions as shown in Fig. 1. Each cell
of R is indexed by a pair (i,j), and C(i,j) denotes the corre-
sponding cell. Let /, and /, denote the dimensions of a cell
along x and y coordinates, respectively. As Fig. 1 shows, a
circular coverage area is approximated by a set of cells
within a certain maximum detection distance of sensor
Si.* The main reason we discretize the 2D space is to facil-
itate an efficient approximation of the sensor’s sensing

* In Fig. 1 a cell is shaded if and only if its center is located within the
maximum detection range of the sensor.
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Fig. 1. Surveillance region R is divided into m x n rectangluar cells, with
sensor Sy deployed in cell C(i,/) convering area As, (i, /) in a probablistic
sense.

behavior and the region’s coverage probability in the later
computation of the GA-based solution. When the ratio of
sensor detection range to cell dimension is very large, the
sensor coverage area made up of many tiny rectangular
cells will approach the circle.

Assume there are ¢ types of sensors and a sensor of the
kth type is denoted by Sy for k € {1,2,...,q}. There are N,
sensors of type k. A sensor S can be deployed in the middle
of (C(i,j) to cover the discretized circular area Ag (i,j) con-
sisting of cells as shown in Fig. 1. A sensor S deployed at
cell C(7,j) detects the target T € A, (i, /) according to the
probability distribution P{S;|T € 4, (i, j)} while incurring
the cost w(k).

A sensor deployment is a function R from the cells of R
to {&1,2,...,q} such that R(i,j) is the type of sensor
deployed at the cell C(i,j); R(i,/) = ¢ indicates no sensor
is deployed, i.e. w(¢) = 0. The cost of a sensor deployment
R is the sum of cost of all sensors deployed in region R,
which is given by

Cost(R) = > w(R(i, ) (1)

C(ij)eR

The detection probability P{R|T € R} of deployment R is
the probability that a target T located somewhere in region
R will be detected by at least one deployed sensor. We now
formally state the SDP considered in this paper:

Given a surveillance region R, cost budget Q, ¢ types of
sensors, and Ny sensors of type k, find a sensor deployment
R to maximize detection probability P{R|7 € R} under the
constraint Cost(R) < Q.

Informally, we are required to locate the sensors of var-
ious types on the grid points to achieve a maximum detec-
tion probability while keeping the deployment cost under a
specified budget The decision version of the SDP asks for a
deployment with detection probability at least 4 under the
same cost condition, i.e., P{R|T € R} = A and Cost(R) <
Q. The coverage problems have been extensively studied
under various formulations related to the SDP [14,15],
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but we are not aware of works that directly address the
SDP. The traditional polygon or rectangle coverage prob-
lems, studied in VLSI (Very Large Scale Integration) and
related areas, focus on covering regions with minimum
number of circles or rectangles and do not incorporate
the probabilistic aspects of the sensors [15].

2.2. Probabilistic sensor detection model

We now briefly describe some detection probability dis-
tributions used in sensor deployment problems. The exact
form of the distributions is not critical to the discussion
in this paper, but they must be in computable form.

We consider that each sensor type is specified by its local
detection probability of detecting a target at a point within
its detection region. With regard to a sensor, detection is
more likely as a target approaches the sensor. The cumula-
tive detection probability of a sensor for a region is com-
puted by integrating its local detection probability for
detecting a target as the target gets close to the sensor,
passes near the sensor, and then leaves it behind. In gen-
eral, there are two ways of modeling a sensor detection
performance based on how the integrated detection proba-
bility is approximated [16].

o Definite range law approximation (cookie cutter): In this
model, only one parameter, i.e. maximum detection
range is used. A target is always detected if it lies within
a certain distance of the sensor, or it is never detected if
it lies beyond the sensor’s maximum detection range, as
Fig. 2 shows.

e Imperfect sensor approximation: Besides the maximum
detection range, a second parameter, mean detection
probability (less than one) is specified for such a sensor
model, as Fig. 3 shows.

Comparing the above two approximations, we suggest
that the latter models the real situation more reasonably.
Based on the imperfect sensor approximation, a more real-
istic sensor performance model may be specified by a
Gaussian cumulative detection probability instead of mean

Cumulative Detection Probability P(x)
A

v

Y Y x

Maximum detection range

Fig. 2. Definite range law approximation.

Cumulative Detection Probability P(x)
A

v

\ A J
Y Y x

Maximum detection range

Fig. 3. Imperfect sensor approximation.

detection probability. Given the detection probability den-
sity function p; (x) for a sensor of type k, the detection
probability P{S;|T € C(i,j)} for cell C(i,j) is given by

PISITE Ciy = [ powd @
xeC(ij)

After obtaining the individual detection probabilities for all
the cells covered by sensor Sj, we employ Gaussian func-
tion to compute the cumulative detection probability.
The Gaussian cumulative detection probability approxi-
mating a real sensor detection performance is defined by

o

T
2.

P(Sk7 T, OCS/() = P{Sk, T, s, ‘TG AS/(,‘L'} =¢€ '732'/;,‘[ c [07dsk],

3)
where 7 is the distance from the target to the sensor. The
sensor detection quality coefficient o5, determines the shape
of the detection probability curve. Distance 7 is in the range
between 0 and the maximum detection distance ds,. The
attribute parameters of a sensor and its typical integrated
detection probability of Gaussian sensor approximation
is shown in Fig. 4, where the measure of detection proba-
bility is assumed to reach 1 when the target is very close
to the sensor. We employ this distribution in our computa-
tions in Section 4, but our genetic algorithm method is
applicable to other computable sensor distributions.

2.3. NP-completeness of the sensor deployment problem

We now show that the sensor deployment problem is
NP-complete by reducing the Knapsack Problem (KP)
[23] to a special case of the SDP, wherein each sensor mon-
itors a single cell with a specified probability. We consider
g-KP: Given a set U of n items such that for each u € U, we
have size s(u) € Z" and the value v(x) € Z*, Does there
exist a subset Ve U of exactly ¢ items such that
Suers(u) < B and Y ,cpv(u) = K for given B and K?
Note that we require exactly ¢ items as opposed to an unre-
stricted value in the usual KP; note that KP and ¢-KP are
polynomial equivalent [14] since ¢ < n and the input for
either problem instance has at least z items.
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Fig. 4. Sensor attribute parameters and integrated detection probability of
Gaussian sensor approximation.

Consider the decision version of the SDP that asks for
exactly ¢ sensors to be deployed. We reduce the ¢-KP to
a particular restriction of the SDP, denoted by ¢-SDP, such
that we are given only one sensor of each type, and each
sensor .S monitors a single cell and when two sensors are
located in the same cell only one of them detects the target
(i.e. suitable conditional probabilities are zero). For this
special case, to maximize the detection probability, without
the loss of generality each cell is assumed to occupy by no
more than one sensor. Furthermore, under the uniform
prior distribution of target 7 in cells combined with the
non-overlapping sensor regions, the probability of detec-
tion is simply the average of the probability of detection
of the deployed sensors. Considering the sensor deploy-
ment R deploys ¢ sensors, we have P{R|T€R}=
o 2ok P {SkIT € As, }. Given an instance of ¢-KP,
we map each u€ U to a sensor S, such that its cost
and value are given by w(u)=s(u) and

P{S,|T€ 4s5,} = ZM”(“)' Then we specify the sensor cost
aclU

bound as Q=B and the detection probability as
A=-K

————. Given a solution to ¢-KP, a solution to ¢-
aneUU( )

SDP exists by just placing the sensors corresponding to
the members of ' on non-overlapping grid points. Let
(iy,j.) be the cell receiving a sensor due to u € V. Then
we have

S wlk) =

R(ij)AeR(E))=k

Y wl)=) sw<o,

Riuj,)ueV uely

which satisfies the first condition for ¢-SDP. For the second
condition, we have

P{R|T € R} :é > P{SiTeds}

R(i)AeR(E))=k

1 o(u)
= > > 4. (4)
D (i j) o) =k ;j v(a)

Given a solution to the sensor deployment problem, we ob-
tain the solutions to ¢-KP by choosing the items corre-
sponding to the deployed sensors. Let u;; denote the
chosen item in corresponding to sensor located at R(i, j).
The first condition for ¢-KP follows from:

D su) = s(uay) = Y wlk) <B. (5)

ueV u(iyj) R(i.j)=k

The second condition for q-KP follows from:

Z v(u) = Z v(uy)) = Z v(a) Z

uelV u(i,j) aclU R(ij)#e:R(i))=k

=g v(@P{RITER} > 4q ) v(a) =K.

acU acU
(6)

We have shown that the SDP is NP-Complete even when
severe restrictions are imposed on the joint distributions,
which is an indication of the computational complexity
of this problem. Thus it is unlikely that polynomial time
solutions that optimally solve the SDP exist, which moti-
vates us to consider approximate solutions.

P{Sk|T€ ASk}

2.4. Sensor detection probability under independence
condition

In this section, we consider a restricted version of the
SDP such that sensors satisfy certain statistical indepen-
dence condition, which enables the joint detection proba-
bilities be efficiently computed. To guarantee high
probability of detection, sensor detection range should
overlap to ensure that critical areas of the surveillance
region are covered by at least one sensor [17]. The local
detection probability P{R|T € C(i,j)} must be suitably
accumulated for each cell ((i,j) covered by two or more
sensors. To determine the sensor detection probabilities
for such cells, we first consider a simple case with two
detection probabilities, P{S,|T € C(i,j)} and P{S,|T €
C(i,j)} corresponding to sensors S,, and S,, which overlap
in C(i,j). The detection probability P{S,,v S,|T € C(i,j)}
is the probability of detecting the target successfully by at
least one of the two sensors. Let P(S)) denote
P{S|T € C(i,j)}, for I=m, n and P(S,,v S, denote
P{S,,v S,|T € ((i,j)}. There are two mutually exclusive
and collectively exhaustive cases for the successful detec-
tion, as Fig. 5 shows.

We assume that sensors S, and S, are statistically inde-
pendent such that P(S,, A S,) = P(S,,) P(S,). When there is
an overlap between two sensor detection areas, the proba-
bility that the target is detected by either sensor is calcu-
lated as the sum of two individual detection probabilities
minus their joint detection probability. This joint detection
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P(S,) P(S,)

P(S, vS,18,) P(S, vS,18)=P(S,18S,)

P(S,vS,)

Fig. 5. Multiple cases to successful detection in the simplest case of two
Sensors.

probability denotes the probability that the target is
detected simultaneously by both sensors within the over-
lapping area, ie. P(S,, v S,)=P(S,)+ P(S,) —
P(S,,)P(S,). Therefore reducing this overlapping area
increases the overall detection probability.

For a general case of n sensors covering a cell, by the
inclusion—exclusion principle [13] we have

PS1VS,V---VS)=PS1VSV---VS,1)+P(S,)

_P(Sl \/Sz\/"'\/Sn—l) .P(Sn) ...... (7)
SN Rs) - Y PSIPS) YD P(SIPS)P(S)

o (1) P(S)P(Sy) - - P(S,)

The overlap of local detection probabilities for 7 sensors is
computed by applying the simple formula in Eq. (7) repeat-
edly for each additional sensor as follows to compute
P{R|T € C(i,))} for each cell C(i,j):

Step 1. Initialize local coverage probabilities and total
cost.

Step 2. Locate a cell in which a sensor is deployed.

Step 3. Determine the sensor type.

Step 4. Update total cost.

Step 5. Compute the detection area of this sensor using
Eq. (7).

Step 6. For each cell within the discretized circular
detection area, compute the overlapping detec-
tion probability.

Step 7. Update local detection probability for each cell
covered by this sensor.

Step 8. Go back to Step 2 until all cells in the whole sur-
veillance region are examined.

The details of the algorithm to compute local coverage
probabilities and total cost outlined above are given as
follows:

Input: sensor deployment scheme R

Output: local coverage probability P{R|T € C(i, )} for
each cell C(i,j) and total cost, where i =0,1,2,..., m — 1,
j=0,1,2,...,n—1

Begin
Initialize P{R | T € C(i.j)} to 0;
Initialize Cost (R) to 0;
fori=0tom—1
{ forj=0ton—1
{ let S, = N3, ));

i (Sk==¢)
continue
else
Update(Sk)
}
}
End

Auxiliary function Update(Sensor k)

Update(Sensor Sy)
Begin
let Cost (R) = Cost (R) + w(S);

let a = {%J,
let b = VQJ,

I=y
forr= —atoa

fors= —btob

{ lett= \/(r* LY + (s 1)

lf (T < dsk)
{

let overlap = P{R|T € C(i+r,j+5)} * P(Sk,7,05,);
let P{R|IT€ C(i+r,j+s5)} =P{RIT€ C(i+r,j+s)} + P(Sk,7,0a5,) — overlap;

End
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Then we compute P{R|T € R} by adding all local detec-
tion probabilities in the surveillance region given by

m—1 n—1

PRITER} =" > P(R|T€ C(i,))} = P{T € C(i,))},

=0 j=0
(8)
which is the objective function to be maximized under the
cost constraint Cost (R) < Q. Given a priori distribution
P{T € ((i,j)} of target T in a computable form and the
sensor distributions, the objective function is computable.
This version of the SDP, namely under statistical inde-
pendence condition, can be shown to be NP-complete by
a simple extension of the results of the last section. Under
the statistical independence, within each cell the probabil-
ity of joint detection is the product of individual probabil-
ities and hence is smaller than either. Thus, any
overlapping sensors within a cell can be separated to
increase the probability of detection, and it suffices to
consider no more than one sensor per cell. Rest of the
proof follows the last section: under the restriction that
each sensor detects target in the cell it is currently located,
this problem reduces to ¢-SDP in last section, which
shows the current problem to be NP-complete by
restriction.

3. Approximate solutions using genetic algorithm

Genetic algorithm is a computational model that sim-
ulates the process of genetic selection and natural elimi-
nation in biological evolution [18]. It has been widely
used to solve the combinatorial and non-linear optimiza-
tion problems with complex constraints or non-differen-
tiable objective functions [19,20]. The computation of
genetic algorithm is an iterative process towards achiev-
ing the global optimality. During the iterations, candi-
date solutions are retained and ranked according to
their quality. A fitness value is used to screen out
unqualified solutions. Genetic operations of crossover,
mutation, translocation, inversion, addition and deletion
are then performed on those qualified solutions to create
new candidate solutions of the next generation. The
above process is carried out repeatedly until certain stop-
ping or convergence condition is met For simplicity, a
maximum number of iterations can be chosen to be the
stopping condition. The variation difference of the fitness
values between two adjacent generations may also serve
as a good indication for convergence. To utilize the
genetic algorithm method, various parts of the SDP must
be mapped to the components of the genetic algorithm
as will be shown in this section.

3.1. Genetic encoding for sensor deployment
Since a candidate solution to the SDP requires a two-

dimensional sensor ID matrix, we adopt a two-dimensional
numeric encoding scheme to make up the chromosomes

a b
Sensor Types: + senl +sen sen3
(11 3 & €]
e 311 ¢
¥ e €1 2 ¢
33 & 3 ¢
_E E & & &

Fig. 6. (a) Visual illustration of a deployment solution using three sensor
types; (b) corresponding sensor ID matrix.

instead of the conventional linear sequence. As Fig. 6
shows, we construct a sensor ID matrix for a possible sen-
sor deployment scheme. Each element in the matrix on the
right-hand side corresponds to a cell within a surveillance
region on the left-hand side. As mentioned above, an
empty value ¢ in the matrix indicates that its corresponding
cell has no sensor deployed in and should be covered by the
sensors deployed in its neighborhood area. Furthermore,
we arrange ¢ types of available sensors in the following
order:

ds,[w(s1) = ds,/w(s2) = -+ = ds, /w(sk) = -+ = ds,/w(sy).
Recall that ds, and w(s,) are the maximum detection dis-
tance and cost of sensor of type k, respectively. Besides,
each sensor type has a sensor coverage coefficient that
determines the variation of its detection capability along
the target-sensor distance. The rank of ratio is used to
decide the probability of sensor type selected during
the population initialization as well as the addition

operation.
3.2. Fitness function

We construct the fitness function from the objective
function as

f(R) = P{RIT € R} +¢, ©)
where g is the penalty function for overrunning the con-
straint, which is defined by

0, Cost(R) < 0
&= {5 +E, % (0 — Cost(R))/O Cost(R) > 0

where J is a proper penalty coefficient and is set to 100, and
E, = max,{ds, /w(Sk)}.

(10)

3.3. Selection of candidates

The selection operation, also called reproduction opera-
tion, retains good candidate and eliminates others from the
population based on the individual fitness values. It aims to
inherit good individuals either directly from the last gener-
ation or indirectly from the new individuals produced by
mating the old individuals. The frequently used selection
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mechanisms include fitness proportional model, rank-
based model, expected value model, and elitist model [19].

In our implementation, the survival probability B; for
each individual (solution) ‘R; is computed based on the fol-
lowing fitness proportional model:

Bi=f(%) / S ore), (1)

where M is the population size. The hybridization individ-
uals are produced according to the selection rule so that the
individual with bigger B; has a higher probability to
survive.

3.4. Implementation of genetic operators

The solution set of each new generation after initial pop-
ulation is generated as follows. Randomly select two
hybridization individuals R, and R,, and combine them
to get two other individuals R, and R of new generation
by using combinatorial rules of crossover, mutation, inver-
sion, translocation, addition and deletion [21]. Some of
these genetic operators are carried out on a two dimensional
basis. Except for crossover, all the other operators operate
on only one parent solution. This process continues until all
M individual solutions of new generation are created.

1. Crossover: Crossover is an operation of segment
exchange for two solutions. Given two parent (hybrid-
ization individuals) solutions on the left side in Fig. 7,
a two-dimensional two-point crossover operation pro-
duces two child solutions on the right side as Fig. 7 illus-
trates. Both window size and location for crossover are
selected randomly.

2. Translocation: The objective of translocation is to
exchange information between different segments within
a single solution, as Fig. § illustrates. Same as in cross-
over operation, the translocation window size is selected
at random as well as its source and destination position.

3. Mutation: The mutation operator chooses one or more
cells randomly in the surveillance region and changes
their values by the preset mutation probability. Actually,
it is a combination of addition and deletion operators.
As Fig. 9 shows, a sensor of type A is moved to a new
place, a sensor of type B is replaced by a sensor of type

. _

Crossover

Translocation

Fig. 8. Two-dimensional translocation.

A >®

B > Mutation o
([

C >0

D >0

Fig. 9. Mutation operator.

C, a sensor of type C is deleted, and a sensor of type D is
replaced by a sensor of type B. The selection probability
of a certain type of sensor for addition operator depends
on the ratio of its detection range to unit price, so does
for the population initialization.

4. Computational results

In our work, we consider a probabilistic sensing model
with multiple sensor characteristics and a global budget
constraint, while in many other existing solutions, only a
single deterministic sensing model is used. These differences
in the problem formulation make it difficult to conduct
direct comparison of our approach to others. In this sec-
tion, we present simulation results of the approximation
solution based on genetic algorithm (GA) and compare
its performances with those of a greedy solution based on
uniform placement (UP) of sensors. The UP method
employs two greedy algorithms in terms of selecting the
sensor that provides the maximum ratio of detection range
to unit price and deploying them in the optimal positions.

Fig. 7. Two-dimensional two-point crossover.
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Specifically, we distribute a maximum set of “best” sensors
under a given budget limit in the surveillance region in an
optimal way such that the overlapping areas between adja-
cent sensors are minimized.

Both algorithms are implemented in C++. We consider
that the target has a uniform a priori distribution in the sur-
veillance region such that the probability of target T
appearing in a cell C(i,j) is P{T € C(i,j)} = 1/(m- n).
Therefore, from Eq. (8) calculating the average detection
probability, we have our objective function as follows:

P{R|Te R}:i " PIR|TE Cli )} (m ), (12)

j:

with the constraint Cost (R) < Q. We utilize this formula
for our computations in this section, and the case in which
the target has other a-prior distributions can be handled
using Eq. (8) in place of above expression.

4.1. First case of small region size

In the first case, we consider a surveillance region of
50 x50 cells with five types of sensors as listed in
Table 1. All parameters used by the genetic algorithm are
specified in Table 2. The investment limit is set to be
1800 U expense and the maximum generation number is
set to be 200. Upon the completion of optimization pro-
cess, the GA achieves a sub-optimal deployment scheme
with detection probability of 94.52% for the surveillance
region within the investment budget

The graphical representation of the deployment scheme
computed by the genetic algorithm is illustrated on the left
side of Fig. 10(a). A local detection probability is given in
each cell for evaluation.” The GA optimization process
curve is plotted on the right side of Fig. 10(a) with the gen-
eration number represented by the x-axis and the corre-
sponding fitness value represented by the y-axis. Its
corresponding 3-D display of the local coverage probabili-
ties of 50 x 50 cells is plotted in Fig. 10(b).

We conduct a series of GA computations for this sur-
veillance region to investigate the impact of the invest-
ment limit on the average detection probability. Fig. 11
shows such a plot where the average detection probability
increases in response to the increment of investment limit.
It is observed that increasing the investment beyond
1800 U does not pay off as much since the incremental
gain of the detection probability is marginal. This graph
could help determine a proper sensor deployment scheme
within any given cost for a given surveillance region.
More importantly, it gives a good hint for choosing a
proper initial investment limit for the given surveillance
region.

5 The values of local detection probabilities are overwritten by those
values of neighbor cells except for the right-most column due to the
relatively small display screen, so is the case in Fig. 11.

Table 1

Attribute parameters of five types of sensors used in Case 1

Sensor Sensor Unit Detection Detection

Type ID price range coefficient

Senl 1 86 124 80

Sen2 2 111 159 78

Sen3 3 113 163 68

Sen4 4 135 195 68

Sen5 5 139 200 84

Table 2

Parameters used by the genetic algorithm in Case 1

Parameters in genetic algorithm Values
Maximum generation number 200
Maximum investment limit 1800
Population size 30
Probability of crossover 0.99
Probability of mutation 0.24
Probability of deletion 0.10
Probability of translocation 0.99
Probability of inversion 0.82
Probability of addition 0.10

Fig. 12(a) shows the computational result of the same
surveillance region based on UP using the sensors of type
with the maximum ratio of detection range to unit price.
The UP achieves an average detection probability of
88.83% within the specified investment budget Its corre-
sponding 3-D display of the local coverage probabilities
of 50 x 50 cells is plotted in Fig. 12(b).

4.2. More cases of larger region sizes

We now consider larger surveillance regions and more
sensor types with different parameters. Same as in Case
1, the UP only uses the sensors of type with the maxi-
mum ratio of detection range to unit price. The compar-
isons of computational results between the genetic
algorithm and the uniform placement are summarized
in Table 3.

For further comparison, the average detection probabil-
ities computed by both GA and UP for each region size are
plotted as clustered columns in Fig. 13. In all the simula-
tion cases we studied, the GA achieved significantly higher
probability of detection than the UP under the given cost
bound. Also, these experimental results show that our
GA-based approach is able to scale well with the region
size, number of sensor types, and various constraints on
the investment budget

5. Conclusions

Optimal surveillance and target detection are critical but
difficult task of the sensor deployment, particularly if the
sensors are of different types and have different costs. We
formulated a general sensor deployment problem for a
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Fig. 10. (a) Graphical representation of deployment scheme. (b) 3-D display of the local coverage probabilities for a surveillance region with 50 x 50 cells

based on genetic algorithm.

planar grid region with the objective of maximizing the
detection probability within a given deployment cost. We
showed this problem to be NP-complete, and then pre-
sented an approximate solution using a genetic algorithm
for the case the sensor distributions are statistically inde-

pendent. Computational results were presented when the
target has uniform prior distribution and Gaussian approx-
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imation for sensor distributions, which showed that this
solution performs favorably in solving the sensor deploy-

Investment Limit

Fig. 11. Average detection probability versus investment limit for a region

with 50 x 50 cells.

ment problem. This solution is applicable to more general
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Fig. 12. (a) Graphical representation of deployment scheme. (b): 3-D display of the local coverage probabilities for a surveillance region with 50 x 50 cells

based on uniform placement.

The challenge in this case is to ensure low computa-

lems.

cases in which the target’s a-priori distribution is not uni-
form and the sensor distributions are more complicated
but computable. In general, the computational cost of such

extensions would be correspondingly higher.

domain-specific

the

complexity by utilizing

tional

knowledge of the sensors. In particular, the simple incre-

mental formula computing the overlapping detection prob-

ability is no longer valid and in the worst-case this
computation may have an exponential complexity for arbi-
trary distributions. From an algorithmic perspective, poly-

nomial-time approximations to the sensor deployment
problem that are guaranteed to be provably close-to-opti-

mal will be of future interest.

There are a number of avenues for further research.

First, it would be interesting to see if analytical perfor-
mance bounds can be placed on the solution computed
by our method. Also, extensions of the proposed method

when the statistical independence is not satisfied would

be applicable to larger classes of sensor deployment prob-
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Table 3
Comparison of computational performances of GA and UP
Case no. Surveillance No. of Max investment Genetic algorithm Uniform placement
region size sensor types limit Total cost Ave. detection Total cost Ave. detection
probability (%) probability (%)
1 50 x 50 5 1800 1796 94.52 1620 88.83
2 100 x 100 5 2100 2081 93.03 1920 84.41
3 120 x 120 7 2250 2226 94.18 2160 87.44
4 150 x 150 7 2350 2340 93.12 2187 85.96
5 200 x 200 8 2600 2587 93.97 2430 88.61
6 300 x 300 5 3900 3861 93.64 3630 88.75
7 600 x 600 6 4600 4598 96.84 4400 87.69
8 750 x 750 5 6000 5995 93.81 5670 87.40
9 900 x 900 8 9000 8949 95.16 8993 86.61
10 1000 x 1000 9 9700 9698 93.70 9630 88.58
Performance Comparison of GA and UP
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Fig. 13. Performance comparison of GA and UP for a region with 50 x 50 cells.
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