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Abstract. The purpose of this paper is to present a technique to cre-
ate a global map of a robot’s surrounding by converting the raw data
acquired from a scanning sensor to a compact map composed of just a
few generalized polylines (polygonal curves). To merge a new scan with a
previously computed map of the surrounding we use an approach that is
composed of a local geometric process of merging similar line segments
(termed Discrete Segment Evolution) of map and scan with a global
statistical control process. The merging process is applied to a dataset
gained from a real robot to show its ability to incrementally build a map
showing the environment the robot has traveled through.
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1 Introduction

Imagine a scenario where a robot explores an unknown terrain. The goal is to
acquire in real time a global overview map integrating all measurements collected
by the robot. Here we deal with measurements obtained by 2D range sensors,
called scans, that represent partial top views of the robots environment. Building
a global overview map from scans is a typical scenario for rescue robots, where
the overview knowledge, in the form of a global map, is particularly important
to localize victims in catastrophe scenarios (e.g., in collapsed buildings) and
to ensure that the whole target region has been searched [4]. Since odometry
information under such conditions is very unreliable, we assume that it is not
available. Also landmarks are ambiguous.

The whole process from reception of raw scanning data to the final map refers
to the problem of simultaneous localization and mapping (SLAM) in robotics.
The proposed approach addresses two main problems in SLAM stated in [10].

1. The measurement errors are statistically dependent, since errors in control
accumulate over time, and they affect the way future sensor measurements
are interpreted.



2. The second complicating aspect of the robot mapping problem arises from
the high dimensionality of the entities that are being mapped, which leads
to serious runtime and storage problems.

We address the problem of measurement errors being statistically dependent
with a new process of map merging that is based on geometric local process of
line segment merging with a global statistical control.

The second problem arises from the fact that in most mapping approaches
the objects of which maps are built are simply points. These are either directly
scan reflection points or point landmarks, e.g., [2] and [10]. In some approaches
simple geometric features, especially line segments [7, 9, 1] are used. However,
the maps are still composed of a huge numbers of them, since these approaches
do not provide any mechanisms to incrementally reduce the number of building
blocks, which can be line segments of simply points. Consequently, the obtained
maps are composed of thousands or even millions of points or line segments. An
example of such a map is shown in Fig. 1(a). It is composed of 144400 points
and obtained by alignment of 400 scans. It is then clear that such maps lead to
serious runtime and storage problems, e.g., it is impossible to map larger envi-
ronments and to perform loop closing in real time. In our map representation,
we simply do not run into the second problem. Our representation is built of
higher level objects, which are line segments and generalized polylines, and we
have an explicit process, called Discrete Segment Evolution, that reduces the
number of line segments to a minimal number required to represent the mapped
environment. An example map obtained by our approach is shown in Fig. 1(b).
This map was obtained from the same scan data as the map in (a), and it is
composed of only about 50 line segments (which amounts to about 100 end-
points). Videos illustrating our incremental mapping results can be viewed on
http://knight.cis.temple.edu/∼shape/robot/.

A nice probabilistic framework to construct a global map from scan data is
presented in [8]. However, this framework is based on the assumption that the
uncertainty of scan points’ positions is known. Due to the dependence of laser
scan measurements on surface characteristics of scanned objects, e.g., glass-like
surface, brick wall, and metal surface, this assumption is not satisfied in our
example of rescue robots. We approach the problem of constructing a global map
using the principles of perceptual grouping, which look for geometric structures
in the data without any assumptions about the error characteristics [6].

2 Robot Mapping

In this section we introduce some notation regarding the system used by a robot
to create its global map of its surroundings, and we summarize the main steps
performed at each iteration of the algorithm, i.e., on the arrival of a new scan.
The output is a global map that represents a top view of the environment using
a small number of polylines. Fig. 1(b) illustrates such a map. For comparison, a
global map obtained by alignment only is shown in Fig. 1(a).
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Fig. 1. (a) A global map obtained by alignment of 400 scans is composed of 144400
points. (b) A global map obtained by the proposed map merging algorithm is composed
of about 50 line segments (100 endpoints). Both maps are obtained from the same laser
range data set showing a hallway at the Univ. of Bremen.

The proposed algorithm merges the newest laser range scan St at time t

with a global map Gt−1 built from previous scans 0 to t − 1. The global map is
produced incrementally, which means that at every time t we have a ready to use
and a very simple global map of the environment. This is very important for all
navigation and mapping tasks. Both global map Gt and scan St are composed
of generalized polylines.

A generalized polyline is a set of line segments, having a specific ordering,
whose vertices may or may not be connected. Observe that a classical defini-
tion of a polyline (polygonal curve) requires that the endpoints of consecutive
segments coincide. Generalized polylines result naturally when scan points are
approximated with line segments, which is our first processing step of the input
range data. By dropping the constraint that a polyline be composed of line seg-
ments whose vertices are connected, we do not introduce additional noise that
would result from connecting these vertices. The usage of generalized polylines is
particularly important in the polyline merging and shape similarity algorithms
described below.

Our first processing step (approximation of scan points with line segments)
is followed by the segment grouping step. We form an ordered list of segments by
minimizing the sum of the distances of their endpoints. Finally, if the endpoints
of consecutive segments are too far apart, we split the list into sublists. Thus,
generalized polylines are sublists of this list.

To create a global map G, we start with the first global map G1 being equal
to the first scan S1. Henceforth, assuming we have created the global map Gt−1



at time t− 1 and a new scan St has arrived, Gt is created in the following three
steps:
Correspondence: We use a very simple and common approach to establish
correspondence between global map Gt−1 and a new scan St. We position the
new scan St at the pose of the previous scan St−1 that has been aligned to the
previous global map Gt−2 (in the process of construction of the actual global
map Gt−1). The pose is the position and rotation angle in the coordinates of
the global map. Then the correspondence is establish by mapping each segment
endpoint of St to a closest point in Gt−1 and the same with roles of St and Gt−1

interchanged.
This process of correspondence computation works fine if there is continuity

in the robot pose, i.e., robot pose changes only slightly from scan to scan. If the
continuity assumption is not satisfied, we use shape similarity to establish the
correspondence [5] and [11]. However, this approach is outside the scope of this
paper.
Alignment: The current scan St is rotated and translated until a minimum
distance is found between the corresponding points. Then the closest points are
found again, and the whole process is repeated until it stabilized. This algorithm
to align scan St and map Gt−1 is called Iterative Closest Point (ICP), and is
described in [3].
Merging: This is the main contribution of this paper and its detailed discussion
follows in Section 2.1. The output of alignment overlays the actual scan on the
global map, but the surfaces of the same objects are still represented by separate
polylines. The goal of merging is to represent surfaces of the same objects by
single polylines.

2.1 Merging

Merging is the task of combining similar segments taken from two aligned maps
to form new segments in a joint map. The similarity between pairs of segments is
modeled following principles of perceptual grouping. In the case of incremental
building of a global map, the task of merging is to combine similar line segments
of the new scan, St, and the previous global map, Gt−1, to form new segments
that define a new and current global map Gt. We assume that St has been aligned
to Gt−1. Merging consists of two steps, which integrate the new information
contained in St with the previous global map to produce Gt. The two steps are
restrictive pairing and simplification.
Restrictive Pairing: The result of pairing can intuitively be understood as
visual average of St and Gt−1. Since our goal is to combine the information from
both maps, we allow only pairing of segments from different maps. Therefore,
we define two classes of line segments, class C1 is a list consisting of segments
from Gt−1 and class C2 is a list consisting of segments of St.

Although the final task of merging is to decrease the number of line segments
by combination, the pairing step goes into the opposite direction: it might create
many new segments, which will be simplified in the second step called simplifica-
tion. Pairing can be compared to a pencil drawing technique known as sketching,



e.g., used for cartoon drawings: to find the final outline of an object, it is first
approximated by a larger number of light strokes, giving the eye the opportunity
to imagine and select the correct position.

The process creates all possible pairs of line segments that are sufficiently
similar, taking one segment from C1 and one from C2. Pairing of two segments
from the same class is not allowed.

The similarity of line segments L1 and L2 is measured with the cost function
C(L1, L2, ad) (defined below), where ad is an angular direction given by global
statistics (defined below). If C(L1, L2, ad) is below a given threshold, we create
a new line segment ms(L1, L2, ad) (defined below) that is visually close to L1

and L2. Figure 2 shows an example of restricted pairing. The newly created
segments must follow the main directions, i.e., they are only allowed to have
angles of 0o, +60o,−60o with the x axis.

A single line segment L1 can create many children line segments ms(L1, L
i
2, ad)

by pairing with segments Li
2 for i = 1, ..., n. We need to allow a single segment

to pair with more than one segment from the other class, since we do not know
the exact segment correspondence. It might be that the correct shape feature is
created by the pairing with a second partner. However, to limit the computa-
tional complexity, each line segment is allowed to create only a small number of
segments (at most 3 children segments are allowed in our implementation).

We remove all line segments from C1 and C2 that were parents of at least
one new segment. We denote the resulting lists by C ′

1 and C ′

2. We denote with
At a list of all resulting children together with C ′

1 and C ′

2. Formally, the output
of restricted pairing is defined as (Tp is a pairing cost threshold):

At = C ′

1 ∪ C ′

2 ∪ {ms(L1, L2, ad) : C(L1, L2, ad) < Tp, L1 ∈ C1, L2 ∈ C2}.
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Fig. 2. The figure (b) is obtained from (a) by the proposed pair creation process. The
index pairs in (b) refer to parent segments in (a). (c) shows the final result obtained by
simplification of (b). The newly created segments in (b) and (c) must follow the main
directions of 0o, +60o,−60o with the x axis.

Restrictive pairing may create some small artifacts in addition to features
present in the reality, such as parallel segments in Fig. 2(b). The artifacts may



be introduced, since we do not know the exact correspondence of line segments,
and therefore, must allow a single line segment to pair with many line segments
in the other class. We therefore need a cleaning process to remove these artifacts,
or, in analogy to the sketching example mentioned above, a process that selects
or creates an appropriate precise set of strokes based on the approximation. This
process is called simplification and it is the second step in the merging process.
Its result is illustrated in Fig. 2(c).

Simplification: The input is the joint map At created by restrictive pairing.
Simplification can be viewed as cleaning process after pair creation to create a
smaller set of possibly new segments, being the final merging result. To use the
sketch analogy again, the simplification process creates a single line by visually
averaging the approximating bundle of strokes. Pairs of line segments are merged
together to form new segments using the same merging process ms and cost
function C but with different constraints. Simplification is done without any
class restriction, i.e., a line segment in At can pair with any other segment in
At.

The main difference is that the simplification process has a global control
mechanism: We iteratively merge a pair whose merging cost C is the lowest at
each pass. More precisely, the segment pair L1, L2 with lowest cost C(L1, L2, ad),
for one of the main angular directions ad, is merged in each pass. This means
that ms(L1, L2, ad) is inserted to list At, and L1, L2 are removed from At. Thus,
each line segment can have at most one child. The process stops when the lowest
cost is above a threshold Ts. The resulting simplified version of At is the new
global map Gt. Fig. 3(c) shows the simplified version of line segments in (b).
Observe that both merged shape features from (a) are preserved (the straight
line and the tent). This is acceptable, since given the input as in Fig. 3(a), we
cannot decide which feature is the right one. This decision can be, however, made
after merging several consecutive scans.

The main angular directions for simplification are computed with the same
global statistics as in pairing process. This allows us to cope with accumulative
errors. Section 2.2 gives more details on global statistics.

2.2 Main directions

The main directions ad are obtained as significant peaks in the direction his-
togram of line segments (angles with the x axis) in Gt−1(tm), where Gt−1(tm)
is a global map Gt−1 restricted to line segments created in at most tm time
steps ago. tm is a time memory factor. This restriction implies that only part
of global map recently created determines the main directions. Therefore, the
choice of directions is dynamic: the set of main directions ad is created with
respect to the most recent part of the global map. This dynamic process assures
the robustness of the algorithm with respect to main directions, e.g., for indoor
environments, while simultaneously being flexible enough to react to changing
or even non present main directions, e.g., outdoor or natural environments.
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Fig. 3. The figure (b) is obtained from (a) by the proposed pair creation process. The
index pairs in (b) refer to parent segments in (a). (c) shows the result simplification of
(b). The newly created segments in (b) and (c) have to follow the main directions of
0o, +60o,−60o with the x axis.

Each line segment in the restricted global map Gt−1(tm) contributes to the
bin representing its direction with the weight given by its length. This histogram
is cyclic, e.g., a window of size 5 around bin 1 contains bins 179, 180, 1, 2, 3.

An important feature of our approach is the interaction between main direc-
tions and merging: Let us assume we have a significant number of segments in St,
all having a similar direction that is significantly different from main directions
present in Gt−1(tm), i.e., these segments do not define a main direction yet. For
example, this is the case if the robot starts to perceive a new surface.

Since the new segments follow a significantly different direction, the cost
function C assures that they create no children, because the pairing cost is
above the threshold Tp, i.e., the transformation of the parent segments to child
segments is too expensive. Thus, the original segments will remain in At. Since
At, after simplification, becomes the new global map Gt, the new segments will
lead to a peak, and will open a new main direction in the direction histogram.
Consequently, pairing and simplification in the new direction will be allowed. A
real example will be given in Section 3.

The direction histogram represents the statistical distribution of line seg-
ment directions. This statistical control provides a solution to the problem of
cumulative errors (Problem 1 in the introduction). Cumulative errors introduce
systematic distortions in the directions of line segments that accumulate slowly.
The main issue is that accumulative errors do not lead to peaks in the direction
histogram, and consequently, appearing line segments are correctly mapped to
the existing main directions. On the other hand, as we have just described, if a
surface of a new object is oriented into a new direction, it will lead to a peak
in the direction histogram after a few scans of the surface have been acquired.
This solution is based on quantization of the angular directions. Thus, a new
main direction is created in the direction of the new surface if the difference
between the new direction and the existing main directions is larger then the
quantization factor, which is determined by the thresholds Tp and Ts. The fact
that the direction histogram provides a solution to the problem of cumulative
errors is also true for other histogram-based approaches, e.g., [9].



2.3 New Line Segment Creation and Cost function

This section will describe the merging function ms and the associated cost func-
tion C used for the pairing and simplification process. The merging function is
the most important module in the merging system, since it is responsible for the
creation of the segments finally seen in the new map. Given a pair of line seg-
ments, L1 and L2, and the angular direction ad, it computes a merged segment
ms(L1, L2, ad) with the angular direction ad. The cost function C(L1, L2, ad) is
responsible for the filtering step: it produces the basic values for the decision if
a created segment will be accepted or rejected as a member of the approximated
map At or the new global map Gt. It measures the similarity of L1 and L2 in
the context of the main direction ad.

The geometric intuition of the presented merging process and, in particular,
the definition of merging cost C(L1, L2, ad) is based on cognitively motivated
principles of perceptual grouping. We followed the approach presented in [6] on
grouping line segments to form longer line segments. It states that proximity of
endpoints, parallelism, and collinearity are the main geometric relations that in-
fluence the perceptual grouping of line segments. Our setting is slightly different,
since we merge two line segments only with respect to a given main direction ad.
Therefore, we developed a new cost function. As mentioned above, the usage of
main directions is necessary to cope with cumulative errors.

Before we explain the meaning of the perceptual grouping principles in our
setting, we need to introduce one more concept of a straight line ld that follows
one of the main directions ad. Let two line segments L1 and L2 and a main
angular direction ad be given. A first step in our cost computation is to position
a line following direction ad between two line segments L1 and L2. The straight
line ld with direction ad is positioned between L1 and L2 so that the equation

d1 · l1 = d2 · l2

is satisfied (see Figure 4), where li is the length of segment Li and di is the
distance of the midpoint of Li to line ld for i = 1, 2. The merged segment

ms(L1, L2, ad) is defined by the convex hull of the projections of L1 and L2 on
line ld. It is the segment from P ′

1 to P ′

4 in Figure 4.
Now we can explain the meaning of the perceptual grouping principles in our

setting.

– Parallelism: The greater the angles between L1 and L2, and between L1

and L2 and ms(L1, L2, ad), the greater the cost of merging them together.
Likewise, the angle difference of longer segments have more weight than
shorter ones.

– Collinearity: The greater the distance of the endpoints of L1 and L2 from
the target line ld, the higher the value of the cost function.

– Proximity: The greater the distance between the projections of L1 and L2

on line ld, the higher the value of the cost function.

Finally we can define the new cost function that integrates the three percep-
tual grouping principles. Given the line ld, the cost of merging L1 and L2 to



ms(L1, L2, ad) is defined by the following measure that incorporates our realiza-
tion of the perceptual grouping principles (see Figure 4):

C(L1, L2, ad) =

lr
(

(l1 + 1)d(P1,ld)+d(P2,ld)
1+K cos(a1) − l1

d(P1,ld)+d(P2,ld)
1+K

)

1 + K cos(a12)
+

lr
(

(l2 + 1)d(P3,ld)+d(P4,ld)
1+K cos(a2) − l2

d(P3,ld)+d(P4,ld)
1+K

)

1 + K cos(a12)

where a1 is the angle between L1 and ld, a2 is the angle between L2 and ld, a12

is the angle between L1 and L2, P1, P2 are endpoints of L1, P3, P4 are endpoints
of L2, d(Pi, ld) is the distance between point Pi and line ld. The constant K

depends on the metric units used, and need s to be adjusted to obtain a balance
between angular and metric units. The length ratio

lr =
l(ms(L1, L2, ad))

l(p(L1)) + l(p(L2))

is the quotient of the length of the merged line segment ms(L1, L2, ad) to the
sum of the length of the projections p(L1) and p(L2) of line segments of L1 and
L2 on line ld.
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Fig. 4. Geometric illustration of the cost function C(L1, L2, ad).

3 Implementation Details

3.1 Merging

Pairing: As described in Section 2.1, the merging consists of pairing followed by
simplification. The pairing step creates a rough approximation of the new map,
and it must take into account features in both the scan and the global map,
even if a certain feature is only present in one of them. An example is given in
Fig. 5, where the triangle feature is only present in the global map G. To permit
appropriate combinations with segments of this feature, the straight segment of



the scan S is split up to create segments corresponding to the feature segments
of the global map. In order to do so a correspondence between endpoints of line
segments is established. For every endpoint E in G, we find a closest point p(E)
in S. If distance from E to p(E) is below a predefined threshold and p(E) is not
an existing end point in S, then p(E) is inserted to S, splitting an existing line
segment in S into two collinear line segments (that meet at p(E)). We perform
the same for every endpoint E in S. The maps modified this way are the input
to pair building.
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Fig. 5. New vertices are inserted in S in (a) as projections of vertices in G. The vertex
insertion is necessary to make the correspondence of line segments possible.

The creation of descendants in the pairing process is dependent on the pairing
threshold Tp. Fig. 6 shows the output of the pairing with global direction control
of the input shown in Fig. 5 with different thresholds Tp, leading to different
constellations: The leftmost map consists of newly created segments only. In the
second figure the triangle segments could only pair once. The rightmost figure
finally did not change the input; the threshold was too low to create any new
segments.
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Fig. 6. Input map is from Figure 5(b). Pairing with different threshold Tp and global
direction control with main directions of 0, +62o, −62o. From left to right we have Tp

= 0.05, 0.04, 0.03, 0.01.



3.2 Main Directions

The following section shows an example for the interaction between the merging
process and the dynamic detection of main directions. The basic idea is not to
merge segments with a cost above Tp or Ts respectively, but to keep them in
their original position/direction Such segments can be described as outliers with
respect to the current main directions ad. If these outliers become dominant,
they will open a new main direction and will be merged. This process can be
observed in Fig. 7 showing a section of an experiment with real laser finder data
collected in a hallway at the University of Bremen. The robots’ position is in the
upper left corner, the robot moves up right and scans backward, i.e., down left.

In the left figure the robot approaches a 45o corner, the current main di-
rections consist of 0o and 90o angles with the x-axis. New 45o segments are not
simplified but transferred unchanged into the new global map. New 45o segments
still do not have enough weight to create a new direction in the center figure.
Additionally the 0o walls are out of sight, and therefore, the histogram loses
this entry (which does not effect any segments in this situation). The only main
direction remaining is 90o. In the right figure, new 45o segments finally create
a peak in the direction histogram. Hence the new main directions are now 90o

and 45o. Consequently, the new segments are merged together and simplified
following the new 45o direction.
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Fig. 7. Bremen hallway experiment: a new main direction is detected in the right figure
and used for merging.

4 Conclusions and Future Work

We presented a novel approach to robot mapping, based on an iterative process
that merges similar line segments of subsequent scans. The process is locally



controlled by a similarity of line segments, which is motivated by principles of
perceptual grouping. Additionally the process is controlled by global statistics,
giving emphasis to the main directions present in the map to eliminate effects of
accumulated errors of local scans. The experiments performed on real robot data
show that the interaction between local and global control is able to successfully
adapt to changes in directions without any pre-knowledge of the environment to
build the environmental map given by subsequent scans. The merging process
can be useful for any application where (visual) simplification of sets of line
segments is needed; further experiments will include simplification of images
gained by edge detection and hand drawn sketches for stroke recognition.
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