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Most of the traditional methods for shape classification are based on contour. They often
encounter difficulties when dealing with classes that have large nonlinear variability,
especially when the variability is structural or due to articulation. It is well-known that
shape representation based on skeletons is superior to contour based representation in
such situations. However, approaches to shape similarity based on skeletons suffer from
the instability of skeletons, and matching of skeleton graphs is still an open problem.

Using a new skeleton pruning method, we are able to obtain stable pruned skeletons
even in the presence of significant contour distortions. We also propose a new method for
matching of skeleton graphs. In contrast to most existing methods, it does not require
converting of skeleton graphs to trees and it does not require any graph editing. Shape
classification is done with Bayesian classifier. We present excellent classification results
for complete shapes.

Keywords: Shape classification; skeletons; shape similarity; skeleton pruning; Bayesian
classifier.

1. Introduction

An important goal in image analysis is to classify and recognize objects. They can be
characterized in several ways, using color, texture, shape, movement and location.
Shape, as a significant factor of objects, is an important research direction in image
classification and recognition. Shape of planar objects can be described based on
their contours or on skeletons.

When utilizing contours in classification and recognition, shape classes that
have a large nonlinear variability of global shape, due to structural variation, artic-
ulation or other factors, present a challenge for several existing shape recognition
approaches. Approaches that match the target shape to stored example shapes
require a large number of stored examples to capture the range of variability.”
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Furthermore, existing example- and model-based approaches cannot handle object
classes that have different parts or numbers of parts without splitting the class into
separate subclasses. This type of structural variation can be handled by approaches
that represent part relationships explicitly and match shapes syntactically; however,
these structural approaches are computationally expensive.?3

On the other hand, skeleton (or medial axis), which integrates geometrical
and topological features of the object, is an important shape descriptor for object
recognition.'® Shape similarity based on skeleton matching usually performs better
than contour or other shape descriptors in the presence of partial occlusion and
articulation of parts.®917:22 There exists a large number of algorithms to compute
skeletons. We only review some of them. Ablameyko et al.! presented an algorithm
to construct the hierarchical structure graph of the object by decomposition of the
distance-labeled skeleton into its meaningful structure elements. This graph can
exactly describe the topological relationship of its structure elements. Borgefors

I.'' introduced a procedure to hierarchically decompose a multiscale discrete

et a
skeleton. The method led to good performance on patterns having different thick-
ness in different regions. Several methods related to skeleton computation have
been introduced and analyzed by Arcelli and Sanniti di Baja.? Though the existing
method on skeleton shows good performance in some cases, it is still a challenging
task to automatically recognize the objects using their skeletons due to skeleton
sensitivity to boundary deformation.?® Usually the skeleton branches have to be
pruned for recognition.*:6:12:20:25,29 Noreover, another major restriction of recogni-
tion methods based on skeleton is a complex structure of obtained tree or graph
representations of the skeletons. Graph edit operations are applied to the tree or
graph structures, such as merge and cut operations,m’15’19’21’30
matching process. Probably the most important challenge for skeleton similarity is
the fact that the topological structure of skeleton trees or graphs of similar object
may be completely different. Besides, some methods?” have focused on utilizing
geometry measure to gauge the similarity of 2D shapes by comparing their skele-
tons. This fact is illustrated in Fig. 1. Although the skeletons of the two horses (a)
and (b) are similar, their skeleton graphs (c) and (d) are very different. This exam-
ple illustrates the difficulties faced by approaches based on graph edit operations
in the context of skeleton matching. To match skeleton graphs or skeleton trees
like the ones shown in Fig. 1, some nontrivial edit operations (cut, merge, etc.) are
inevitable. On the other hand, skeleton graphs of different objects may have the
same topology as shown in Fig. 2. The skeletons of the brush in Fig. 2(a) and the
pliers in Fig. 2(b) have the same topology as shown in Fig. 2(c).

The proposed method combines Bayesian classifier and a novel skeleton repre-
sentation that overcomes the above limitations. This paper utilizes a three-level sta-
tistical framework including distinct models for database, class and part. Bayesian
inference is used to perform classification within this framework. Based on Bayes
rule, the posterior probabilities of classes can be computed by the difference between
skeletons of query shape and the shape in database. In the proposed framework, it

in the course of the
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Fig. 1. Visually similar shapes in (a) and (b) have very different skeleton graphs in (¢) and (d).
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Fig. 2. Dissimilar shapes in (a) and (b) can have the same skeleton graphs (c).

can work well to classify complete shapes. The outline of the proposed method is
as follows:

(1) Stable skeletons are obtained by the skeleton pruning method,® which is briefly
described in Sec. 3.

(2) The probability of two different paths being similar is obtained as Gaussian
of the distance between them. The definition of skeleton path is presented in
Sec. 4 and the way to calculate the probability is described in Secs. 4 and 5.
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(3) In Sec. 5, we compute the probability that a given shape, usually composed of
several skeleton paths, belongs to a given shape class. The computation is based
on Bayesian classifier and the probabilities of pairs of paths being similar.

2. Relevant Work on Shape Matching

This section briefly introduces some recent methods developed for shape matching,
including classification, detection and retrieval.

A number of approaches are based on the contour. Belongie et al.” proposed
the concept of “shape context”, which are log-polar histograms among different
points on the shape. Through finding the correspondence between points on differ-
ent shapes, this approach can obtain the similarity between the shapes. Some meth-
ods used boosting to classify objects. Bar-Hillel et al.” designed a classifier based on
a part-based, generative object model. The approach given by Opelt et al.'* devel-
oped a novel learning algorithm which uses Adaboost to learn jointly based on
shape features. Besides the learning algorithm, Gorelick et al.'® used Poisson equa-
tion to extract various shape properties for shape classification. Sun and Super?®
used distribution of contour parts in known object classes to classify shapes with
Bayesian classifier. Their classification works only for complete query shapes.

In contrast to the methods based on contour, many researchers have worked
on the approaches based on skeleton. Zhu et al. matched the skeleton graphs of
objects using a branch-bounding method that is limited to motionless objects.?’
Shock graph is a kind of ARG proposed by Siddiqi et al., which is based on the
shock Grammar. The distance between subgraphs is measured by comparing the
eigenvalues of their adjacency matrices. Though there are a lot of methods for shape
similarity based on skeleton, few approaches implement the skeleton in classifica-
tion. The main reason for this is that the past methods have high complexity. The
proposed method defines a novel approach to classify the shape.

3. Skeleton Pruning

Any topology preserving method can be used to compute skeletons. We used the
method by Choi et al.'? The limitation of skeleton is that it is sensitive to the
boundary deformation and the noise. Therefore, it is difficult to obtain the ideal
skeletons to recognize the objects. In order to solve this problem, this method
utilizes skeleton pruning introduced in Ref. 6 to improve the skeleton. First, Discrete
Curve Evolution (DCE) simplifies the polygon. Then the skeleton is pruned so that
only branches ending at the convex DCE vertices remain. For example, in Fig. 3(a),
the skeleton contains a lot of noise. In Fig. 3(b), all the endpoints (denoted by
1,2,...,6) of the horse’s skeleton are vertices of the DCE simplified polygon (in
red). The pruned skeleton is guaranteed to preserve the topology of the shape and
it is robust to noise and boundary deformation.%

The main benefit of using DCE is the fact that DCE is context sensitive. It
recursively removes least relevant polygon vertices, where the relevance measure is
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Fig. 3. (a) The original skeleton without pruning. (b) The skeleton pruned with contour
partitioning.

computed with respect to the actual partially simplified versions of the polygon.
Therefore, the remaining skeleton branches are determined in the context of the
whole shape, e.g. the same branch that may be irrelevant for one shape, and is
removed, may be relevant for a different shape, and therefore, it will remain.

In order to obtain skeletons composed of only relevant branches, provided none
are missed, an appropriate stop criterion of the DCE simplification is needed. Usu-
ally we can use the same threshold as stop criterion of DCE for the shapes in the
same class, because they are very similar. Moreover, our classification is very stable
to our pruning skeletons, since do not just train with only one shape for each class
with Bayesian rule. Therefore, even if we get a few additional skeleton branches,
the classification is not influenced.

4. Shape Path Representation

The endpoint in the skeleton graph is called an end node, and the junction point
in the skeleton graph is called a junction node. The shortest path between a pair
of end nodes on a skeleton graph is called a skeleton path, e.g. see Fig. 4.

Y
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Fig. 4. (a) The horse’s skeleton. (b) The shortest paths (in red) between the pairs of endpoints.
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Suppose there are N end nodes in the skeleton graph G to be matched, and let
v; (1 =1,2,..., N) denote the ith end node along the shape contour in the clockwise
direction. Let sp(m,n) denote the shape path from v, to v,. We sample sp(m,n)
with M equidistant points, which are all skeleton points. Let R,, ,(t) denote the
radius of the maximal disk at the skeleton point with index ¢ of sp(m, n). Let Ry, »,
denote a vector of the radii of the maximal disks centered at the M sample skeleton
points on sp(m,n):

Rm,n = (Rm,n(t))tzlt...,M = (7“1,7“27 e 77"1\/[). (1)

Thus, the shortest paths between every pair of skeleton endpoints are repre-
sented as sequences of radii of the maximal disks at corresponding skeleton points.
In this paper, the radius Ry, ,(s) is approximated with the values of the distance
transform DT(s) at each skeleton point s. Suppose there are Ny pixels in the orig-
inal shape S. To make the proposed method invariant to the scale, we normalize
R,,.»(s) in the following way:

DT(s)
Rm,n(s) B v—— (2)
Ny 21 DT(si)
where s; (i = 1,2,..., Ny) varies over all Ny pixels in the shape.

The shape dissimilarity between two shape paths is called a path distance. If
R and R’ denote the vectors of radii of two shape paths sp and sp’ respectively, the
path distance pd between sp and sp’ is:

o~ (ri = 1)?

AR, R) =S L)
PR = 2]

(3)
The main motivation for Eq. (3) is the fact that similar shapes will have similar
radii sequences on their corresponding skeleton paths. Formula (3) differs from the
squared Euclidean norm by the scaling factor in the denominator, which has the
effect of weighting the radii difference with respect to the radii values, e.g. if both
radii are large, their difference must be significant. This is motivated by human
perception, since the difference in thicker parts of objects must be more significant
in order to be noticed. Path distance can also be used for finding the correspondence
between two similar shapes.®

5. Bayesian Classification

Compared to the method in Ref. 26, which uses contour segments and Bayesian clas-
sification to perform a recognition task, our method uses paths instead of contour
segments. Since paths are normalized, our method does not require any invariant
reference frame, and consequently the process of PCA26 can be removed.

For a given query shape and a given shape class, we compute the probability
that the shape belongs to the class. This step is repeated for all shape classes, and
the query shape is then assigned to the class with the highest probability.
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Given a shape w’ that should be classified by Bayesian classifier, we build the
skeleton graph G(w’) of w” and input G(w’) as the query. For a skeleton graph G ('),
if the number of end nodes is n, the corresponding number of paths is n(n — 1)/2
compared to the number of parts n! in Ref. 26. Then, the Bayesian classifier com-
putes the posterior probability of all classes for each path sp’ € G(w'). By accu-
mulating the posterior probability of all paths of G(w’), the system automatically
yields the ranking of class hypothesis for the query shape w’.

We use Gaussian distribution to compute the probability p that two skeleton
paths are similar:

exp(_M> . (4)

(57 |5p) = ——
S S =
p{sp |Sp mor 2%

For example, this probability is high for two different paths with small pd value.
For different datasets, a should be different. In our experiments, for the dataset of
Aslan and Tari,® o = 0.15 and o = 0.05 for Kimia dataset.??

The class-conditional probability of observing sp’ given that w’ belongs to
class ct is:

plsp'les) = Y plsp'sp)p(sples). (5)
speG(ci)

We assume that all paths within a class path set are equiprobable, therefore

splci) = . 6

According to the probability that the query shape belongs to a given class,

the posterior probability of a class given that path sp’ € G(w’) is determined by
Bayes rule:

p(sp'lei)p(ci) _ )

pleds) = P

Similar to the above assumption, p(ci) = 1/M. The probability of sp’ is
equal to

M
p(sp') = Zp(sp’lci)p(ci)- (8)

Through the above formulas, we can get the posterior probability of all paths of
G(w'). By summing the posterior probabilities of a class over the set of paths in the
query shape, we obtain the probability that it belongs to a given class. Obviously,
the biggest one, C'm, is the class that input shape belongs to

C), = argmax ilsp). 9
argmax > plelsp)) 9)
sp’€G(w’)
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6. Experiments

In this section, we evaluate the performance of the proposed method based on the
database of Aslan and Tari.?> We selected this database due to large variations of
shapes in the same classes. As shown in Fig. 5, Aslan and Tari database includes 14
classes of articulated shapes with 4 shapes in each class. We use each shape in this
database as a query, and show the classification result of our system in Fig. 6. We
used leave-one-out classification, i.e. the query shape was excluded from its class.
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Fig. 5. Aslan and Tari database?” with 56 shapes.

class | query | result | query | result | query | result | query | result
1 N 1 x 1 x 1 ,.f; 1
2 ") 2 » 2 "] 2 & |2
3 RS 3 ) 3 b g 3 A, 4 3
4 G ) 4 A 4 & 4 4 4
5 |5 3 5 e * 5
6 b2y 6 o8 6 b0 8 6 ». 6
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Fig. 6. Results of the proposed method on Aslan and Tari database.?” Since each class is com-
posed of four shapes, the class of query and the result should be the same. Red numbers mark
the results where this is not the case.
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The table in Fig. 6 is composed of 14 rows and 9 columns. The first column of
the table represents the class of each row. For each row, there are four experimental
results which belong to the same class. Each experimental result has two elements.
The first one is the query shape and the second one is the classification result of
our system. If the result is correct, it should be equal to the first column of the row.
The red numbers mark the wrong classes assigned to query objects. Since there is
only one error in 56 classification results, the classification accuracy in percentage
by this measure is 98.2%. In fact, the only error is reasonable. Even a human can
misclassify it. The query shape is very similar to the star, which is class 8. Therefore,
in some sense, we can conclude that all of our results are correct.

We compared our method to the method presented by Sun and Super in Ref. 26,
their method used the same Bayesian classifier but based on contour parts. As shown
in Fig. 7, their method yields four wrong results for 56 query shapes, which yields
the classification accuracy of only 92.8%. Since Aslan and Tari did not present
results on their entire database, we cannot directly compare the recognition rate of
our method to Ref. 3. However, we were able to compare our method to the inner
distance!® on this dataset. Inner distance'® obtains only 94.64% through the nearest
neighborhood classification, though it can solve the articulated shape classification
very well.

The classification time for all 56 shapes with the proposed method takes only
5 min on the PC with 1.5 GHZ CPU and 512M RAM. In comparison, Sun and
Super’s method took 13 min on the same computer.

We also apply the proposed method to Kimia dataset?? as shown in Fig. 8,
which includes 18 classes, and each class consists of 12 shapes. In each experiment,
we remove the query shape from the database, therefore there are 215 shapes in

class | query | result | query | result | query | result | query | result
1 by 1 x 1 X 11 4 9
2 " 2 » 2 ¥ 2 & 2
3 A, ) 3 ) 3 b g 6 M 3
4 ) 4 S 4 & 4 4 4
5 ua 5 » 5 & 5 P2 5
[§ b2y 6 ot 6 b0 8 6 . 6
7 = 7 / 7 wt 7 V3 7
8 * 8 * 8 A 8 x* 8
9 ia S 9 & 9 ‘{ 9 P 9
10 & 10 X 10 ¥ 10 1™ 10
11 X 11 K s 11 & 11 N 11
12 v 12 ("4 12 ’ 12 = 12
B || B X 8 [ 13 1 13
4 | - 14 [4 4 | @& | 14 » 14

Fig. 7. Results of the Sun and Super’s method on Aslan and Tari database.?” Since each class
is composed of four shapes, the class of query and the result should be the same. Red numbers
mark the results where this is not the case.
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Fig. 8. Eighteen classes in Kimia dataset®? are illustrated with one shape each.

database and one query shape. Since there are only 12 errors in 216 classification
results, the classification accuracy in percentage is 94.4%. We illustrate some of
our results in Fig. 9. For each class we show two example queries that are correctly
classified. We also show four wrong results (chosen from the 12 error classifications)
in the last two rows marked in red. Observe that some of them can be intuitively
explained. For the glass, the skeleton is similar to the one of the bone. Moreover,
the turtle exhibits some similarity to elephants, and the last query has similar shape
to bricks.

We have also evaluated the Sun and Super’s method on this dataset. Its classi-
fication accuracy is 97.2%, which means there are six wrong classification results.
Four wrongly classified shapes by Sun and Super’s method are shown in Fig. 10.

The classification time for all 216 shapes with the proposed method takes about
25 min on the PC with 1.5 GHZ CPU and 512 M RAM compared to Sun and Super’s
45 min.

The results demonstrate that our method can perform better on the articulated
shapes than Sun and Super’s method, since the shapes of Aslan and Tari’s dataset
are more articulated than the ones in Kimia’s dataset. The main reason is that
the shape descriptor of the proposed method is based on the skeleton which is
much more stable for articulated shapes than the contour. Though the accuracy
of Sebastian et al.?* on the dataset is 100% which is better than the proposed
method, the proposed method is still promising and the complexity is much lower
than Sebastian et al.

7. Conclusions

In this paper, we propose a novel method to classify the whole shape that is
based on statistics of dissimilarities between shortest skeleton paths. The result
of two different datasets demonstrated that skeleton paths are very efficient shape
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Query Result Query Result
J Bone j Bone
1 Glass I Glass
” heart 9 heart
‘ Misk t Misk
\ Bird k Bird
— Brick - Brick
'ﬁ camel % camel
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‘ child ‘ child
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’ face . face
}V fork _\ fork
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’ ray F ray
- turtle ‘ turtle
I. camel ! bone

4y | clephant ! brick

Fig. 9. Part of the classification results on Kimia dataset.

Query Results Query Results Query Results Query Results

elephant elephant elephant camel
- W )

Fig. 10. Part of the wrong classification results of Sun and Super’s method on Kimia dataset.



744  X. Bai et al.

representation for classification. In the future, our work will focus on combining
the contour and skeleton information by combining their corresponding Bayesian
classifiers.
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