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Abstract

Due to the low cost and capabilities of sensors, wireless sensor networks

(WSNs) are promising for military and civilian surveillance of people and ve-

hicles. One important aspect of surveillance is target localization. A location

can be estimated by collecting and analyzing sensing data on signal strength,

time of arrival, time difference of arrival, or angle of arrival. However, this

data is subject to measurement noise and sensitive to environmental condi-

tions, so its location estimates can be inaccurate. In this paper, we add a

novel process to further improve localization accuracy after the initial loca-

tion estimates are obtained from some existing algorithm. Our idea is to ex-

ploit the consistency of the spatial-temporal relationships of targets we track.

Spatial relationships are the relative target locations in a group and temporal
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relationships are the locations of a target at different times. We first develop

algorithms that improve location estimates using spatial and temporal rela-

tionships of targets separately, and then together. We prove mathematically

that our methods improve localization accuracy. Furthermore, we relax the

condition that targets should strictly keep their relative positions in the group

and also show that perfect time synchronization is not required. Simulations

were also conducted to test the algorithms. They used initial target location

estimates from existing signal-strength and time-of-arrival algorithms and

implemented our own algorithms. The results confirmed improved localiza-

tion accuracy, especially in the combined algorithms. Since our algorithms

use the features of targets and not the underlying WSNs, they can be built

on any localization algorithm whose results are not satisfactory.

Keywords: localization, spatial-temporal, surveillance, tracking, wireless

sensor networks
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1. Introduction

Wireless sensor networks (WSNs) are systems of small, low-powered net-

worked sensing devices deployed over an area of interest to monitor inter-

esting events and perform application-specific tasks in response to them.

Typically they monitor people and vehicles. Due to their low cost and capa-

bilities, nonimaging sensors can avoid occlusion and confusion in depth, can

violate privacy less of those tracked, can be easier to conceal from adversary

countermeasures, and can be distributed over large areas to provide uniform

coverage [22]. Wireless sensor networks have good potential in persistent

pervasive surveillance in military and civilian contexts. A good example

is monitoring of a bridge for sabotage or explosive-device emplacement in

Afghanistan today: explosive devices rarely can be sensed directly, but sen-

sors can be used to distinguish normal activity from suspicious loitering by

tracking the positions of people and vehicles.

A fundamental problem addressed in surveillance is target localization.

When a moving target enters a sensor network, it affects sensor readings

by its properties such as temperature, sound, light, magnetism and seismic

vibration. Most of the existing localization algorithms for wireless sensor

networks employ a centralized approach that requires all sensory data to be

delivered to the central processor where the data are processed to locate a

target by techniques such as signal strength [2, 12, 21], time of arrival or time

difference of arrival [5, 28], and angle of arrival [18, 20], etc. However, the

accuracy of these localization techniques is affected by measurement noise

and environmental conditions [2, 6], and often there is still room to improve

the localization accuracy.
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In this paper, we add an extra process to improve localization accuracy af-

ter the initial location estimates are obtained from some existing localization

algorithm. We tackle the problem from a new direction: Instead of taking

more and better measurements and using more refinement processes on the

side of WSNs, we exploit the spatial-temporal relationships of tracking tar-

gets themselves. The spatial relationship of targets is defined as the relative

locations of the targets within their group while the temporal relationship

is defined as a target’s locations at different times. To attain their goals,

malicious people like criminals and terrorists rarely act as individuals. They

usually have a team of collaborators as in actions such as explosive-device

emplacement. Acting in a group can also confuse both manual and auto-

mated surveillance, especially if they dress and behave similarly. In nature,

fish swim in schools to avoid sharks, and birds fly in flocks to avoid hawks, to

make it difficult for predators to track each individual. On the other hand,

the co-location of the elements of group provides an extra condition to locate

them better. Similarly, if we know a target’s locations over time, we can bet-

ter locate it. These observations motivate us to explore methods to improve

localization accuracy using spatial-temporal relationships of targets.

The relationship between our algorithms and the existing ones is that our

algorithms take the location estimates from the existing ones as inputs and

apply the spatial-temporal relationships of targets to further improve local-

ization accuracy. In other words, our algorithms are built on the underlying

existing localization algorithms which we refer to as baseline algorithms. Our

algorithms can be used if the location estimates from the baseline algorithms

are not satisfactory. Thus, our algorithms do not incur extra communication
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cost except the computation cost. For the baseline localization algorithm

that uses a centralized approach, the major cost comes from the communica-

tion between sensors and the central processor. To reduce the communication

cost, a cluster-based hierarchical routing protocol [11, 16] can be used: sen-

sors are organized into clusters and cluster heads are selected. Routing is

conducted by ordinary sensors first sending the sensory data to their cluster

heads and then the cluster heads sending the data to the central processor.

To the best of our knowledge, the idea to improve localization accuracy using

the spatial-temporal relationships of targets has not been discussed before

besides our preliminary effort in [4]. A major advance in the current work

is that we prove mathematically that our methods can further improve lo-

calization accuracy. Another advance is the relaxation of the requirement

for strict consistency of group positions and the un-necessity of perfect time

synchronization. Still another advance is the results of the first good test-

ing of the performance of our algorithms in simulations, including now data

exploiting time of arrival.

The main contributions of this paper are:

• We propose new methods to improve localization accuracy using spatial-

temporal relationships of targets, both separately and together.

• We prove mathematically that our methods can improve localization

accuracy.

• We relax the condition that group members should strictly keep their

relative positions in the group and show that perfect time synchroniza-

tion is not required.
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• We validate the effectiveness of our methods with simulations.

• Because our methods use the features related to targets themselves,

and not those of WSNs, they can be used as an extra process to further

improve localization accuracy if the results from the existing algorithms

are not satisfactory.

The remainder of this paper is organized as follows: Section 2 references

the related work. Section 3 formulates the problem of using spatial-temporal

relationships among targets to improve localization accuracy. Sections 4, 5,

and 6 put forward methods to achieve that. Section 7 provides theoretical

analysis. Section 8 shows simulation results of the proposed approaches.

Section 9 draws conclusions.

2. Related Work

Before a target can be localized, the locations of the sensors in WSNs

should be identified. In the literature, there are many sensor localization

algorithms for WSNs [3, 7, 10, 17, 19, 25, 26], so we ignore this problem

here.

A target can be localized using many types of signals it sends out: tem-

perature, sound, light, magnetism and seismic vibration. [1] lists different

signals sent from an unarmed person, a soldier and a vehicle. An unarmed

person is likely to disrupt the environment thermally, seismically, acousti-

cally, electrically, chemically, and optically. A soldier is more likely to be

detected by magnetic sensor because of the presence of metal on his body,

e.g. a weapon. And a vehicle is likely to disrupt the environment thermally,
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seismically, acoustically, electrically, magnetically, chemically, and optically.

Therefore a sensing modality can be determined based on the types of targets

to be tracked.

The common localization techniques for nonimaging sensors are:

• Signal Strength [2, 12, 21]: Locations are estimated by comparing signal

strengths at different locations, using a theoretical or empirical model

to translate signal strength into distance.

• Time of Arrival/Time Difference of Arrival [5, 28]: Locations are es-

timated by comparing times of arrival of the signal or time difference

of arrival at different locations. The propagation time can be directly

translated into distance, based on the known signal propagation speed.

• Angle of Arrival [18, 20]: Locations are estimated by comparing relative

angles of the signal at different locations.

There are also some existing papers on target tracking by data fusion. If

we can obtain relatively independent estimates of the probability of a tar-

get at a location, we can combine the probability distributions by Bayesian,

Dempster-Shafer, fuzzy, particle-filter, or other methods. Representative ex-

amples of this approach are [9, 13, 27, 29]. Some works have considered

the effects of groups of targets moving together [14, 23, 24]. But these tar-

get tracking methods take better measurements and use more refinement

processes on the side of WSNs. None of them has considered the spatial-

temporal relationships of tracking targets. Also these methods are used to

predict target locations or evaluate targets correlation and not to improve

localization accuracy from estimated values.
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3. Problem Formulation

We assume that sensor nodes are deployed over a two-dimensional area.

They are responsible for tracking moving targets which intrude the monitored

region. We further assume that targets move together in a group. When tar-

gets move in a group, their relative locations create the spatial relationships

among them. And when a target moves along a constant direction with a

constant speed, its footsteps in the trajectory, the locations of the target at

different times, are temporally related.

The problem is formulated as follows: given the preliminary estimated

locations of targets by some algorithm that treats the target locations as in-

dependent of one another and over time, is it possible to improve localization

accuracy further by exploiting through spatial relationships and temporal re-

lationships of the targets? To avoid confusion, we denote a target’s actual

location as (x, y), the estimate of the position from some existing algorithm

as (x∗, y∗), and the adjusted estimate after applying our methods as (x′, y′).

4. Improving Localization Accuracy by Spatial Relationships

In this section, we put forward an algorithm which we refer to as LAS to

improve localization accuracy using the spatial relationships among targets.

Suppose there are N targets u1, u2, · · · , uN moving across a sensor field

with their relative locations and apparent angles unchanged. For example,

as shown in Figure 1, we can imagine four targets A, B, C, and D stay

at the four vertexes of an iron frame. They do not change their relative

positions during movement. At a certain time t, the estimated locations

of these targets, calculated by some localization algorithm, are: (x∗
u1, y

∗
u1),
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Figure 1: The four targets keep their configuration during movement

(x∗
u2, y

∗
u2), · · · , (x∗

uN , y
∗
uN). Suppose initially the relative position of a target

ui(1 ≤ i ≤ N) to the group’s centroid o, which is known, is (xi, yi). When

the group moves to a certain location in the sensor field, the relative location

of target ui to the group’s centroid o′ is (x′
i, y

′
i). If we translate o′ to o (see

Figure 2), the relationship between (xi, yi) and (x′
i, y

′
i) can be expressed as:

 x′
i

y′i

 =

 r 0

0 r

 cosα − sinα

sinα cosα

 xi

yi

 (1)

Here, α is a bearing after the group moves to a certain location, and r is

an adjustment parameter.

From the estimated values: (x∗
u1, y

∗
u1), (x

∗
u2, y

∗
u2), · · · , (x∗

uN , y
∗
uN), we cal-

culate the centroid o∗ of the group and the relative position of each target

(x∗
i , y

∗
i ) to their centroid o∗ as follows:



o∗x =

N∑
i=1

x∗
ui

N ,

o∗y =

N∑
i=1

y∗ui

N .
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Figure 2: A target’s location relative to the centroid of the group before and after the

movement  x∗
i = x∗

ui − o∗x,

y∗i = y∗ui − o∗y.

We translate o∗ to o′ and we want to minimize the error term between our

adjusted relative locations of all targets (x′
i, y

′
i)(1 ≤ i ≤ N) and the estimated

relative locations by some localization algorithm of all targets (x∗
i , y

∗
i )(1 ≤

i ≤ N). Thus, it is to minimize function:

f(α, r) =
N∑
i=1

[(x′
i − x∗

i )
2 + (y′i − y∗i )

2] (2)

To do that, apply Eq. (1),

f(α, r) =
N∑
i=1

[(rxi cosα− ryi sinα− x∗
i )

2 + (rxi sinα+ ryi cosα− y∗i )
2]

Then the following partial derivatives should be equal to 0:


∂f(α, r)

∂r
= 0,

∂f(α, r)
∂α

= 0.
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After solving equations, α and r are as follows:



α = arctan

N∑
i=1

(xiy
∗
i − x∗

i yi)

N∑
i=1

(xix
∗
i + yiy

∗
i )

,

r =

N∑
i=1

[(xix
∗
i + yiy

∗
i ) cosα+ (xiy

∗
i − x∗

i yi) sinα]

N∑
i=1

(x2
i + y2i )

.

Knowing α and r, the adjusted location of each target ui relative to

centroid o∗ can be calculated according to Eq. (1). Thus, the location of

target ui can be adjusted to:

 x′
ui

y′ui

 =

 o∗x

o∗y

+

 x′
i

y′i



=

 o∗x

o∗y

+ r

 xi cosα− yi sinα

xi sinα + yi cosα


(3)

From Eq. (3), the time complexity of improving localization accuracy by

spatial relationships is O(N).

5. Improving Localization Accuracy by Temporal Relationships

In this section, we improve localization accuracy by looking at the foot-

steps of a single target over time. Suppose we know that a target travels
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H
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x’t( , y’t)

Figure 3: A target’s trajectory over a sensor field

along a line with constant speed and direction, and the estimated loca-

tions of this target by using some localization method from time 1 to T

are: (x∗
1, y

∗
1), (x

∗
2, y

∗
2), · · · , (x∗

T , y
∗
T ). Here, time 1 may not be the time when

the target starts moving. It can be any time during its movement that we

start to observe. The problem is to adjust these estimated footsteps to make

them closer to the actual locations. We explore methods in two conditions:

(1) the speed and direction of the target are known, and (2) the speed and

direction of the target are unknown. We refer to the resulting algorithms as

LAT1 and LAT2, respectively.

5.1. Speed and direction are known

Suppose the speed of the target is v and its bearing is H (see Figure

3), the starting point of this target, which is unknown, is (x′
0, y

′
0), then the

location of this target at time t(1 ≤ t ≤ T ) should be:

x′
t = x′

0 + tv sin(H)

y′t = y′0 + tv cos(H)

(4)

Now our task is to reduce the error term between the adjusted locations
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and the estimated locations. So it is to minimize function:

f(x′
0, y

′
0) =

T∑
t=1

[(x′
t − x∗

t )
2 + (y′t − y∗t )

2] (5)

To do that, apply Eq. (4),

f(x′
0, y

′
0) =

T∑
t=1

[(x′
0 + tv sin(H)− x∗

t )
2

+ (y′0 + tv cos(H)− y∗t )
2]

Then the following partial derivatives should be equal to zero:


∂f(x′

0, y
′
0)

∂x′
0

= 0,

∂f(x′
0, y

′
0)

∂y′0
= 0.

Thus, x′
0 and y′0 can be found as:


x′
0 =

1
T
∑T

t=1 x
∗
t − T + 1

2 v sin(H),

y′0 =
1
T
∑T

t=1 y
∗
t − T + 1

2 v cos(H).

(6)

Next, each estimated location (x∗
t , y

∗
t ) can be adjusted to (x′

t, y
′
t) as fol-

lows:

 x′
t

y′t

 =

 x′
0 + tv sin(H)

y′0 + tv cos(H)

 (7)

From Eq. (7), the time complexity of improving localization accuracy by

temporal relationships when speed and direction are known is O(T ).
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5.2. Speed and direction are unknown

Suppose the unknown speed of the target is vx in x direction and vy in

y direction and the starting point of this target, which is also unknown, is

(x′
0, y

′
0), then the location of this target at time t(1 ≤ t ≤ T ) should be:

x′
t = x′

0 + tvx

y′t = y′0 + tvy

(8)

Now our task is to reduce the error term between the adjusted locations

and the estimated locations. So it is to minimize function:

f(vx, vy, x
′
0, y

′
0) =

T∑
t=1

[(x′
t − x∗

t )
2 + (y′t − y∗t )

2] (9)

To do that, apply Eq. (8),

f(vx, vy, x
′
0, y

′
0) =

T∑
t=1

[(x′
0 + tvx − x∗

t )
2 + (y′0 + tvy − y∗t )

2]

Then the following partial derivatives should be equal to zero:



∂f(vx, vy, x
′
0, y

′
0)

∂vx
= 0,

∂f(vx, vy, x
′
0, y

′
0)

∂vy
= 0,

∂f(vx, vy, x
′
0, y

′
0)

∂x′
0

= 0,

∂f(vx, vy, x
′
0, y

′
0)

∂y′0
= 0.
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Thus, vx, vy, x
′
0 and y′0 can be found as:



vx =

4
T∑
t=1

tx∗
t − 2(T + 1)

T∑
t=1

x∗
t

4
T∑
t=1

t2 − T (T + 1)2
,

vy =

4
T∑
t=1

ty∗t − 2(T + 1)
T∑
t=1

y∗t

4
T∑
t=1

t2 − T (T + 1)2
,

x′
0 =

1
T
∑T

t=1 x
∗
t − T + 1

2 vx,

y′0 =
1
T
∑T

t=1 y
∗
t − T + 1

2 vy.

(10)

Next, each estimated location (x∗
t , y

∗
t ) can be adjusted to (x′

t, y
′
t) as fol-

lows:

 x′
t

y′t

 =

 x′
0 + tvx

y′0 + tvy

 (11)

From Eq. (11), the time complexity of improving localization accuracy

by temporal relationships when speed and direction are unknown is O(T ).
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6. Improving Localization Accuracy by Combining the Spatial and

Temporal Relationships

In this section, we combine the spatial relationships with the temporal

relationships. We do it in two orders: (1) Spatial first and then temporal,

and (2) temporal first and then spatial. We refer to the resulting algorithms

as LAST and LATS, respectively.

6.1. Spatial first, temporal next

In the spatial first, temporal next combination, suppose we know the

estimated locations of all group members over the past T time points, we first

use Eq. (3) to adjust their estimated locations using the spatial relationships

in the group. After that, we apply Eq. (7) or Eq. (11) to adjust each target

according to its footsteps in the past T time points.

6.2. Temporal first, spatial next

In the temporal first, spatial next combination, suppose we know the

estimated locations of all group members over the past T time points, we

first use Eq. (7) or Eq. (11) to adjust each target according to its footsteps

in the past T time points. After that, we apply Eq. (3) to adjust the locations

of all the targets using the spatial relationships in the group.

7. Theoretical Analysis

In this section, we first prove mathematically that our methods of using

spatial-temporal relationships of targets can improve localization accuracy,

then relax the constraint that group members should strictly maintain their
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relative positions in the group and show that perfect time synchronization is

not required.

7.1. Theorem proving

To prove our results, we define the tracking error=
∑N

i=1(|ab|2). |ab|2 is

the distance square of a target’s estimated location/adjusted location a to its

actual location b. We prove that the tracking error of the estimated values

is greater or equal to the adjusted values:
∑N

i=1[(x
∗
i − xi)

2 + (y∗i − yi)
2] ≥∑N

i=1[(x
′
i − xi)

2 + (y′i − yi)
2].

Theorem 1. Suppose there are N targets u1, u2, · · · , uN moving coherently in

a group and the estimated locations of these targets, calculated by some local-

ization algorithm, are: (x∗
u1, y

∗
u1), (x

∗
u2, y

∗
u2), · · · , (x∗

uN , y
∗
uN) and if the targets

keep their relative positions in the group, adjust them by Eq. (3) improves

localization accuracy.

Proof. Since (xi, yi), (x
∗
i , y

∗
i ) and (x′

i, y
′
i) are targets’ relative positions to their

centroids in the actual values, estimated values and adjusted values and o, o′

and o∗ are translated to the same point, it is equivalent to prove that

N∑
i=1

[(x∗
i − xi)

2 + (y∗i − yi)
2] ≥

N∑
i=1

[(x′
i − xi)

2 + (y′i − yi)
2] (12)

From Eq. (2), f(α, r) =
∑N

i=1[(x
′
i − x∗

i )
2 + (y′i − y∗i )

2]

From
∂f(α, r)

∂α
= 0 and

∂f(α, r)
∂r

= 0,

N∑
i=1

[−(x′
i − x∗

i )y
′
i + (y′i − y∗i )x

′
i] = 0 (13)
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N∑
i=1

[(x′
i − x∗

i )x
′
i + (y′i − y∗i )y

′
i] = 0 (14)

Eq. (13) × sinα− Eq. (14) × cosα,

N∑
i=1

[(x′
i − x∗

i )xi + (y′i − y∗i )yi] = 0 (15)

∑N
i=1 [(x∗

i − xi)
2 + (y∗i − yi)

2]

=
N∑
i=1

[(x∗
i − x′

i)
2 + (x′

i − xi)
2 + 2(x∗

i − x′
i)(x

′
i − xi)

+ (y∗i − y′i)
2 + (y′i − yi)

2 + 2(y∗i − y′i)(y
′
i − yi)]

Apply Eq. (14),

=
N∑
i=1

[(x∗
i − x′

i)
2 + (x′

i − xi)
2 − 2(x∗

i − x′
i)xi

+ (y∗i − y′i)
2 + (y′i − yi)

2 − 2(y∗i − y′i)yi]

=
N∑
i=1

[(x′
i − xi)

2 + (x∗
i − x′

i)(x
∗
i − x′

i − 2xi)

+ (y′i − yi)
2 + (y∗i − y′i)(y

∗
i − y′i − 2yi)]

Apply Eq. (14),

=
N∑
i=1

[(x′
i − xi)

2 + (x∗
i − x′

i)(x
∗
i − 2xi)

+ (y′i − yi)
2 + (y∗i − y′i)(y

∗
i − 2yi)]

Apply Eq. (15),

=
N∑
i=1

[(x′
i − xi)

2 + (x∗
i − x′

i)x
∗
i

+ (y′i − yi)
2 + (y∗i − y′i)y

∗
i ]
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Apply Eq. (14),

=
N∑
i=1

[(x′
i − xi)

2 + (x∗
i − x′

i)(x
∗
i − x′

i)

+ (y′i − yi)
2 + (y∗i − y′i)(y

∗
i − y′i)]

=
N∑
i=1

[(x′
i − xi)

2 + (x∗
i − x′

i)
2

+ (y′i − yi)
2 + (y∗i − y′i)

2]

≥
N∑
i=1

[(x′
i − xi)

2 + (y′i − yi)
2]

Thus proves the theorem.

Theorem 2. When the speed and the direction of a target are known, given

the estimated locations of the target over T time points calculated by some

localization algorithm: (x∗
1, y

∗
1), (x

∗
2, y

∗
2), · · · , (x∗

T , y
∗
T ), adjust them by Eq. (7)

improves localization accuracy.

Proof. Proving this theorem is equivalent to prove that

T∑
t=1

[(x∗
t − xt)

2 + (y∗t − yt)
2] ≥

T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2] (16)

From Eq. (5), f(x′
0, y

′
0) =

∑T
t=1[(x

′
t − x∗

t )
2 + (y′t − y∗t )

2]

From
∂f(x′

0, y
′
0)

∂x′
0

= 0 and
∂f(x′

0, y
′
0)

∂y′0
= 0,


2

T∑
t=1

(x′
t − x∗

t ) = 0,

2
T∑
t=1

(y′t − y∗t ) = 0.

So,

19




T∑
t=1

x′
t =

T∑
t=1

x∗
t ,

T∑
t=1

y′t =
T∑
t=1

y∗t .

(17)

If a target is moving with a certain speed v and a bearing H, the actual

location of the target (xt, yt) at time t is:

xt = x0 + tv sin(H)

yt = y0 + tv cos(H)

(18)

T∑
t=1

[(x∗
t − xt)

2 + (y∗t − yt)
2]

=
T∑
t=1

[(x′
t − xt)

2 + (x∗
t − x′

t)
2 + 2(x∗

t − x′
t)(x

′
t − xt)

+ (y′t − yt)
2 + (y∗t − y′t)

2 + 2(y∗t − y′t)(y
′
t − yt)]

Apply Eq. (18),

=
T∑
t=1

[(x′
t − xt)

2 + (x∗
t − x′

t)
2 + 2(x∗

t − x′
t)(x

′
t − x0 − tv sin(H))

+ (y′t − yt)
2 + (y∗t − y′t)

2 + 2(y∗t − y′t)(y
′
t − y0 − tv cos(H))]

Expand and apply Eq. (17),

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
T∑
t=1

(x∗
t )

2 − 2v sin(H)
T∑
t=1

tx∗
t −

T∑
t=1

(x′
t)

2 + 2v sin(H)
T∑
t=1

tx′
t

+
T∑
t=1

(y∗t )
2 − 2v cos(H)

T∑
t=1

ty∗t −
T∑
t=1

(y′t)
2 + 2v cos(H)

T∑
t=1

ty′t

20



Apply Eq. (4),

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
T∑
t=1

(x∗
t )

2 − 2v sin(H)
T∑
t=1

tx∗
t −

T∑
t=1

(x′
0 + tv sin(H))2 + 2v sin(H)

T∑
t=1

t(x′
0 + tv sin(H))

+
T∑
t=1

(y∗t )
2 − 2v cos(H)

T∑
t=1

ty∗t −
T∑
t=1

(y′0 + tv cos(H))2 + 2v cos(H)
T∑
t=1

t(y′0 + tv cos(H))

Apply Eq. (6) and expand
T∑
t=1

(x∗
t )

2,

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
1

T
[(T − 1)

T∑
t=1

(x∗
t )

2 − 2Tv sin(H)
T∑
t=1

tx∗
t − 2

T−1∑
t=1

T−t∑
k=1

x∗
tx

∗
t+k

+ T (T + 1)v sin(H)
T∑
t=1

x∗
t +

4T
∑T

t=1 t
2 − T 2(T + 1)2

4
v2 sin2(H)

+ (T − 1)
T∑
t=1

(y∗t )
2 − 2Tv cos(H)

T∑
t=1

ty∗t − 2
T−1∑
t=1

T−t∑
k=1

y∗i y
∗
t+k

+ T (T + 1)v cos(H)
T∑
t=1

y∗t +
4T

∑T
t=1 t

2 − T 2(T + 1)2

4
v2 cos2(H)]

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
1

T

T−1∑
t=1

T−t∑
k=1

[(x∗
t − x∗

t+k + kv sin(H))2 + (y∗t − y∗t+k + kv cos(H))2]

≥
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

Thus proves the theorem.
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Theorem 3. When the speed and the direction of a target are unknown,

given the estimated locations of the target over T time points calculated by

some localization algorithm: (x∗
1, y

∗
1), (x

∗
2, y

∗
2), · · · , (x∗

T , y
∗
T ), adjust them by

Eq. (11) improves localization accuracy.

Proof. Proving this theorem is equivalent to prove that

T∑
t=1

[(x∗
t − xt)

2 + (y∗t − yt)
2] ≥

T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2] (19)

From Eq. (9), f(vx, vy, x
′
0, y

′
0) =

∑T
t=1[(x

′
t − x∗

t )
2 + (y′t − y∗t )

2]

From
∂f(vx, vy, x

′
0, y

′
0)

∂vx
= 0 and

∂f(vx, vy, x
′
0, y

′
0)

∂vy
= 0,


T∑
t=1

x′
t =

T∑
t=1

x∗
t ,

T∑
t=1

y′t =
T∑
t=1

y∗t .

(20)

If a target is moving with a certain speed v and a bearing H, the actual

location of the target (xt, yt) at time t is:

xt = x0 + tvx

yt = y0 + tvy

(21)

From Eq. (8) and Eq. (21),

x′
t − xt = x′

0 − x0

y′t − yt = y′0 − y0

(22)
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T∑
t=1

[(x∗
t − xt)

2 + (y∗t − yt)
2]

=
T∑
t=1

[(x′
t − xt)

2 + (x∗
t − x′

t)
2 + 2(x∗

t − x′
t)(x

′
t − xt)

+ (y′t − yt)
2 + (y∗t − y′t)

2 + 2(y∗t − y′t)(y
′
t − yt)]

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
T∑
t=1

[(x∗
t )

2 − 2xtx
∗
t − x′

t(x
′
t − xt − xt)

+ (y∗t )
2 − 2yty

∗
t − y′t(y

′
t − yt − yt)]

Apply Eq. (22),

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
T∑
t=1

[(x∗
t )

2 − 2xtx
∗
t − x′

t(x
′
0 − x0 − xt)

+ (y∗t )
2 − 2yty

∗
t − y′t(y

′
0 − y0 − yt)]

Apply Eq. (20),

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
T∑
t=1

(x∗
t )

2 − 2
T∑
t=1

xtx
∗
t − (x′

0 − x0)
T∑
t=1

x∗
t +

T∑
t=1

x′
txt

+
T∑
t=1

(y∗t )
2 − 2

T∑
t=1

yty
∗
t − (y′0 − y0)

T∑
t=1

y∗t +
T∑
t=1

y′tyt
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Apply Eq. (21) and Eq. (8),

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
T∑
t=1

(x∗
t )

2 − 2
T∑
t=1

xtx
∗
t − x′

0

T∑
t=1

x∗
t + 2x0

T∑
t=1

x∗
t + x′

0vx

T∑
t=1

t+ v2x

T∑
t=1

t2

+
T∑
t=1

(y∗t )
2 − 2

T∑
t=1

yty
∗
t − y′0

T∑
t=1

y∗t + 2y0

T∑
t=1

y∗t + y′0vy

T∑
t=1

i+ v2y

T∑
t=1

t2

Replace x′
0 and y′0 using Eq. (10),

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
1

T
[(T − 1)

T∑
t=1

(x∗
t )

2 − 2Tvx

T∑
t=1

tx∗
t + T (T + 1)vx

T∑
t=1

x∗
t

− 2
T−1∑
t=1

T−t∑
k=1

x∗
tx

∗
t+k +

4T
∑T

t=1 t
2 − T 2(T + 1)2

4
v2x

+ (T − 1)
T∑
t=1

(y∗t )
2 − 2Tvy

T∑
t=1

ty∗t + T (T + 1)vy

T∑
t=1

y∗t

− 2
T−1∑
t=1

T−t∑
k=1

y∗t y
∗
t+k +

4T
∑T

t=1 t
2 − T 2(T + 1)2

4
v2y]

=
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

+
1

T

T−1∑
t=1

T−t∑
k=1

[(x∗
t − x∗

t+k + kvx)
2 + (y∗t − y∗t+k + kvy)

2]

≥
T∑
t=1

[(x′
t − xt)

2 + (y′t − yt)
2]

Thus proves the theorem.
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7.2. Relaxing the constraint in LAS

In our algorithm LAS that uses the spatial relationships to improve local-

ization accuracy, we assumed that the group members strictly maintain their

relative positions within the group over time. However, it may not be realis-

tic in real-world situations. After we look at LAS and the proof of Theorem

1 closely, we find that this constraint can be relaxed. The inputs to LAS are

the estimated locations of targets from the baseline algorithm (from which we

can calculate the estimated relative positions to the centroid) and targets’ ac-

tual relative positions. We can treat targets’ actual relative positions as their

initial relative positions before they enter the sensor field. Thus, the adjust-

ment in Eq. (3) is based on targets’ estimated positions, targets’ calculated

relative positions to the centroid, and targets’ initial relative positions to the

centroid. The actual deviation of targets from the group during movement is

neither known nor used. Therefore, whether targets move closer towards or

farther away from each other, the proof of Theorem 1 is still valid as long as

they do not exchange positions in the group so that we can correctly identify

them.

7.3. Time synchronization issue

In our algorithms LAT1 and LAT2 that use temporal relationships to

improve accuracy, we have not discussed whether our algorithms still work

if the sensor clocks are not synchronized. In real-world applications, it is

hard to make sensor clocks perfectly synchronized due to inaccurate crystal

quartz and ambient influence. But our algorithms do not require accurate

time stamps. After the T estimated positions corresponding to T time points

are obtained from the baseline algorithm, Eqs. (7) and (11) match the first
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position with time 1, the second position with time 2, etc. The accurate time

is not a parameter in our algorithms. In other words, as long as the baseline

localization algorithm is good enough to determine the correct order of the T

estimated positions in the timeline, which is not a hard task, we can improve

localization accuracy by LAT1 and LAT2 as proved in Theorems 2 and 3.

The order of the positions is required because otherwise we cannot correctly

identify positions (e.g. mistake position 1 for position 2).

8. Simulations

Since our approach is the first of its kind, which serves as an extra step

after obtaining the location estimates from existing algorithms, there is no

work in the literature to compare it with. Besides the theoretical proofs, we

also conducted simulations to see if our algorithms can further improve lo-

calization accuracy using a simulator built in the Matlab language. We can

start with location estimates from some localization algorithm that needs

improvement in the literature. Here we chose two most investigated localiza-

tion techniques in WSNs: Tracking by signal strength and by time of arrival,

as our baseline algorithms. Signal-strength localization has errors due to

ambient noise and to errors in matching signals between sensors, and time-

of-arrival localization has errors due to path nonlinearity by refraction and to

measurement of short times, so estimates from both often can be improved

in real-world applications. Location estimation based on signal strength is

usually less accurate than location estimation based on time of arrival, so

our simulations provided an opportunity to see how our methods handled

different degrees of initial accuracy. Our previous work [22] implemented
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these two baseline localization algorithms, so we build our simulation using

these.

8.1. Simulation for tracking by signal strength

We call the baseline algorithm using signal strength in our previous work

[22] our original method (ORG). We compared it with LAS, LAT1, LAT2,

LAST and LATS.

We built on the code for the simulation in [22]. It uses a grid of 100×100

sensors (the green dots in Figure 4). The size of a green dot shows the signal

strength received by this sensor. The larger the size, the stronger the signal.

Random targets (the blue diamonds in Figure 4) are created in the sensor

space, and signals from these targets are received by the sensors in the field to

make estimates of locations (the red stars in Figure 4). Following discussions

of acoustic, seismic, and magnetic signals in the literature [15], we assumed

that the inverse-square law is a good model to calculate signal strength for

this simulation, where each signal strength is:

si = c+
a

(m+ d)2
, 1 ≤ i ≤ N

Here, si is the sensed signal strength in the ith sensor, c is a random

factor, a is the intensity of the target, d is the distance from the target to

the sensor, m is the minimum-distance factor from the target which is a

feature of each sensor, and N is the total number of sensors in the network.

Parameter c was set to 0 in these experiments to model the situation of no

background noise. To avoid unstable behavior with very-near targets, m was

set to 5 based on experiments in [22]. The total signal strength received by
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(c) Snapshot using LAT1
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(d) Snapshot using LAT2
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(e) Snapshot using LAST
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(f) Snapshot using LATS

Figure 4: Snapshots of comparing algorithms: the blue diamonds show the actual locations

of the targets, the green dots represent the sensors and the red stars are the estimated

locations
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each sensor is assumed to be additive from all these targets. For instance, if

the signal is sound, the intensity from each target would be added at each

sensor.

Paper [22] estimates the locations of targets in two steps. First, we assign

crude estimates of target locations as the sensor locations that receive the

maximum signal strength in their neighborhood (local maxima). In this

simulation, the neighborhood of a sensor included all the sensors that are

one grid space away from the current one. Second, we adjust locations based

on the observed ratio of signal strengths, a variation on the approach of [15].

If initially the observed signal strength is assumed only due to each sensor’s

nearest target, then for any two sensors 1 and 2, the following holds true due

to the assumed inverse square law:

s1[(x− x1s)
2 + (y − y1s)

2 +m2] = s2[(x− x2s)
2 + (y − y2s)

2 +m2]

Here, s1 and s2 represent the signal strength received by the two sensors,

m represents the minimum-distance factor as mentioned above, (x, y) is the

position of the tracked target, and (x1s, y1s) and (x2s, y2s) are the coordinates

of the two sensors. Rearranging this gives an equation of a circle for the locus

of points on which the target could lie. The center and radius of this circle

are:

xc =
s1x1 − s2x2

s1 − s2
, yc =

s1y1 − s2y2
s1 − s2

r =

√
s1s2[(x1s − x2s)

2 + (y1s − y2s)
2]

(s1 − s2)
2 −m2
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Next, use the idea of trilateration [8] to locate the targets. If we can get

three sensors measuring signal strength of the same target, we can intersect

their circles to reduce the locus of the target to two points. If there are more

than three sensors measuring the same target, a consensus center can be

obtained by finding the set of all intersection points and repeatedly removing

the point furthest from the centroid of the set until there are only two points

remaining. The centroid of these two points is the inferred target location.

For our simulation, we generated a group of N targets randomly in a

100×100 grid. It traveled in some direction with some speed across the grid.

As it traveled, the signal strengths received by the sensors were calculated

at evenly spaced times. The time starts from 1 and the interval between

time points is one second. We infer target locations from the signal strength

patterns using the ORG algorithm. Then, by considering spatial-temporal

relationships of targets, we apply LAS, LAT1, LAT2, LAST, and LATS to

adjust locations of targets. For example, Figures 4 (a)-(f) show the snapshots

of the tracking simulator with a group of 4 targets at time 5.

We tested groups with 2, 3, · · · , and 10 targets and with signal variances

1 and 3. Signal variance is the error in the signal strength perceived by the

sensor. For each experiment, we did 100 runs. Tracking error is averaged

over these runs to assess estimation performance. Figures 5(a) and (b) con-

firmed the performance of our methods. The proposed algorithms improve

the localization accuracy of the ORG algorithm. With the increase of target

number, the increase of the tracking error of our proposed algorithms slows

down, especially the combined ones. The figures show that LAT1 performs

better than LAT2. This is because if more parameters are known, the results
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(b) Tracking error using signal strength with

variance 3

Figure 5: Tracking error with different group sizes and variances using signal strength

can be more accurate. Similarly, the combination of the spatial and temporal

relationships is better than each one alone. However, there was not much

difference between LAST and LATS. That means, whether the locations are

adjusted first by the spatial relationships or by the temporal relationships

does not matter much. Also, the signal variance has little effect on tracking

error.

8.2. Simulation for tracking by time of arrival

In the second simulation, we localized using time of arrival [22], a method

which we named ORG-T. All other methods follow the same naming scheme.

Analogously to before, we created five more methods: LAS-T, LAT1-T,

LAT2-T, LAST-T, and LATS-T.

The principle of time-of-arrival tracking is that the speed of transmission

of nearly all signals is relatively constant over space, so differences in times at
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which a signal is received are near to proportional to differences in distances

from the source of the sound. Thus in a two-dimensional plane, the locus

of points of a target based on the differences in time of arrival of the same

signal transmitted from that target to two sensors is a hyperbola. Three

sensor readings from targets reduce the locus to (generally) two points, and

four readings reduce it to one point. However, it is best to obtain as many

readings as we can to compensate for inaccuracies, and then use a fitting

method like least-squares to minimize the overall error.

Again suppose we have a set of N sensors at locations (xi, yi) for i = 1 to

N . Assume that corresponding peaks arrive at each sensor at time ti . We

want to minimize:

GD =
N∑
i=1

N∑
j=i+1

|ED(i, j)|

where

ED(i, j) =
√

(x− xi)2 + (y − yi)2 −
√
(x− xj)2 + (y − yj)2

+ c(tj − ti)

Here c is the average speed of the signal and (x, y) is the position of the

tracked target as before. The derivatives of G are (where “sgn” is the sign

of its argument):

∂GD

∂x
=

N∑
i=1

N∑
j=i+1

2 ∗ sgn(ED) ∗ [
x− xi√

(x− xi)2 + (y − yi)2

− x− xj√
(x− xj)2 + (y − yj)2

]
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Figure 6: Tracking error with different group sizes and variances using time of arrival

∂GD

∂y
=

N∑
i=1

N∑
j=i+1

2 ∗ sgn(ED) ∗ [
y − yi√

(x− xi)2 + (y − yi)2

− y − yj√
(x− xj)2 + (y − yj)2

]

The two ratios are equivalent to the cosine (for x) and sine (for y) of the

bearing angles from the estimated target location to the sensor. Thus we

can optimize the location of the tracked target by moving its position by a

weighted sum of the vectors towards or away from each of the sensors.

Figures 6(a) and (b) show the results based on time-of-arrival localization.

We observe that the localization accuracy of tracking by time of arrival is

much better than that of tracking by signal strength. Similar to the results

in signal strength, the tracking error of ORG is much higher than that of

the locations adjusted by our proposed algorithms. Also with an increase of
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number of targets, the increase of the tracking error of our algorithms slows

down or stops. Other observations for the signal-strength experiments also

hold in time of arrival experiments.

9. Conclusion

In this paper, we presented that using two additional constraints can

improve localization accuracy of positions of targets estimated from sensors

alone. The additional constraints were an assumption of consistency of rela-

tive locations within a group of targets and an assumption of consistency in

velocity vector. We showed relatively simple mathematics by which they can

be applied to sensor-based estimates, and proved that these methods never

decreased the quality of the estimates. Furthermore, we relaxed the condi-

tion that targets should strictly keep their relative positions in the group

and explained that perfect time synchronization is not required. We also

displayed results of simulation on idealized sensor grid with random targets

confirming that the methods did improve tracking accuracy considerably. In

the future, we will consider fault-tolerance, connectivity and security issues

in the localization algorithms.
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