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ABSTRACT

Shape Based Object Detection and Recognition in Silhouettes and Real

Images

Xingwei Yang

DOCTOR OF PHILOSOPHY

Temple University, March, 2011

Dr. Longin Jan Latecki, Chair

Shape is very essential for detecting and recognizing objects. It is robust

to illumination, color changes. Human can recognize objects just based on

shapes, thus shape based object detection and recognition methods have been

popular in many years.

Due to problem of segmentation, some researchers have worked on sil-

houettes instead of real images. The main problem in this area is object

recognition and the difficulty is to handle shapes articulation and distortion.

Previous methods mainly focus on one to one shape similarity measurement,

which ignores context information between shapes. Instead, we utilize graph-

transduction methods to reveal the intrinsic relation between shapes on ’shape

manifold’. Our methods consider the context information in the dataset, which

improves the performance a lot. To better describe the manifold structure,
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we also propose a novel method to add synthetic data points for densifying

data manifold. The experimental results have shown the advantage of the

algorithm. Moreover, a novel diffusion process on Tensor Product Graph is

carried out for learning better affinities between data. This is also used for

shape retrieval, which reaches the best ever results on MPEG-7 dataset.

As shapes are important and helpful for object detection and recognition in

real images, a lot of methods have used shapes to detect and recognize objects.

There are two important parts for shape based methods, model construction

and object detection, recognition. Most of the current methods are based

on hand selected models, which is helpful but not extendable. To solve this

problem, we propose to construct model by shape matching between some sil-

houettes and one hand decomposed silhouette. This weakly supervised method

can be used not only learn the models in one object class, but also transfer the

structure knowledge to other classes, which has the similar structure with the

hand decomposed silhouette. The other problem is detecting and recognizing

objects. A lot of methods search the images by sliding window to detect ob-

jects, which can find the global solution but with high complexity. Instead,

we use sampling methods to reduce the complexity. The method we utilized is

particle filter, which is popular in robot mapping and localization. We modi-

fied the standard particle filter to make it suitable for static observations and

it is very helpful for object detection. Moreover, The usage of particle filter is
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extended for solving the jigsaw puzzle problem, where puzzle pieces are square

image patches. The proposed method is able to reach much better results than

the method with Loopy Belief Propagation.
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CHAPTER 1

Introduction

1.1 Shape Retrieval

Shape matching/retrieval is a very critical problem in computer vision.

There are many different kinds of shape matching methods, and the progress

in improving the matching rate has been substantial in recent years. How-

ever, nearly all of these approaches are focused on pair-wise shape similarity

measure. It seems to be an obvious statement that the more similar two

shapes are, the smaller is their difference, which is measured by some dis-

tance function. Yet, this statement ignores the fact that some differences are

more relevant while other differences are less relevant for shape similarity. It

is not yet clear how the biological vision systems perform shape matching; it

is clear though that shape matching involves the high-level understanding of
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shapes. In particular, shapes in the same class can differ significantly because

of in-class variation, distortion or non-rigid transformation. In other words,

even if two shapes belong to the same class, the distance between them may

be very large if the distance measure cannot capture the intrinsic property

of the shape. It appears to us that many published shape distance measures

[9, 101, 63, 57, 5, 62, 71, 28, 86, 90, 87, 38, 24, 10] are unable to address this

issue. For example, based on the inner distance shape context (IDSC) [63],

the shape in Fig. 1.1(a) is more similar to (b) than to (c), but it is obvious

that shape (a) and (c) belong to the same class. This incorrect result is due

to the fact that the inner distance is unaware that the missing tail and one

front leg are less relevant than much smaller shape details like the dog’s ear

and the shape of the head. No matter how good a shape matching algorithm

is, the problem of more relevant and less relevant shape differences must be

addressed if we want to obtain human-like performance. This requires having

a model to capture the essence of a shape class instead of viewing each shape

as a set of points, a parameterized function, or a manifold. In our method,

each shape is considered in the context of other shapes in its class, and the

class does not need to be known.

To utilize the context information, we first utilize the Label Propagation

algorithm and reach excellent results [110]. Then, ghost points [111] are pro-

posed to solve the problem of sparsity in the data manifold, which improves
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Figure 1.1: Existing shape similarity methods incorrectly rank shape (b) as
more similar to (a) than (c).

the results a lot. Recently, the diffusion process on Tensor Product Graph is

carried out for further improving the retrieval accuracy [114], which has also

been tested on image retrieval.

1.1.1 Related Work

The semi-supervised learning problem has attracted an increasing amount

of interest recently, and several novel approaches have been proposed. The

existing approaches could be divided into several types, multiview learning [12],

generative model [59], Transductive Support Vector Machine (TSVM) [49].

Recently there have been some promising graph based transductive learning

approaches proposed, such as label propagation [123], Gaussian fields and

harmonic functions (GFHF) [124], local and global consistency (LGC) [118],

and the Linear Neighborhood Propagation (LNP) [105]. Zhou et al. [120]

modified the LGC for the information retrieval. The semi-supervised learning

problem is related to manifold learning approaches, e.g., [84].

The proposed method is inspired by the label propagation method [123].
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The reason we choose the framework of label propagation is that it allows

clamping of labels. In other words, it fixes the label of labeled data points

during the propagation process. Since the query shape is the only labeled

shape in the retrieval process, the label propagation allows us to enforce its

label during each iteration, which naturally fits in the framework of shape

retrieval. Usually, GFHF is used instead of label propagation, as both methods

can achieve the same results[123]. However, in the shape retrieval, we can use

only the label propagation, the reason is explained in detail in Section 2.1.2.

Since a large number of shape similarity methods have been proposed in

the literature, we focus our attention on methods that reported retrieval re-

sults on the MPEG-7 shape data set (part B of the MPEG-7 Core Experiment

CE-Shape-1) [58]. This allows us to clearly demonstrate the retrieval rate im-

provements obtained by the proposed method. Belongie et al. [9] introduced

a novel 2D histograms representation of shapes called Shape Contexts (SC).

Ling and Jacobs [63] modified the Shape Context by considering the geodesic

distance between contour points instead of the Euclidean distance, which sig-

nificantly improved the retrieval and classification of articulated shapes. Late-

cki and Lakämper [57] used visual parts represented by simplified polygons

of contours for shape matching. Tu and Yuille [101] proposed the feature

driven generative models for probabilistic shape matching. In order to avoid

problems associated with purely global or local methods, Felzenszwalb and
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Schwartz [28] described a dynamic and hierarchical curve matching method.

Other hierarchical methods include the hierarchical graphical models in [25]

and hierarchical procrustes matching [71]. Alajlan et al. proposed a mutis-

cale representation of triangle areas for shape matching, which also included

partial and global shape information [2]. Daliri and Torre defined a symbolic

descriptor based on Shape Contexts, then used edit distance for final matching

in order to overcome the difficulty caused by deformation and occlusions [20].

The methods above all focused on designing improved shape descriptors for

single shapes and their comparison for pairs of shapes. Although the recent

methods made some progress, the improvement is not obvious as shown in Ta-

ble 2.3 of Section 2.1.5. In this table, we summarize all the reported retrieval

results on MPEG-7 database, and the retrieval rates of the recent publications

are all around 85%. There are two main reasons that limit the progress in

shape retrieval: (1) The case for large deformation and occlusions still can

not be handled well. 2) The existing algorithms can not distinguish the more

relevant and less relevant shape differences pointed out.

There has been a significant body of work on distance learning [116]. Xing

et al. [109] propose estimating the matrix W of a Mahalanobis distance by

solving a convex optimization problem. Bar-Hillel et al. [8] also use a weight

matrix W to estimate the distance by relevant component analysis (RCA).

Athitsos et al. [4] proposed a method called BoostMap to estimate a distance
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that approximates a certain distance. Hertz’s work [42] uses AdaBoost to

estimate a distance function in a product space, whereas the weak classifier

minimizes an error in the original feature space. All these methods’ focus is

a selection of suitable distance from a given set of distance measures. Our

method aims at improving performance of a given distance measure.

1.2 Shape Based Object Detection

Object detection in cluttered images, with scale and intra-class variations,

is one of the most difficult problems in computer vision. Appearance based

methods have had remarkable success in recent years [61, 34, 89, 103]. How-

ever, in many cases, the appearance between intra-class objects varies a lot

[3], which makes the appearance features not reliable. Thus, recently we

have observed a significant increase in methods that utilize contour shape

[30, 122, 94, 47, 67]. However, shape based methods also face many chal-

lenges, such as pose variance, missing edges, and view point changes. We

propose a novel shape model learning algorithm for handling the articulation

of objects and the particle filter framework is used for utilizing the model to

detect objects [113].



7

1.2.1 Related Work

As there exists a lot of papers on shape based object detection and recog-

nition, we only review the most related ones. Ferrari et al. [29] propose to use

kAS, the k connected roughly straight contour segments, with Hough voting to

detect objects. Later, Ferrari et al. [30] extend their work to learn the model

from the image. To improve [30], Jiang et al. [47] propose to learn a shape

prior model for each object class. Boundary fragments combined with classi-

fier have also been investigated in [88]. Instead of object’s contour, Trinh and

Kimia [74] use skeleton-based generative shape model with modified dynamic

programming to detect objects. Bai. et al. [6] also utilize skeleton to constrain

the detection process. All the above methods require multiple initializations

and they enumerate all possible object sizes (scales) to get the optimal results.

Ravishankar et al. [82] introduce a multi-stage contour based detection

approach with dynamic programming, which is also scale independent. Zhu et

al. [122] utilize Shape Context [9] to evaluate the distance between model and

image segments. They formulate the shape matching of contours as a set-set

matching problem and solve it by linear programming, which is fundamen-

tally different from us. Lu et al. [67] formulate object detection as a segment

correspondence problem. However, their inference framework is very differ-

ent, where they utilize particle filter to solve the label assignment problem.

Furthermore, they cannot detect multiple objects.
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Gu et al. [40] utilize region segmentation to detect target objects. An

appearance based approach was recently used by Maji and Malik [68] by inte-

grating Hough transform based features of codebooks into kernel classifiers. To

solve the problem of scales in Hough voting, Ommer and Malik [76] propose

a weighted, pairwise clustering of voting lines to obtain globally consistent

hypotheses. Then, a verification stage is use to re-rank the hypotheses. Un-

like [76, 68, 40], we use a purely shape based method and do not utilize any

classifiers like SVM to rank the hypotheses.

1.3 Particle Filter with State Permutations for

Solving Image Jigsaw Puzzles

Particle filter nicely simulates the way human solving image jigsaw puz-

zles, where a starting puzzle is selected and others pieces are added one by

one. Thus, we extend the particle filter framework so that it will permutate

different states and select the most possible ones during the process [112]. This

algorithm performs well on solving image jigsaw puzzles.

1.3.1 Related Work

The first work on Jigsaw Puzzle Problem was reported in [32]. Since shape

is an important clue for accurate pairwise relation, many methods [53, 35,
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80, 108] focussed on matching distinct shapes among jigsaw pieces to solve

the problem. The pairwise relations among jigsaw pieces are measured by the

fitness of shapes. There also exist approaches that consider both the shape

and image content [69, 75, 115]. Most methods solve the problem with a

greedy algorithm and report results on just one or few images. Our problem

formulation only considers the image content following Cho et. al [16].

Particle filters (PF) are also known as sequential Monte Carlo methods

(SMC) for model estimation based on simulation. There is large number of

articles published on PF and we refer to two excellent books [23, 65] for an

overview. PF can be viewed as a powerful inference framework that is utilized

in many applications. One of the leading examples is the progress in robot

localization and mapping based on PF [100]. Classical examples of PF appli-

cations in computer vision are contour tracking [45] and object detection [44].

All these approaches utilize PF in the classical tracking/filtering scenario with

a pre-defined order of states and observations. To our best knowledge, the

proposed PF framework with state permutations is novel and has not been

considered before by other authors.
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CHAPTER 2

Shape Retrieval of Silhouettes

2.1 Learning Context Sensitive Shape Simi-

larity by Graph Transduction

2.1.1 Introduction

Given a database of shapes, a query shape, and a shape distance function,

which does not need to be a metric, we learn a new distance function that is

expressed by shortest paths on the manifold formed by the know shapes and

the query shape. We can do this without explicitly learning this manifold.

As we will demonstrate in our experimental results, the new learned distance

function is able to incorporate the knowledge of intrinsic shape differences.

It is learned in an unsupervised setting in the context of known shapes. For
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example, if the database of known shapes contains shapes (a)-(e) in Fig. 2.1,

then the new learned distance function will rank correctly the shape in Fig.

1.1(a) as more similar to (c) than to (b). The reason is that the new distance

function will replace the original distance (a) to (c) in Fig. 1.1 with a distance

induced by the shortest path between in (a) and (e) in Fig. 2.1.

Figure 2.1: A key idea of the proposed distance learning is to replace the
original shape distance between (a) and (e) with a distance induced by geodesic
paths in the manifold of know shapes. One such path is (a)-(e) in this figure.

In the proposed approach, for a given similarity measure s0, a new simi-

larity s is learned through graph transduction. Intuitively, for a given query

shape q, the similarity s(q, p) will be high if neighbors of p are also similar

to q. However, even if s0(q, p) is very high, but the neighbors of p are not

similar to q, then s(q, p) will be low. Thus, the new similarity s is context

sensitive, where a context of a given shape is defined by its neighbors, which

are database shapes that are most similar to it. In this paper, we adopt a

graph-based transductive learning algorithm to tackle this problem, and it has

the following properties: (1) Instead of focusing on computing the distance

(similarity) for a pair of shapes, we take advantage of the manifold formed by

the existing shapes. (2) However, we do not explicitly learn the manifold nor
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compute the geodesics [93], which are time consuming to calculate. A bet-

ter similarity is learned by collectively propagating the similarity measures to

the query shape and between the existing shapes through graph transduction.

(3) Unlike the label propagation [123] approach, which is semi-supervised, we

treat shape retrieval as an unsupervised problem and do not require knowing

any shape labels. (4) We can build our algorithm on top of any existing shape

matching algorithm and a significant gain in retrieval rates can be observed on

well-known shape datasets. (5) The learned distance by our algorithm can also

be used to improve the performance of the existing shape clustering methods.

Even if the difference between shape A and shape C is large, but there

is a shape B which has small difference to both of them, we still claim that

shape A and shape C are similar to each other. This situation is possible

for most shape distances, since they do not obey the triangle inequality, i.e.,

it is not true that d(A,C) ≤ d(A,B) + d(B,C) for all shapes A,B,C [104].

If we have the situation that d(A,C) > d(A,B) + d(B,C) for some shapes

A,B,C, then the proposed method is able to learn a new distance d′(A,C)

such that d′(A,C) ≤ d(A,B) + d(B,C). Further, if there is a path in the

distance space such that d(A,C) > d(A,B1)+ . . .+d(Bk, C), then our method

learns a new d′(A,C) such that d′(A,C) ≤ d(A,B1) + . . . + d(Bk, C). Since

this path represents a minimal distortion morphing of shape A to shape C,

we are able to ignore less relevant shape differences, and consequently, we can
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focus on more relevant shape differences with the new distance d′.

Our experimental results clearly demonstrate that the proposed method

can improve the retrieval results of the existing shape matching methods.

We obtained the retrieval rate of 91.61% on part B of the MPEG-7 Core

Experiment CE-Shape-1 data set [58], which is the highest ever bull’s eye

score reported in the literature. We used the IDSC as our baseline algorithm,

which has the retrieval rate of 85.40% on the MPEG-7 data set [63]. Fig. 2.2

illustrates the benefits of the proposed distance learning method. The first row

shows the query shape followed by the first 10 shapes retrieved using IDSC

only. Only two flies are retrieved among the first 10 shapes. The results of the

learned distance for the same query are shown in the second row. All of the

top 10 retrieval results are correct. The proposed method was able to learn

that the shape differences in the number of fly legs and their shapes are not

intrinsic to this shape class.

Figure 2.2: The first column shows the query shape. The remaining 10 columns
show the most similar shapes retrieved from the MPEG-7 data set. The first
row shows the results of IDSC [63]. The second row shows the results of the
proposed learned distance.
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2.1.2 Learning New Distance Measures

We first describe the classical setting of similarity retrieval. It applies to

many retrieval scenarios like key word, document, image, and shape retrieval.

Given is a set of objects X = {x1, . . . , xn} and a similarity function sim:

X ×X → R+ that assigns a similarity value (a positive value) to each pair of

objects.

We assume that x1 is a query object (e.g., a query shape), {x2, . . . , xn}

is a set of known database objects (or a training set). Then by sorting the

values sim(x1, xi) in decreasing order for i = 2, . . . , n we obtain a ranking

of database objects according to their similarity to the query, i.e., the most

similar database object has the highest value and is listed first. Sometimes a

distance measure is used in place of the similarity measure, in which case the

ranking is obtained by sorting the database objects in the increasing order,

i.e., the object with the smallest value is listed first. Usually, the first N � n

objects are returned as the most similar to the query x1.

As discussed above, the problem is that the similarity function sim is not

perfect and for many pairs of objects it returns wrong results, although it may

return correct scores for many pairs. We introduce now a method to learn a

new similarity function simT that drastically improves the retrieval results of

sim for the given query x1.

Let wi,j = sim(xi, xj), for i, j = 1, . . . , n, be a similarity matrix, which is
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also called an affinity matrix. We also define a n × n probabilistic transition

matrix P as a row-wise normalized matrix w.

Pij =
wij∑n
k=1wik

(2.1)

where Pij is the probability of transit from node i to node j.

We seek a new similarity measure s. Since s only needs to be defined

as similarity of other elements to query x1, we denote f(xi) = s(x1, xi) for

i = 1, . . . , n. A key function is f and it satisfies

f(xi) =
n∑

j=1

Pij f(xj) (2.2)

Thus, the similarity of xi to the query x1, expressed as f(xi), is a weighted

average over all other database objects, where the weights sum to one and

are proportional to the similarity of the other database objects to xi. In

other words we seek a function f : X → [0, 1] such that f(xi) is a weighted

average of f(xj), where the weights are based on the original similarities wi,j =

sim(xi, xj). Our intuition is that the new similarity f(xi) = s(x1, xi) will be

large iff all points xj that are very similar to xi (large sim(xi, xj)) are also

very similar to query x1 (large sim(x1, xj)). Note that function f reaches

equilibrium and an arbitrary function does not satisfy the equality.

The recursive equation (2.2) is closely related to PageRank. As stated

in [77], a slightly simplified version of simple ranking R of a web page u in
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PageRank is defined as

R(u) =
∑
v∈Bu

c

Nv
R(v), (2.3)

where Bu is a set of pages that point to u, Nv is the number of links from page

v and c is a normalization factor.

Consequently, our equation (2.2) differs from PageRank equation (2.3) by

the normalization matrix, which is defined in Eq. (2.1) in our case, and is

equal to c
Nv

for PageRank. The PageRank recursive equation takes a simple

average over neighbors (a set of pages that point to a given web page), while

we take a weighted average over the original input similarities. Therefore,

our equation admits recursive solution analog to the solution of the PageRank

equation. Before we present it, we point out one more relation to recently

proposed label propagation [123].

We obtain the solution to Eq. (2.2) by the following recursive procedure:

ft+1(xi) =
n∑

j=1

Pij ft(xj) (2.4)

for i = 2, . . . , n and we set

ft+1(x1) = 1. (2.5)

We define a sequence of newly learned similarity functions restricted to x1 as

simt(x1, xi) = ft(xi). (2.6)

Thus, we interpret ft as a set of normalized similarity values to the query x1.

Observe that sim1(x1, xi) = w1,i.
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The steps (2.4) and (2.5) are used in label propagation, which is described

in Section 2.1.3. However, our goal and our setting are different. Although

label propagation is an instance of semi-supervised learning, we stress that

we remain in the unsupervised learning setting. In particular, we deal with

the case of only one known class, which is the class of the query object. This

means, in particular, that label propagation has a trivial solution in our case

limt→∞ ft(xi) = 1 for all i = 1, . . . , n, i.e., all objects will be assigned the class

label of the query shape. Since our goal is ranking of the database objects

according to their similarity to the query, we stop the computation after a

suitable number of iterations t = T . As is the usual practice with iterative

processes that are guaranteed to converge, the computation is halted if the

difference ||ft+1 − ft|| becomes very slow, see Section 2.1.5 for details.

If the database of known objects is large, the computation with all n ob-

jects may become impractical. Therefore, in practice, we construct the matrix

w using only the first M < n most similar objects to the query x1 sorted

according to the original distance function sim. Our experimental results in

Section 2.1.5 demonstrate that the replacement of the original similarity mea-

sure sim with simT results in a significant increase in the retrieval rate. The

pseudo-code of our algorithm is shown in Fig. 2.3.
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Input: The n × n row-wise normalized similarity matrix P with

the query x1, f1(x1) = 1, and f1(xi) = 0 for i = 2, ..., n.

while: t < T.

for i = 2, ..., n,

ft+1(xi) =
∑n

j=1 Pij ft(xj)

end

ft+1(x1) = 1.

end

Output: The learned new similarity values to the query x1: fT .

Figure 2.3: The pseudo-code for the proposed algorithm

2.1.3 Relation to Label Propagation

Label propagation belongs to a set of semi-supervised learning methods,

where it is usually assumed that class labels are known for a small set of data

points. We have an extreme case of semi-supervised learning, since we only

assume that the class label of the query is known. Thus, we have only one class

that contains only one labeled element being the query x1. In our approach,

we have a sequence of labeling functions ft : X → [0, 1] with f0(x1) = 1 and

f0(xi) = 0 for i = 2, . . . , n, where ft(xi) can be interpreted as probability that

point xi has the class label of the query x1.

Label propagation is formulated as a form of propagation on a graph, where
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node’s label propagates to neighboring nodes according to their proximity.

The key idea is that its label propagates “faster” along a geodesic path on

the manifold spanned by the set of known shapes than by direct connections.

While following a geodesic path, the obtained new similarity measure learns

to ignore less relevant shape differences. Therefore, when learning is complete,

it is able to focus on more relevant shape differences. We review now the key

steps of label propagation and relate them to the proposed method introduced

in Section 2.1.2.

Let {(x1, y1) . . . (xl, yl)} be the labeled data, y ∈ {1 . . . C}, and {xl+1 . . . xl+u}

the unlabeled data, usually l � u. Let n = l + u. We will often use L and

U to denote labeled and unlabeled data respectively. The Label propagation

supposes the number of classes C is known, and all classes are present in the

labeled data [123]. A graph is created where the nodes are all the data points,

the edge between nodes i, j represents their similarity wi,j. Larger edge weights

allow labels to travel through more easily. Also define a l × C label matrix

YL, whose ith row is an indicator vector for yi, i ∈ L: Yic = δ(yi,c). The

label propagation computes soft labels f for nodes, where f is a n × C ma-

trix whose rows can be interpreted as the probability distributions over labels.

The initialization of f is not important. The label propagation algorithm is

as follows:

1. Initially, set f0(xi) = yi for i = 1, . . . , l and f0(xj) arbitrarily (e.g., 0) for
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xj ∈ Xu

Repeat until convergence:

2. set ft+1(xi) =
∑n

j=1 Pij ft(xj), ∀xi ∈ Xu

3. set ft+1(xi) = yi for i = 1, . . . , l (the labels of the labeled objects should

be fixed).

In step 2, all nodes propagate their labels to their neighbors for one step.

Step 3 is critical, since it ensures persistent label sources from labeled data.

Hence instead of letting the initial labels fade way, we fix the labeled data.

This constant push from labeled nodes, helps to push the class boundaries

through high density regions so that they can settle in low density gaps. If

this structure of data fits the classification goal, then the algorithm can use

unlabeled data to improve learning.

Let f = (
fL

fU

). Since fL is fixed to YL, we are solely interested in fU . The

matrix P is split into labeled and unlabeled sub-matrices

P =

⎡
⎢⎢⎣

PLL PLU

PUL PUU

⎤
⎥⎥⎦ (2.7)

As proven in [123] the label propagation converges, and the solution can be

computed in closed form using matrix algebra:

fU = (I − PUU)
−1PULYL (2.8)
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However, as the label propagation requires all classes be present in the labeled

data, it is not suitable for shape retrieval. As mentioned in Section 2.1.2, for

shape retrieval, the query shape is considered as the only labeled data and

all other shapes are the unlabeled data. Moreover, the graph among all of

the shapes is fully connected, which means the label could be propagated on

the whole graph. If we iterate the label propagation infinite times, all of the

data will have the same label, which is not our goal. Therefore, we stop the

computation after a suitable number of iterations t = T .

2.1.4 The Affinity Matrix

In this section, we address the problem of the construction of the affinity

matrix W . There are some methods that address this issue, such as local

scaling [117], local liner approximation [105], and adaptive kernel size selection

[41].

However, in the case of shape similarity retrieval, a distance function is

usually defined, e.g., [9, 63, 57, 28]. Let D = (Dij) be a distance matrix

computed by some shape distance function. Our goal is to convert it to a

similarity measure in order to construct an affinity matrix W . Usually, this

can be done by using a Gaussian kernel:

wij = exp(−D2
ij

σ2
ij

) (2.9)

Previous research has shown that the propagation results highly depend on
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the kernel size σij selection [105]. In [124], a method to learn the proper σij

for the kernel is introduced, which has excellent performance. However, it is

not learnable in the case of few labeled data. In shape retrieval, since only

the query shape has the label, the learning of σij is not applicable. In our

experiment, we use use an adaptive kernel size based on the mean distance to

K-nearest neighborhoods [106]:

σij = α ·mean({knnd(xi), knnd(xj)}) (2.10)

where mean({knnd(xi), knnd(xj)}) represents the mean distance of the K-

nearest neighbor distance of the sample xi, xj and α is an extra parameter.

Both K and α are determined empirically.

2.1.5 Experimental Results

Improving MPEG-7 shape retrieval

The IDSC [63] significantly improved the performance of shape context [9]

by replacing the Euclidean distance with shortest paths inside the shapes, and

obtained the retrieval rate of 85.40% on the MPEG-7 data set. The proposed

distance learning method is able to improve the IDSC retrieval rate to 91.61%.

For reference, Table 2.3 lists several reported results on the MPEG-7 data set.

The MPEG-7 data set consists of 1400 silhouette images grouped into 70

classes. Each class has 20 different shapes. The retrieval rate is measured by
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the so-called bull’s eye score. Every shape in the database is compared to all

other shapes, and the number of shapes from the same class among the 40

most similar shapes is reported. The bull’s eye retrieval rate is the ratio of

the total number of shapes from the same class to the highest possible number

(which is 20× 1400). Thus, the best possible rate is 100%. From the retrieval

rates collected in Table 2.3, we can clearly observe that our method made a

significant progress on this database, and the second highest result is 87.70%

obtained by Shape Tree [28].

In order to visualize the gain in retrieval rates by our method as compared

to IDSC, we plot the percentage of correct results among the first k most

similar shapes in Fig. 2.4(a), i.e., we plot the percentage of the shapes from

the same class among the first k-nearest neighbors for k = 1, . . . , 40. Recall

that each class has 20 shapes, which is why the curve increases for k > 20. We

observe that the proposed method not only increases the bull’s eye score, but

also the ranking of the shapes for all k = 1, . . . , 40.

We use the following parameters to construct the affinity matrix: α = 0.25

and the neighborhood size is K = 14. As stated in Section 2.1.2, in order

to increase computational efficiency, it is possible to construct the affinity

matrix for only part of the database of known shapes. Hence, for each query

shape, we first retrieve 300 the most similar shapes, and construct the affinity

matrix W for only those shapes, i.e., W is of size 300 × 300 as opposed to
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Table 2.1: Retrieval rates (bull’s eye) of different methods on the MPEG-7
data set.

Alg. CSS Vis. Parts Shape AligningDistance Prob.

Contexts Curves Set Approach

[73] [57] [9] [85] [39] [70]

Score 75.44% 76.45% 76.51% 78.16% 78.38% 79.19%

Alg. Inner Symbolic Hier. Triangle Shape IDSC [63]

Distance Rep. Procrustes Area Tree + our

[63] [20] [71] [2] [28] method

Score 85.40% 85.92% 86.35% 87.23% 87.70% 91.61%

a 1400 × 1400 matrix if we consider all MPEG-7 shapes. Then we calculate

the new similarity measure simT for only those 300 shapes. Here we assume

that all relevant shapes will be among the 300 most similar shapes. Thus, by

using a larger affinity matrix we could improve the retrieval rate but at the

cost of computational efficiency. For each query, the average running time of

our method on MEPG-7 is about 30 seconds in Matlab. For comparison the

running time of the original IDSC is about one minute for each query.

In addition to the statistics presented in Fig. 2.4, Fig. 2.19 illustrates

also that the proposed approach improves the performance of IDSC. A very

interesting case is shown in the first row, where for IDSC only one result is

correct for the query octopus. It instead retrieves nine apples as the most
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similar shapes. Since the query shape of the octopus is occluded, IDSC ranks

it as more similar to an apple than to the octopus. In addition, since IDSC

is invariant to rotation, it confuses the tentacles with the apple stem. Even

in the case of only one correct shape, the proposed method learns that the

difference between the apple stem is very relevant, although the tentacles of

the octopuses exhibit a significant variation in shape. We restate that this is

possible because the new learned distances are induced by geodesic paths in

the shape manifold spanned by the known shapes. Consequently, the learned

distances retrieve nine correct shapes. The only wrong results is the elephant,

where the nose and legs are similar to the tentacles of the octopus.

As shown in the third row, six of the top ten IDSC retrieval results of

lizard are wrong. since IDSC cannot discover the more relevant differences

between lizards and sea snakes. All retrieval results are correct for the new

learned distances, since the proposed method is able to learn the less relevant

differences between lizards and the more relevant differences between lizards

and sea snakes. For the results of deer (fifth row), three of the top ten retrieval

results of IDSC are horses. Compared to it, the proposed method (sixth row)

eliminates all of the wrong results so that only deers are in the top ten results.

It appears to us that our new method learned to ignore the less relevant small

shape details of the antlers. Therefore, the presence of the antlers became

a relevant shape feature here. The situation is similar for the bird and hat,
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with three and four wrong retrieval results respectively for IDSC, which are

eliminated by the proposed method.

An additional explanation of the learning mechanism of the proposed method

is provided by examining the count of the number of violations of the trian-

gle inequality that involve the query shape and the database shapes. In Fig.

7(a), the curve shows the number of triangle inequality violations after each

iteration of our distance learning algorithm. The number of violations is re-

duced significantly after the first few hundred iterations. We cannot expect the

number of violations to be reduced to zero, since cognitively motivated shape

similarity may sometimes require triangle inequality violations [104]. Observe

that the curve in Fig. 7(a) correlates with the plot of differences ||ft+1 − ft||

as a function of t shown in (b). In particular, both curves decrease very slow

after about 1000 iterations, and at 5000 iterations they are nearly constant.

Therefore, we selected T = 5000 as our stop condition. Since the situation is

very similar in all our experiments, we always stop after T = 5000 iterations.

Besides the inner distance shape context [63], we also demonstrate that the

proposed approach can improve the performance of visual parts shape similar-

ity [57] and feature driven generative model method [101]. We select these two

methods since they are very different approach than IDSC. In [57], in order to

compute the similarity between shapes, first the best possible correspondence

of visual parts is established (without explicitly computing the visual parts).
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Then, the similarity between corresponding parts is calculated and aggregated.

The settings and parameters of our experiment are the same as for IDSC as

reported in the previous section except we set α = 0.4. The accuracy of this

method has been increased from 76.45% to 86.69% on the MPEG-7 data set,

which is more than 10%. This makes the improved visual part method one

of the top scoring methods in Table 2.3. For feature driven generative model

method [101], the accuracy has been increased from 80.03% to 89.29% when

we set α = 0.25 and the other parameters are also the same as for IDSC. The

detailed comparisons of the retrieval accuracy are given in Fig. 2.4(b) and Fig.

2.4(c) respectively.

Besides MPEG-7 dataset, we also present experimental results on the

Kimia’s 99 dataset [86]. The dataset contains 99 shapes grouped into nine

classes. In this dataset, some images have protrusions or missing parts. Fig. 2.7

shows two sample shapes for each class of this dataset. As the database only

contains 99 shapes, we calculate the affinity matrix based on all of the shape

in the database. The parameters used to calculate the affinity matrix are:

α = 0.25 and the neighborhood size is K = 4. We changed the neighborhood

size, since the data set is much smaller than the MPEG-7 data set. The re-

trieval results are summarized as the number of shapes from the same class

among the first top 1 to 10 shapes (the best possible result for each of them is

99). Table 2.2 lists the numbers of correct matches of several methods. Again
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Table 2.2: Retrieval results on Kimia’s 99 dataset [86]

Algorithm 1st2nd3rd4th5th6th7th8th9th10th

SC [9] 97 91 88 85 84 77 75 66 56 37

Gen. Model [101] 99 97 99 98 96 96 94 83 75 48

Path Similarity [5] 99 99 99 99 96 97 95 93 89 73

Shock Edit [86] 99 99 99 98 98 97 96 95 93 82

IDSC [63] 99 99 99 98 98 97 97 98 94 79

Triangle Area [2] 99 99 99 98 98 97 98 95 93 80

Shape Tree [28] 99 99 99 99 99 99 99 97 93 86

Symbolic Rep. [20] 99 99 99 98 99 98 98 95 96 94

IDSC [63] + our method 99 99 99 99 99 99 99 99 97 99

we observe that our approach could improve IDSC significantly, and it yields

a nearly perfect retrieval rate, which is the best result in the Table 2.2.

Improving Face Retrieval

We used a face data set from [50], where it is called Face (all). It addresses

a face recognition problem based on the shape of head profiles. It contains

several head profiles extracted from side view photos of 14 subjects. There

exist large variations in the shape of the face profile of each subject, which is

the main reason why we select this data set. Each subject is making different
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face expressions, e.g., talking, yawning, smiling, frowning, laughing, etc. When

the pictures of subjects were taken, they were also encouraged to look a little

to the left or right, randomly. At least two subjects had glasses that they put

on for half of their samples. A few sample pictures are shown in Fig. 2.8.

The head profiles are converted to sequences of curvature values, and nor-

malized to the length of 131 points, starting from the neck area. The data

set has two parts, training with 560 profiles and testing with 1690 profiles.

The training set contains 40 profiles for each of the 14 classes. As reported on

[50], we calculated the retrieval accuracy by matching the 1690 test shapes to

the 560 training shapes. We used a dynamic time warping (DTW) algorithm

with warping window [81] to generate the distance matrix, and obtained the

1NN retrieval accuracy of 88.9% By applying our distance learning method we

increased the 1NN retrieval accuracy to 95.04%. The best reported result in

[50] has the first nearest neighbor (1NN) retrieval accuracy of 80.8%. The re-

trieval rate, which represents the percentage of the shapes from the same class

(profiles of the same subject) among the first k-nearest neighbors, is shown in

Fig. 2.9(b).

The accuracy of the proposed approach is stable, although the accuracy

of DTW decreases significantly when k increases. In particular, our retrieval

rate for k = 40 remains high, 88.20%, while the DTW rate dropped to 60.18%.

Thus, the learned distance allowed us to increase the retrieval rate by nearly
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30%. Similar to the above experiments, the parameters for the affinity matrix

is α = 0.4 and K = 5.

Improving leaf retrieval

The Swedish leaf data set comes from a leaf classification project at Linkop-

ing University and Swedish Museum of Natural History [92]. Fig. 2.10 shows

some representative examples. The data set contains isolated leaves from 15

different Swedish tree species, with 75 leaves per species. We followed the

experimental setting for the Inner-Distance Shape Contexts used in [63], 25

leaves of each species are used for training, and the other 50 leaves are used

for testing. The 1NN accuracy reported in [63] is 94.13%, but the result we

obtained with their software1 is 91.2%. As shown in Fig. 2.11, the retrieval

rate of the Swedish leaf is improved significantly by the proposed approach,

especially, the 1NN recognition rate is increased from 91.2% to 93.8%. The

parameters for the affinity matrix are α = 0.2 and K = 5.

1http://vision.ucla.edu/∼hbling/code
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Figure 2.4: (a) A comparison of retrieval rates between IDSC [63] (blue circles)
and the result improved by the proposed method (red stars) for MPEG-7. (b)
A comparison of retrieval rates between visual parts in [57] (blue circles) and
the result improved by the proposed method (red stars) for MPEG-7. (c) A
comparison of retrieval rates between Gen. Model [101] (blue circles) and the
result improved by the proposed method (red circles) for MPEG-7.
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Figure 2.5: The first column shows the query shape. The remaining 10 columns
show the most similar shapes retrieved by IDSC (odd row numbers) and by
our method (even row numbers).



33

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

(a)

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

Figure 2.6: (a) The number of triangle inequality violations per iteration. (b)
Plot of differences ||ft+1 − ft|| as a function of t.

Figure 2.7: Sample shapes from Kimia’s 99 dataset [86]. We show two shapes
for each of the 9 classes.
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Figure 2.8: A few sample image of the Face (all) data set.
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Figure 2.9: (a) Conversion of the head profile to a curvature sequence. (b)
Retrieval accuracy of DTW (blue circles) and the proposed method (red stars).

Figure 2.10: Typical images from the Swedish leaf database [92], one image
per species. Note that some species are quite similar, e.g., the first, third and
ninth species.
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Figure 2.11: Retrieval accuracy of IDSC (blue circles) and the proposed
method (red stars).
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2.2 Densifying Shape Manifold with Ghost Point

2.2.1 Introduction

In our approach, the influence of other shapes is propagated as a diffusion

process on a graph formed by a given set of shapes. However, as the shape

space is sparse (see Sec. 2.2.2), in some cases the diffusion process can not

propagate properly. It is obvious that adding more data points to the shape

space would make the estimation of the data manifold more accurate. In

other words, if the shape space is properly densified, a diffusion process is able

to better reveal its underlying manifold structure. However, generating new

data points is not always possible or may be costly. Therefore, we propose

a new method to add synthetic data points to metric spaces. We introduce

synthetic points with correct distances to the existing points. To the best of

our knowledge, this is the first time researchers try to solve the problem of

densifying the data manifold, and as our experimental results illustrate, the

diffusion process performs significantly better on the desified manifold.

There have been several proposed approaches to adding synthetic exam-

ples, though these approaches try to solve the problem of balancing the num-

ber of examples in different classes, specifically over-sampling minority classes.

For example, the SMOTE (Synthetic Minority Over-Sampling Technique) [14]

algorithm and its variations [1, 79] have been found to be successful in clas-
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sification problems but their methods are not suitable for shapes, since they

work only in Euclidean space. In those methods, synthetic points are added as

a weighted average of the Euclidean coordinates of two existing points. How-

ever, the Euclidean distance is known to be not suitable as a shape dissimilar-

ity measure even if shapes are represented as vectors of their contour sample

points. For example, the horse in Fig. 2.12(c) is computed as the average of

the Euclidean coordinates of the two horses in Fig. 2.12(a) and Fig. 2.12(b).

The Euclidean coordinates were obtained as sequences of 2D coordinates of

100 aligned contour sample points. Although the feature points of both horses

correspond, it is difficult to recognize the shape in Fig. 2.12(c) as a horse. To

demonstrate the problem, we submitted the average horse as a query to the

MPEG-7 CE-Shape-1 part B data set [58]. The top ten retrieval results are

shown in the first row of Fig. 2.13, ordered from left to right. Obviously none

of the retrieval results is correct, but they are similar to the mean horse. For

example, the tines of the forks are similar to the ’legs’ of the average horse.

The second row of Fig. 2.13 shows the retrieval results of the ’synthetic horse’

generated by the proposed approach, which are all correct.

The second main idea in this paper is to replace the original diffusion

process with a locally constrained diffusion process. As we will demonstrate in

Section 2.2.4, it is significantly more robust to noise than the original diffusion

process.
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(a) (b) (c)

Figure 2.12: (c) The mean horse computed by averaging corresponding sample
contour points of the aligned shapes in (a) and (b).

Figure 2.13: First row: the retrieval results of the mean horse from Fig. 2.12(c).
Second row: the retrieval results of the ghost horse created by the averaging
in distance space of the two shapes in Figs. 2.12(a) and (b).

2.2.2 Ghost points and metric embedding

In this paper, we view shape space as a set X and a distance function ρ :

X ×X → �, where � denotes real numbers. We require only that ρ(x, y) ≥ 0

for all (x, y) ∈ X×X and ρ(x, y) = 0 if x = y. Clearly, we would like ρ to be as

close as possible to a metric, but this is not always possible, since there are clear

arguments from human visual perception that the distance between shapes

does not always satisfy the triangle inequality and the symmetry conditions.

In any case, for theoretical reasons, we assume in Section 2.2.2 that ρ is a

metric. However, as we will demonstrate in our experimental results, this

assumption is not necessary for practical applications.
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By embedding a metric space into a Euclidean space, we add new synthetic

points to the shape space. We can do this so that the new points have correct

distances to all existing points. Thus, the new points augment the shape space

X but we cannot visualize them, which is the reason we call them ghost points.

Metric embedding

The goal of metric embedding is to embed a metric space into a Euclidean

space so that the distances between points are preserved. A distance preserving

mapping between two metric spaces is called an isometry.

It is known that not every four point metric space can be isometrically

embedded into a Euclidean space �k, e.g., see [48]. However, every three

point metric space can be isometrically embedded into the plane �2. Let

(Δ, ρ), where Δ = {x, a, b} ⊆ X, be a metric space with three distinct points.

Then it is easy to map Δ to the vertices of a triangle on the plane. Let

h : Δ → �2 be the isometric embedding, which means that for any two points

y, z ∈ Δ, ρ(y, z)2 = ||y− z||2, where || · || is the standard L2 norm that induces

the Euclidean distance on the plane.

Let μ(a, b) denote the mean of two points a, b. If a, b ∈ �2, then we have

the usual formula μ(a, b) = 1
2
(a + b) (see Fig. 2.14, where e = μ(a, b)).

Our first key contribution is the definition of μ(a, b) for any two points

a, b in a metric space X. To define μ(a, b) in a metric space X, we need to
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x
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e

Figure 2.14: The construction of ρ(x, e) for e = μ(a, b).

specify ρ(x, μ(a, b)) for every x ∈ X . We first isometrically embed the three

point metric subspace Δ = {x, a, b} ⊆ X into the plane �2 by h. We define

μ(a, b) = h−1(1
2
(h(a) + h(b)). Since h(Δ) defines vertices of a triangle on the

plane, we can easily derive that

||h(x)− h(a) + h(b)

2
||2 =

||h(x)− h(a)||2
2

+
||h(x)− h(b)||2

2
− ||h(a)− h(b)||2

4

Since h is an isometry and μ(a, b) = h−1(1
2
(h(a) + h(b)), we obtain (see

Fig. 2.14)

ρ(x, μ(a, b))2 =
1

2
ρ(x, a)2 +

1

2
ρ(x, b)2 − 1

4
ρ(a, b)2 (2.11)

Consequently, Eq. 2.11 defines the distance of every point x ∈ X to the new

point μ(a, b), which we call the mean of a and b. By computing the distances

of μ(a, b) to all points in X , we define a new point μ(a, b), and the augmented

set X ′ = X ∪ {μ(a, b)} is also a distance space. We stress that to add a new

point μ(a, b) to X we do not need to compute the embedding h. We use h only

to derive Eq. 2.11. Moreover, since the embedding h is an isometry, Eq. 2.11
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defines correct distances from μ(a, b) to all points in X. This fact is illustrated

in the second row of Fig. 2.13, where we see the sorted 10 closest shapes

shapes to μ(a, b) with a and b being the two shapes in Figs. 2.12(a) and (b).

As shown in the first row of Fig. 2.13, simple averaging in Euclidean space may

not produce correct distances, since the Euclidean distance is not adequate for

shape similarity. We used Inner Distance Shape Context (IDSC) [63] as our

shape distance function ρ in this example.

If the space X is finite, i.e., X = {x1, . . . , xn}, then the distance function

ρ : X ×X → �≥0 is represented by a square matrix Mρ(X). Each row of the

square distance matrix Mρ(X) is the distance of one shape x to all shapes in

the data set, i.e., for all y ∈ X, Mρ(x, y) = ρ(x, y). The matrix forX∪{μ(a, b)}

is obtained by simply adding one row and one column to Mρ(X), with each

entry computed using Eq. 2.11.

Strategies for adding ghost points

There are many possible strategies for adding ghost points. Our strategy

is very simple. We add to X = {x1, . . . , xn} a point μ(x,NN1(x)) for each

x ∈ X, where NN1(x) is the first nearest neighbor of x different from x, i.e.,

NN1(x) = argminy∈S(ρ(x, y)) for S = X \ {x}. However, if y = NN1(x) and

x = NN1(y), this strategy would insert the same ghost point twice. Therefore,

we need to take care to not add duplicate ghost points. After adding the ghost
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points, we obtain a new shape space X ′. As we will show in the experimental

results, the augmented space X ′ densifies the original shape space X in such

a way as to make the estimation of the data manifold more accurate.

This densification of space X is performed in the unsupervised setting,

since we do not assume any knowledge of the class labels of points in X. To

augment X in a supervised setting, we add ghost points to X as described

above with the one exception that the first nearest neighbors are computed

within the class of a given point, i.e., instead of S = X \ {x}, we define

S = {y ∈ X| class(y) = class(x) and y �= x}

We use the augmented shape space X ′ in the diffusion process (Sec. 2.2.3)

to influence the shape similarity measures between the query shape and all

other shapes. After the diffusion process is run, we exclude the ghost points

and calculate our retrieval and classification rates based on only the original

shape data set to allow for a fair comparison to existing methods.

2.2.3 Diffusion process

Given a set of data points X = {x1, . . . , xn}, we consider a fully connected

graph G = (X,E). The vertices of G are the data points and each edge E

is labeled with the strength of the connection E(i, j) = k(xi, xj), where k is

a kernel function that is symmetric and positivity preserving. In this paper,

given two shapes xi and xj, k(xi, xj) is defined by applying a Gaussian to the
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shape distance ρ(xi, xj).

From the symmetric graph defined by (X,E), one can construct a reversible

Markov chain on X. This is a classic technique in many fields. The degree of

each node is defined as

D(xi) =

n∑
j=1

k(xi, xj)

and the transition probability is defined as

P (xi, xj) =
k(xi, xj)

D(xi)
.

It is obvious that the transition matrix P inherits the positivity-preserving

property, but it is no longer symmetric. However, we have gained a conserva-

tion property:
n∑

j=1

P (xi, xj) = 1

From a data analysis point of view, the reason for studying this diffusion

process is that the matrix P contains geometric information about the data

set X. Indeed, the transitions that it defines directly reflect the local geometry

defined by the immediate neighbors of each node in the graph of the data. In

other words, P (xi, xj) represents the probability of transition in one time step

from node xi to node xj and it is proportional to the edge-weight k(xi, xj).

For t ≥ 0, the probability of transition from xi to xj in t time steps is given by

P t(xi, xj), which is the tth power P t of P . One of the main ideas of the diffusion

framework is that the chain running forward in time, or equivalently, taking
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larger powers of P , allows us to integrate the local geometry and therefore

reveals relevant geometric structures of X at different scales, where t plays

the role of a scale parameter. In [17], the data points can be embedded into

Euclidean space by diffusion maps (DM), which can then reorganize the data

points according to their geometric relation revealed by the diffusion process.

Ideally, diffusion coordinates generated by diffusion maps should reveal

the intrinsic geometric structure of the underlying data manifold. However, as

we illustrate by the following example, the diffusion process is still sensitive to

noise. Our example illustrates that the diffusion process may fail to capture the

correct topology if the actual topology of the data manifold is changed because

of noise or outliers. Since noise and outliers can influence the distribution of

data points, low density areas may become high density areas or vice versa,

which will make the transition probability of the diffusion process incorrect.

In Fig. 2.15, the samples are taken from a spiral as a function of arc length

l with added Gaussian noise and a noise ’bridge’ between inner and outer

samples. Since the underlying manifold has a 1D structure, we would expect

the diffusion process to be able to recover it when we use the coordinates of

the second most important eigenvector, as described in [83, 98].

In Figs. 2.15(a) and (c), we plot the coordinates of the second most im-

portant eigenvector as a function of arc length (measured as point index). As

can be clearly observed in Fig. 2.15(a), the function from arc length to the
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second diffusion coordinate is not one-to-one, which means that the intrinsic

1D structure of the spiral has not been recovered by the standard diffusion

process. Correspondingly, in Fig. 2.15(b), the order of points according to

their second diffusion coordinate is color coded. Points with similar color have

similar second diffusion coordinates. The fact that the 1D structure is not

recovered is shown by the yellow colored points that are present in the bottom

left as well as in the top right parts of the spiral. As shown in Figs. 2.15(c)

and (d), the proposed locally constrained diffusion process (Sec. 2.2.4) is able

to recover the 1D structure of the spiral. The graph in (c) does jitter a bit

since we approximate the arc length coordinates of the spiral with the point

index.

2.2.4 Locally Constrained Diffusion Process

As the diffusion process can be influenced even by moderate noise and

outliers, in order to reduce the effect of noisy data points we introduce in this

section a locally constrained diffusion process.

In the classical diffusion map setting, all paths between nodes xi and xj are

considered when computing the probability of a walk from xi to xj . If there

are several noisy nodes, the paths passing through these nodes will affect this

probability as we demonstrated in Fig. 2.15.

A solution is introduced in [96] to solve this problem. It restricts the



46

0 50 100 150 200 250 300 350 400 450 500
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(a)

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

 

 

10

20

30

40

50

60

(b)

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

4

6

8

10

12

14

16

18
x 10

−4

(c)

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

 

 

10

20

30

40

50

60

(d)

Figure 2.15: An example comparing the standard diffusion process (DM) to
our method (LCDP). (a) is the plot of second most important eigenvector as
a function of arc length. (b) shows the points color coded according to their
second diffusion coordinate using DM. (c) and (d) show the same plots as (a)
and (b) but using LCDP.

random walk to the K nearest neighbors of the data points by replacing the

original graph G with a K nearest neighbor (KNN) graph GK that has the

edge weights defined as follows: EK(i, j) = k(xi, xj) if xj belongs to the KNNs

of xi and EK(i, j) = 0 otherwise. Then, the one-step transition probabilities

PK(xi, xj) from xi to xj are defined

PK(xi, xj) =
EK(i, j)∑
j EK(i, j)

.

Through replacing the P in Section 2.2.3 by PK , the effect of noise may be

reduced, but it is still not robust enough to noise. The relation between the

KNN(xi) and KNN(xj) is too hard and too narrow. It counts a data point

xk only if xk is a KNN of both xi and xj . This causes problems if both points
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xi and xj belong to the same dense cluster, in which case they may have no

common KNNs although they are very similar. In other words, although xi and

xj are very similar to each other and there are many short paths connecting

them in graph G, they may have no common neighbor in GK .

In order to solve this problem, we consider the paths between KNNs of

xi and KNNs of xj , which can be viewed as a soft measure of their KNNs’

compatibility. The probability of transition from node xi to xj is high if all

the the paths between points in KNN(xi) and in KNN(xj) are short. We

define

P t+1
KK(xi, xj) =

∑
k∈KNN(xi),l∈KNN(xj)

P (xi, xk)P
t
KK(xk, xl)P (xl, xj) (2.12)

Eq. 2.12 can be viewed as a symmetric version of the approach in [96]. In

addition, it can be expressed as matrix multiplication

P t+1
KK = PK P t

KK (PK)
T .

The embedding results of our proposed approach on the noisy spiral data

are shown in Figs. 2.15(c) and (d). These figures demonstrate that the pro-

posed locally constrained diffusion process (LCDP) is able to recover the in-

trinsic geometric structure of the spiral. The number of nearest neighbors K is

very crucial. If it is too large, the effect of noise cannot be reduced efficiently;

if it is too small, it will correspond to the most likely transition probability,
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which is also easily affected by the ’noise bridge’.

2.2.5 Experimental results

In this section, we demonstrate the validity of our approach for shape

retrieval on two standard data sets, MPEG-7 and Swedish Leaf. We compare

the Locally Constrained Diffusion Process (LCDP) to three closely related

methods: diffusion process based on Locally Appropriate Metric (LAM) [96];

diffusion distances after embedding by Diffusion Maps (DM) [55]; and the

Label Propagation (LP) approach in [110]. We show also the positive effect of

adding ghost points in both unsupervised and supervised settings.

In all of the following experiments, the σ for the Gaussian Kernel function

follows the approach in [110]. The number of K nearest neighbors is 20 for

the MPEG-7 data set and 40 for the Swedish Leaf data set. The number of

iterations of the diffusion process, t, is set empirically.

MPEG-7 data set

First we show the experimental results on the MPEG-7 CE-Shape-1 part

B data set [58]. MPEG-7 is a standard data set and is widely used to test

shape classification and retrieval methods. It contains 1400 binary images

divided into 70 shape classes of 20 images each. Every shape in the data set is

compared to all other shapes, and the number of shapes from the same class
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among the 40 most similar shapes is reported. The bull’s-eye retrieval rate

is the ratio of the total number of shapes from the same class to the highest

number possible (which is 1400 × 20), thus the best possible score is 100%.

To show that the proposed approach can improve shape retrieval results on

existing shape distance measures, we choose the well-known shape similarity

method, Inner Distance Shape Context (IDSC) [63], to compute the pairwise

distances between the shapes. The bull’s-eye scores of the proposed approaches

and the other approaches using IDSC are shown in Table 2.3, and the retrieval

scores (the ratio of the number of correct shapes among the first k shapes for

k = 1, . . . , 40) is shown in Fig. 2.16. The lowest overall retrieval results of

DM illustrate the fact that embedding the shape space into low dimensional

Euclidean space may lead to significant loss of information. This is the only

method that performs worse than the original IDSC pairwise distance measure.

Although the accuracy of LAM is higher than IDSC, it is still significantly

lower than the proposed LCDP. Even without ghost points, LCDP increases

the bull’s-eye score to 92.36%, which is better than the highest previously

reported bull’s-eye score of 91.00% in [110] and demonstrates that our method

does reduce the effect of noise and outlier shapes. By adding ghost points in

an unsupervised setting, the bull’s-eye score reaches 93.31%, the highest ever

reported. It is consistent with our assumption that the ghost points densify

the data space, which improves the performance of the diffusion process.
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In Fig. 2.17, we report the percentage gain for each of the 70 shape classes in

the MPEG-7 data set obtained by LCDP with unsupervised ghost points when

compared to IDSC. We observe that the bull’s-eye retrieval rate was improved

by over 20% on 9 shape classes. This demonstrates the ability of the proposed

approach to learn object appearance in the context of other shapes. But as

learning involves generalization, there is always a danger of overgeneralization.

Yet this graph demonstrates that this danger is very small for the proposed

approach since the bull’s-eye score of only one class decreased significantly.

Furthermore, this decrease in accuracy can be explained by the fact that this

class contains shapes of spoons which are very similar to sea-snakes, pencils,

and keys in the MPEG-7 data set.

From the graph in Fig. 2.16, it is clear that the retrieval rate when using

the unsupervised ghost points is not always better than the other approaches.

For the early nearest neighbors, i.e., when k is small, it is worse than the

other methods because in the unsupervised setting we assume that the local

structure of each data point is correct; that is, that the first nearest neighbor

of each of the data points should be from the same class as the data point

itself. However, since IDSC can not attain 100% accuracy when finding the

first nearest neighbors, a few inter-class ghost points will be generated. This

reduces the accuracy of the retrieval rates for small k. However, since most

of the ghost points generated are intra-class (and this is what we want), the
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retrieval rates for later k improves significantly, and the bull’s-eye score reaches

93.31% for k = 40. To solve this problem of generating inter-class ghost points,

we also generate ghost points in a supervised setting. With supervision, only

intra-class ghost points are created and this gives us the bull’s-eye score of

97.21%. Furthermore, the retrieval curve is always above the curves of the

other approaches. Hence we can conclude that the performance gain in the

retrieval rates is optimal when the shape space is densified in a supervised

setting. We want to stress that this scenario is realistic, since we usually know

the class labels of the database objects.

0 5 10 15 20 25 30 35 40
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

IDSC+Label Propagation
Original IDSC
IDSC+LAM
IDSC+LCDP + unsupervised ghost point
IDSC+LCDP+ supervised ghost point
LCDP
IDSC+Diffusion Map

Figure 2.16: Comparison of our proposed approach to other methods using
IDSC.

Swedish Leaf data set

We also test our approach on the Swedish leaf data set, which comes from a

leaf classification project at Linköping University and the Swedish Museum of
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Table 2.3: Retrieval rates (bull’s-eye) of the MPEG-7 data set using Inner
Distance Shape Context (IDSC).

Alg. IDSC IDSC IDSC IDSC IDSC IDSC IDSC

[63] + LAM +DM +LP[110] +LCDP +LCDP +LCDP

+unsupervised GP+supervised GP

Score 85.40% 89.00% 78.56% 91.00% 92.36% 93.31% 97.21%

Natural History [92]. The data set contains images of leaves from 15 different

Swedish tree species, with 75 leaves per species, for a total of 1125 images.

Previous work focused on 1-nearest-neighbor (1NN) classification [63, 92]. In

this paper, in addition to our results for 1NN classification, we also show the

retrieval results as the ratio of correct shapes among the first k shapes for

k = 1, . . . , 75. Again, we use IDSC to find the distances between the shapes

of the data set and we compare our approach to two of the three methods

discussed above (there are no reported results on this data set for LP [110]).

The results for the different methods are shown in Fig. 2.18. Once again,

the retrieval results for DM are significantly worse than the other approaches.

Although LAM’s performance is quite good, it is still worse than LCDP. LCDP

without ghost points improves the retrieval results significantly with the 1NN

classification rate increasing from 94.12%[63] to 98.2%, the highest score in

the literature.
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Figure 2.17: The gain in bull’s-eye retrieval rates for each of the 70 shape
classes of the MPEG-7 data set for IDSC [63]

Consistent with the results obtained on the MPEG-7 data set, the addi-

tion of unsupervised ghost points does not improve the retrieval rates of LCDP

for small k, but does improve them for larger k. Adding ghost points in the

supervised setting achieves the best performance of all. The 1NN classifica-

tion rates are 97.6% and 99.3% for unsupervised and supervised ghost points

respectively.

The reason for the difference between the results for unsupervised and su-

pervised ghost points is that the data set contains several classes that are very

similar to each other and thus some of the ghost points added in the unsu-

pervised setting are inter-class and we have the same problem as we discuss

in Sec. 2.2.5. The addition of ghost points in the supervised setting solves

this problem by generating only intra-class ghost points, and the retrieval rate
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increases significantly.
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Figure 2.18: Retrieval curves of Swedish leaf data set

We can make some conclusions based on the experimental results. First,

LCDP performs better than LP and LAM, which is consistent with the dis-

cussion in Sec. 2.2.4. Second, the effect of adding unsupervised ghost points

depends greatly on the accuracy of the original shape similarity measure. If

the assumption of local structure of the data points can be satisfied, adding

unsupervised ghost points can achieve an enormous improvement. Conversely,

if we can not assume local structure of the data points, adding unsupervised

ghost points may actually cause the k nearest neighbor retrieval rate to de-

cline for small k (though there still may be a substantial improvement for

large k). Third, the ghost points generated in a supervised setting consis-

tently and significantly improve the retrieval rates for all k. Although it is not
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fair to compare adding supervised ghost points to unsupervised ghost points

in shape retrieval, the excellent performance shows the possible application of

ghost points in other areas of supervised and semi-supervised data mining.

2.3 Affinity Learning on a Tensor Product Graph

with Applications to Shape and Image Re-

trieval

2.3.1 Introduction

Image and shape retrieval belong to central topics in computer vision.

Similar to other ranking/retrieval tasks, once a query object is given, the

goal is to retrieve the most similar objects in the database. Traditionally, the

performance of the retrieval is decided by the similarity/dissimilarity measure,

which separately compares the query to each database object. However, these

pairwise comparisons ignore the structure of the data manifold determined by

similarities between the database objects. As shown by a sequence of recent

papers, [120, 111, 54, 7], considering the data manifold structure significantly

improves the performance of ranking/retrieval. The basic idea is inspired by

the success of google PageRank ranking. The data manifold is represented as

a graph with edge weights determined by the initial pairwise similarity values.
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Then the pairwise similarities between the query and each database object

are reevaluated in the context of other database objects, where the context of

each object is a set of other objects most similar to it and the reevaluation

is obtained by propagating the similarity information following structure of

the weighted edge links in the graph. The reevaluation is closely related to

random walks on the graph, e.g., [96, 118].

Compared to the existing methods, our approach differs in two main as-

pects. First, instead of propagating the similarity information on the original

graph, we propose to utilize the tensor product graph (TPG) obtained by the

tensor product of the original graph with itself. Since TPG takes into account

a higher order information compared to the original methods, it comes at no

surprise that we obtain better retrieval performance. Higher order information

has been utilized in many applications before, e.g., [43, 119], but it comes at

the price of higher order computational complexity and storage requirement.

The key feature of the proposed approach is that the information propagation

on can be computed with the same computational complexity and the same

amount of storage as the propagation on the original graph. We utilize a graph

diffusion process to propagate the similarity information on TPG, but we never

compute it directly on TPG. Instead, we derive a novel iterative algorithm to

compute it directly on the original graph, which is guaranteed to converge.

After its convergence we obtain new edge weights that can be interpreted as
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new, learnt similarities. They are then used for final retrieval ranking.

Fig. 2.19 compares the retrieval results of the learnt similarities to those of

original similarities. The queries are shown in the first column. The first row

shows retrieval results of an original image similarity measure on a subset of

Caltech 101 dataset. The second row shows the retrieval results after learning

the similarities. The third row shows retrieval results of an original shape

similarity measure [64] on the MPEG-7 dataset. The results after learning the

similarities with the proposed method are shown in the fourth row. As can be

seen the proposed similarity learning is able to correct wrong retrieval results

of the original similarities.

Second, it has been noticed that if the pairwise similarities are not accurate,

the full graph contains too much noise, which hurts the affinity propagation

[55, 96]. Thus, it is natural to constrain the relation from each element to

its neighbors [96]. This significantly reduces the amount of noisy pairwise

similarities, since the pairwise similarities are more accurate for close neigh-

bors. A common practice to achieve this is to keep only the edge weights of k

nearest neighbors (kNN) of each object and zero out the other edge weights,

i.e., remove the corresponding edges. However, the selection of kNN is also

easily influenced by errors in the pairwise similarities and a ”good” number of

nearest neighbors k may be different for different objects. To better define the

neighbors of a point, we propose a novel way to construct the neighborhood
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Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Figure 2.19: First row: the query and the retrieval results with an original
image similarity measure on subset of Caltech 101 dataset. Second row: the
same query and the retrieval results after the proposed similarity learning.
Third row: the query and the retrieval results with a shape similarity measure
on the MPEG-7 shape dataset. Fourth row: the same query and the retrieval
results with learned similarities.

structure, which is called Dominant Neighborhood (DN). Like a dominant set

defined in [78], DN considers the affinities among the neighbors to determine

the best neighborhood structure, which makes it more robust to errors and

outliers in pairwise similarities. Another advantage of DN is that it automat-

ically determines the optimal number of neighbors. This solves one of the

serious problems of kNN . If k is too large for a given point, its kNN includes

points that are not its true neighbors. This fact is illustrated for binary shapes
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Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Query 1st 2nd 3rd 4th 5th 6th 7th

Figure 2.20: First row: a classic kNN for k = 9 of a dog. It contains two
horses making it harder for any affinity learning algorithm to discriminate
dogs from horses. Second row: the proposed dominant neighborhood (DN)
obtained from kNN in the first row.

in Fig. 2.3.1. The fact that kNN for k = 9 of the dog contains two horses

(first row), may cause any affinity learning algorithm to lose the distinction

between dogs and horses. The DN of the dog in the second row correctly

contains only dogs, making it easier to learn the distinction between dogs and

horses. To illustrate the problem of kNN from the point of view of a data

manifold, we show a toy example in Fig. 2.21(a). The point marked with a

triangle incorrectly contains points of two classes in its kNN for k = 50. As

shown in Fig. 2.21(b), the dominant neighborhood of this point only contains

points form its class.

In §2.3.2, the distance learning algorithm on TPG is introduced in details.

The construction of DN is described in §2.3.5. The experimental results are

given in §2.3.6.
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Figure 2.21: (a) The blue stars show a classical kNN of the point marked with
the blue triangle for k = 50. (b) The proposed, dominant neighborhood (DN)
of the same point. It is obtained as a dominant subset form the kNN in (a).

2.3.2 Affinity Learning

In this section we describe a novel context-sensitive affinity learning al-

gorithm. It is introduced as a diffusion process on a Tensor Product Graph

(TPG). However, the size of TPG is quadratic as compared to the original

graph, which makes the diffusion on the TPG impractical on large datasets

due to both high computation time and high memory requirement. To solve

this problem, we propose a novel iterative algorithm on the original graph (Sec-

tion 2.3.4), and prove that it is equivalent to the diffusion process on TPG.

Consequently, both time complexity and memory requirements of the iterative

algorithm are comparable to other affinity learning methods like diffusion on

the original graph [96] or LGC[120, 118].

In the paper, the data is represented as an edge-weighted graph G = (V,A),

where V = {v1, ..., vn} is the set of vertices representing the data points and

A is the graph adjacency matrix A(i, j) = (aij) for i, j = 1, . . . , n, where aij

presents the edge weight from vi to vj . We assume that A is nonnegative
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and the sum of each row is smaller than one. A matrix A that satisfies these

requirements can be easily created from a stochastic matrix (see Section 2.3.5).

It is well known that a graph diffusion process is able to reveal the intrin-

sic relation between objects [17, 96]. Probably the simplest realization of a

diffusion process on a graph is by computing powers of the graph matrix, i.e.,

the edge weights at time t are given by At. Usually, the time is discrete and t

corresponds to the iteration number. However, this process is sensitive to the

number of iterations [55]. For example, if the sum of each row of A is smaller

than one, as we assumed, then it converges to zero matrix, in which case deter-

mining a right stopping time t is critical. In order to make the graph diffusion

process independent from the number of iteration, accumulation between dif-

ferent numbers of iterations is widely used [55]. Following this strategy, we

consider the graph diffusion process defined as

A(t) =

t∑
i=0

Ai (2.13)

Our assumption that the sum of each row of A < 1 is equivalent to the

fact that the the maximum of the row-wise sums of matrix A < 1. It is

known that the maximum of the absolute values of the eigenvalues is bounded

by the the maximum of the row-wise sums. Therefore, we obtain that the

maximum of the absolute values of the eigenvalues of A is smaller than one.

Consequently, (2.13) converges to a fixed and nontrivial solution given by

limt→∞ A(t) = (I −A)−1, where I is the identify matrix.
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G G G = G⊗G

Figure 2.22: The example of a tensor product graph. The green circles are
the vertexes and the lines are the edges. We do not show the self connections
(loops) in the graphs, but each node has a loop.

2.3.3 Diffusion Process on Tensor Product Graph

The Tensor Product Graph (TPG) G = G⊗G is defined as G = (V ×V,A).

Thus, each vertex of G is a pair of vertices in G, and consequently, it is indexed

with a pair of indices. The adjacency matrix of G is defined as A = A ⊗ A,

where ⊗ is the Kronecker product [56, 102]. In particular, for α, β, i, j =

1 . . . , n we have

A(α, β, i, j) = A(α, β) · A(i, j) = aα,β · ai,j .

Thus, if A ∈ Rn×n, then A = A ⊗ A ∈ Rnn×nn. An example is shown in

Fig. 2.22.

We define the diffusion process on TPG as

A
(t) =

t∑
i=1

A
i. (2.14)

Since the edge weights of TPG relate 4 tuples of original vertices, G contains

high order information than the input graph. The higher order information is
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helpful for revealing the intrinsic relation between objects, which is obtained

by the diffusion process on TPG.

As is the case for (2.13), the process (2.14) also converges to a fixed and

nontrivial solution

lim
t→∞

A
(t) = lim

t→∞

t∑
i=1

A
i = (I − A)−1. (2.15)

To show this, we only need to show that the sum of each row of A is smaller

than 1, i.e.,
∑

β,j A(αβ, ij) < 1, where β, j both range from 1 to n. This holds,

since

∑
βj

A(αβ, ij) =
∑
βj

aαβaij =
∑
β

aαβ
∑
j

aij < 1. (2.16)

Consequently, (2.15) provides a closed form solution for the diffusion process

on TPG. However, our goal was to utilize TPG to learn new affinities on the

original graph G. i.e., to obtain a new affinity matrix A∗ of size n × n. The

matrix A∗ containing the learned affinities is defined as

A∗ = vec−1((I − A)−1 vec(I)), (2.17)

where I ia an n × n identity matrix and vec is an operator that stacks the

columns of a matrix one after the next into a column vector. Formally, for a

given m× n matrix B

vec(B) = (b11, . . . , bm1, b12, . . . , bm2, . . . , b1n, . . . , bmn)
T .
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Since vec : Rm×n → Rmn is an isomorphism, its inverse exists, and we denote

it with vec−1.

To motivate the definition (2.17), we observe that the following equation

holds

vec(A) = A vec(I) = (A⊗ A) vec(I). (2.18)

Hence, we can obtain the original matrix A from A by

A = vec−1(A vec(I)). (2.19)

We can see that (2.17) is like (2.19) but applied to the diffused A, i.e., to the

solution of (2.15).

To summarize, for the input affinity matrix A, the new learned affinities

are given by matrix A∗ defined in (2.17). However, the affinity learning with

the proposed diffusion process on TPG (2.14) is impractical for large graphs

due to high storage and computing cost. The diffusion on the original graph

G requires O(n2) storage (number of the matrix elements) and its computa-

tion cost is determined by the cost of matrix inversion, which is O(n3) for

Gauss-Jordan elimination or about O(n2.4) for the Coppersmith-Winograd al-

gorithm. In contrast the diffusion on TPG requires O(n4) storage and its

computation cost is O(n6) for Gauss-Jordan elimination or about O(n4.8) for

the Coppersmith-Winograd algorithm. Therefore, we propose a novel iterative

algorithm in Section 2.3.4 to compute (2.14). Its storage and computation cost
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is comparable to the diffusion on the original graph, since it is executed on the

original graph.

2.3.4 Iterative Algorithm for Diffusion on TPG

We define Q(1) = A and

Q(t+1) = A Q(t) AT + I, (2.20)

where I is the identity matrix. We iterate (2.20) until convergence. Let us

denote the limit matrix by Q∗ = limt→∞ Q(t). The proof of the convergence of

(2.20) and a closed form expression for Q∗ both follow from the following key

equation

lim
t→∞

Q(t) = Q∗ = A∗ = vec−1((I − A)−1 vec(I)). (2.21)

The remainder of this section is devoted to prove this equation. Since Q∗ = A∗,

we obtain that the iterative algorithm on the original graphG defined by (2.20)

yields the same affinities as the TPG diffusion process on G.

In order to prove (2.21), we first transform (2.20) to

Q(t+1) = A Q(t) AT + I = A(A Q(t−1) AT + I)AT + I

= A2 Q(t−1) (AT )2 + A I A+ I = ...

= At A (AT )t + At−1 I (AT )t−1 + ... + I

= At A (AT )t +
t−1∑
i=1

Ai
K I (AT )i (2.22)
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Since (by our assumption) sum of each row ofA < 1, we have limt→∞ At A (AT )t =

0, and consequently,

Q∗ = lim
t→∞

Q(t+1) = lim
t→∞

t−1∑
i=1

Ai I (AT )i (2.23)

We observe that the following identity holds

vec(A S AT ) = (A⊗ A)vec(S) = A vec(S), (2.24)

where we recall that ⊗ is the Kronecker product. As a consequence we obtain

for every i = 1, 2, . . .

vec(Ai I (AT )i) = A
ivec(I). (2.25)

Our proof of (2.25) is by induction. Suppose

vec(Ak I (AT )k) = A
kvec(I)

holds for i = k, then for i = k + 1 we have

vec(Ak+1 I (AT )k+1) = vec(A (Ak I (AT )k) AT )

= A vec(Ak I (AT )k) = A A
kvec(I) = A

k+1vec(I)

From (2.25) and from the fact that vec of a sum of matrices is sum of their

vec’s, we obtain

vec(
t−1∑
i=1

(A)i I ((A)T )i) =
t−1∑
i=1

A
ivec(I). (2.26)
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Finally from (2.23) and (2.26), we derive

vec(Q∗) = lim
t→∞

vec(
t−1∑
i=1

Ai I (AT )i) = lim
t→∞

t−1∑
i=1

(Ai vec(I))

= ( lim
t→∞

t−1∑
i=1

A
i) vec(I) = (I − A)−1 vec(I) (2.27)

This proves our key equation (2.21). Hence the iterative algorithm (2.20) on

G yields the same affinities as the TPG diffusion process on G.

Since our iterative algorithm works on the original graphG, both its storage

and computational cost requirements are significantly lower than those of the

TPG diffusion process. It requires O(n2) storage and its computation cost

is determined by the cost of matrix multiplication, which is O(n3) for direct

implementation or about O(n2.4) for the Coppersmith-Winograd algorithm.

Consequently, if the number of iterations is t = T , then its computational cost

is O(Tn3) or O(Tn2.4), correspondingly.

Graph G in Fig. 2.22 provides a simple example to illustrate the fact that

the diffusion on the TPG considers the information from more edge weights

than the diffusion on the original graph. For simplicity we compare only the

second iteration, i.e., we compare A(2) to Q(2) and focus on the edge weight

between 1 and 3. Since there is no edges between 1 and 3 in G, we have

a13 = a31 = 0. Therefore, in A(2) we have a
(2)
13 = a12 · a23. The corresponding

weight of the edge between 1 and 3 in Q(2) is given by

q
(2)
13 = a12 · a23 · (a11 + a22) + a12 · a33 · a33.
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While a
(2)
13 only depends on the edge weights a12 and a23, q

(2)
13 also depends

on the self similarities a11, a22, a33. In particular, we can have a
(2)
13 < q

(2)
13 if

a11 + a22 > 1, but we can also have a
(2)
13 > q

(2)
13 . Thus, TPG diffusion utilizes

more information to determine the strength of the connection between 1 and 3

than just the connections a12 and a23 considered by the diffusion on the original

graph. The difference in the number of connections considered is even more

dramatic for t > 2. TPG diffusion also utilizes the self-reinforcement in that

the strength of the connections depends on the ratio between the similarity of

each database object to itself and the sum of its similarities to other objects.

2.3.5 Dominant Neighbors

The derivations in the previous section depend on the assumption that

the affinity matrix A of graph G is nonnegative and the sum of each row is

smaller than one. However, the original affinity matrix of graph G, let us call

it W , usually does not satisfy these assumptions. In this section we propose a

particular way to transform W to a matrix A that satisfies them.

In the case of retrieval and ranking, W contains pairwise similarities be-

tween the database objects and between the query and the database objects.

Therefore, we can assume that all entries in W are positive. It is also natural

to assume that for each object i the self similarity of i to itself is the largest,

i.e., ∀i ∀j �= i (wii > wij). We also can assume that W is symmetric, since if
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this is not the case we can replace W = 1
2
W W T .

As we observed in the introduction, the pairwise similarities are not accu-

rate, and consequently, the graph contains many noisy similarities. Since the

pairwise similarities are more accurate for close neighbors, the amount of noisy

similarities is significantly reduced if we set to zero all edge weights except the

k nearest neighbors (kNN) of each object.

However, the selection of kNN is also easily influenced by errors in the

pairwise similarities and the number of suitable nearest neighbors k may be

different for different objects. Therefore, to better define the neighbors of a

point, we propose a novel way to construct the neighborhood structure, which

is called Dominant Neighborhood (DN). The main idea is that the dominant

neighborhood DN(i) of a vertex i should correspond to a maximal clique that

satisfies DN(i) ⊆ kNN(i). As stated in [78], a maximal clique in a weighted

graph, which is called a dominant set, is a subset of V with maximal average

affinity between all pairs of its vertices, which is equivalent to the fact that the

overall similarity among internal elements is the highest in that adding any

new element would lower it.

As is the case for kNN(i), we do not want to include vertex i in its DN(i),

therefore, we set the diagonal entries of W to zero and obtain a matrix W0.

In order to select vertices that belong to a dominant set, we introduce an

indicator vector x = (x1, x2, ..., xn) over the vertices V of G. A vertex j ∈ V
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is selected as belonging to a maximal clique if and only if xj > 0. As shown

in [78], each dominant set can be obtained as a local maximizer of the following

quadratic program

maximize f(x) = (x)TW0 x (2.28)

subject to x ∈ Δ = {x ∈ R
n : x ≥ 0,

n∑
j=1

xj = 1}.

Pavan and Pelillo [78] also provide an iterative method to compute local maxi-

mizers of (2.28). Given an initialization x(1), the corresponding local solution

x∗ of (2.28) can be obtained by the replicator equation [107]:

xj(t + 1) = xj(t)
(W0 x(t))j

x(t)TW0 x(t)
j = 1, ..., n (2.29)

It is easy to see that x(t) ∈ Δ with increasing t, which means that every

trajectory staring in Δ will remain in Δ. Moreover, since W0 is symmetric,

the target function f(x) = (x)TW0 x is strictly increasing for a given initial

vector x(1) and is guaranteed to converge.

In order to obtain a dominant neighborhoodDN(i) of vertex i, we initialize

(2.29) with the classical kNN(i). More precisely, we set xj(1) = 1
k
if j ∈

kNN(i) and xj(1) = 0 otherwise. After (2.29) converged to the corresponding

local solution x∗, a vertex j ∈ DN(i) if and only if x∗
j > 0.

As discussed above, the dominant neighborhood of DN(i) is determined

not only by the pairwise relation of i to other objects, but also the relation

between the other objects, which makes DN(i) more robust to noisy pairwise
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similarities than kNN(i). Thus, we use it to first refine the matrix W to

W ∗ so that the neighbors of each data is robust to noise and outliers. The

matrix W ∗ is obtained from W by setting w∗
ij = wij if j ∈ DN(i) and w∗

ij = 0

otherwise. Then, W ∗ is transformed into a stochastic matrix. A is derived

from W ∗, where aij = w∗
ij if j ∈ KNN(i) and aij = 0 otherwise.

2.3.6 Experimental Results

To demonstrate the advantages of our approach, we test our algorithm

on both shape and image retrieval tasks. On all test datasets, the proposed

method achieves excellent results, which are better than the state-of-art meth-

ods. Since our iterative algorithm to compute the TPD diffusion is guaranteed

to converge, we only need to ensure that the number of iterations is not too

small. It is set to 200 for all test datasets.

If pairwise distances are provided for a given dataset, we transform the

distances to similarities with the method introduced in [106]. Once we obtain

a similarity matrix W , we first use DN to obtain the matrix A. Then, we run

the proposed, iterative algorithm to compute the TPD diffusion. It returns

the new affinity matrix A∗ representing the learned similarities, which are then

used for ranking, i.e., if vertex i represents the query objects, the most similar

objects to it are obtained by sorting in descendent order the row i of matrix

A∗.
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MPEG-7 Dataset

The proposed framework is tested for shape classification on a commonly

used MPEG7 CE-Shape-1 part B database [57]. The dataset contains 1400

silhouette images from 70 classes, where each class has 20 different shapes

(some shapes are shown in Figs. 2.19 and 2.3.1). The retrieval rate is measured

by the bull’s eye score: every shape in the database is submitted as a query

and the number of shapes from the same class in the top 40 is counted. The

bull’s eye score is then defined as the ratio of the number of correct hits to the

best possible number of hits (which is 20× 1400).

As shown in Table 2.4 the proposed affinity learning method can success-

fully improve on the state-of-the-art methods. We selected two different shape

similarity methods: Aspect Shape Context (ASC) [64] and Articulated Invari-

ant Representation (AIR) [36] as the input pairwise distance measure. kNN

with k = 13 was used to initialize (2.29). We observe that the affinities learned

by our method improve the original retrieval score of ASC by over 8%. We

reach nearly perfect bull’s eye score 99.99% on MPEG7 Dataset by using AIR

for shape similarity. This is the best ever reported score on this popular shape

dataset.

In order to visualize the gain in retrieval rates (precision) by our method,

we plot the percentage of correct results among the first k most similar shapes

for k = 1, ..., 40 in Fig. 2.3.6, where we use ASC for shape similarity. We
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Table 2.4: Retrieval rates (bull’s eye) of different context shape retrieval meth-
ods on the MPEG-7 shape dataset.

IDSC IDSC IDSC Perc. R. Perc. R.

+LP +Mutual graph + LCDP

[63] [7] [54] [97] [97]

85.40% 91.61% 93.40% 88.39% 95.60%

ASC ASC ASC AIR AIR

+ LCDP + DN + DN

[64] [64] + TPG Diffusion [36] + TPG Diffusion

88.30% 95.96% 96.47% 93.67% 99.99%

observe that not only does the proposed method increase the bulls eye score,

but also consistently achieves the best retrieval rates. Recall that each class has

20 shapes, which is the reason for the precision curves to increase for k > 20.

In order to illustrate the problem with the stopping time of the graph classical

diffusion computed by matrix power, we show two curves for LCDP [111], one

when it is stopped after 7 iterations and the second one when it is stopped

after 100 iterations, which clearly illustrates the problem of diffusing relevant

information. In contrast, the proposed algorithm is robust to the number of

iterations due to its guaranteed convergence proved in Section 2.3.2.
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Figure 2.23: Precision/Recall curves on MPEG-7 shape dataset.

Nister and Stewenius (N-S) dataset

In this section, we demonstrate the performance of the proposed approach

on image retrieval. We compare it to other diffusion based methods and to a re-

cently proposed method, Contextual Dissimilarity Measure (CDM) [46], which

can significantly improve the similarity computed by bag-of-features. CDM

learns affinities following a different principles than the proposed method.

CDM is motivated by an observation that a good ranking is usually not sym-

metrical in image search. CDM makes two images similar when they both

obtain a good ranking position when using each other as a query.

We selected the Nister and Stewenius (N-S) dataset [95] composed of 10,200

images. A few example images from N-S dataset are shown in Fig. 2.24. The
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Figure 2.24: Some images from Nister and Stewenius (N-S) dataset.

N-S dataset consists of 2,550 objects or scenes, each of which is imaged from

4 different viewpoints. Hence there is only 4 images in each class and total of

2,550 image classes, which makes this dataset very challenging for any manifold

learning approach, and in particular, for any diffusion based approach.

To obtain the pairwise distance relation between images for our algorithm,

we implemented a baseline method described in [46]. The image descriptor is a

combination of Hessian-Affine region detector [72] and SIFT descriptor [66]. A

visual vocabulary is obtained using the k-means algorithm on the sub-sampled

image descriptors.

The results are shown in Table 2.5. The retrieval rate is measured by the

average number of correct images among the four first images returned. Thus,

the maximum value is 4 and the higher the value the better is the result.

Each image has been submitted as a query. The fact that our method can

significantly improve the retrieval result of the baseline method (from 3.22 to

3.61) clearly shows the benefits of utilizing higher order relations by the TPG

diffusion. We also observe that the result of our method is better than CDM.
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Table 2.5: Retrieval results on N-S Dataset. The highest possible score is 4.

Baseline Classic Classic Diffusion CDM TPG TPG

Diffusion Diffusion Maps Diffusion Diffusion

[46] with t = 2 with t = 5 [17] [46] with Classic kNN with DN

3.22 3.42 0.245 1.01 3.57 3.58 3.61

Finally, the usage of DN improves on the result obtained with classic kNN .

We did not have much choice to set the neighborhood size k for this dataset.

kNN with k = 3 was used to initialize (2.29).

Since each image class has only 4 images, it is very difficult to correctly

propagate the similarity relations. Therefore, the classic diffusion [17] can only

improve the baseline result for a very small number of iterations. The best

retrieval rate of the classic diffusion is for t = 2, i.e., when the original simi-

larity matrix is raised to power t = 2. Already for t = 5, the retrieval rate is

much lower than the rate of the baseline. We also report the retrieval result

obtained after embedding the data by Diffusion Maps [17], which are signifi-

cantly lower than the rate of the baseline. This justifies our observation that

although Diffusion Maps are excellent for embedding into Euclidean spaces,

the distances obtained after the embedding cannot be used for retrieval tasks.
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Caltech 101 dataset

Besides N-S dataset, we also test our algorithm on a well known Caltech 101

dataset [26]. The Caltech-101 dataset contains 101 classes (including animals,

vehicles, flowers, etc.) with high shape variability. The number of images

per category varies from 31 to 800. Most images are medium resolution, i.e.

about 300×200 pixels. We selected 12 classes from Caltech-101, which contain

total 2788 images. Example images are shown in Fig.2.25. Different from

experiments on N-S dataset, we just use pure SIFT descriptor [66] to calculate

the distance between images. The SIFT features are extracted from 16 × 16

pixel patches densely sampled from each image on a grid with step size of

8 pixels. To get the codebook, we use standard K-means clustering and fix

the codebook size to 2048. Each image is represented by multiple assignment

[46] and Spatial Pyramid Matching [60]. The distance between two images is

obtained by the χ2 distance between the two vectors.

The results are shown in Table 2.6. It is clear that with adjusted number

of iterations according to the ground truth, which is t = 5, the classic diffusion

process is able to reveal the relation between images. However, as discussed

above, it is very sensitive to number of iterations, which we illustrate with

its retrieval rate for t = 50 . Besides, the results of Diffusion Maps [17]

demonstrates that the relation between objects after embedding by Diffusion

Maps [17] is not suitable for retrieval. In our algorithm, to initialize (2.29),
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Figure 2.25: Some sample images from the selected subset of Caltech 101
dataset. Each class contains two examples.

Table 2.6: Retrieval rates on 12 image classes from Caltech-101. The best
possible rate is 1.

Baseline Classic Diffusion Classic Diffusion Diffusion Maps TPG Diffusion

with t = 5 with t = 50 [17] with DN

0.801 0.859 0.267 0.534 0.903

kNN with k = 400 was used. Again TPG diffusion is able to significantly

improve the retrieval rate of the input pairwise distance measure. In particular,

this demonstrates that TPG diffusion is robust to large variance in the number

of images in each class.
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CHAPTER 3

Shape Based Object Detection

on Real Images

3.1 Introduction

we propose a single layer fully connected graph to model shape of de-

formable objects. Each node in the graph is a state variable, which consists

of the position and the corresponding part. The relation between nodes is

long range and not limited to direct spatial proximity. Our model can be

interpreted as a generative prior for the configuration of the state variables.

Since our graph is fully connected, we do not need to learn its structure, which

simplifies the learning significantly. We only need to learn representation of

the nodes and their pairwise relations. Since the number of pairwise rela-
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tions is large, and most of them are not used in our inference process, we do

not learn the pairwise relations explicitly. Instead, we learn a representation

that allows us to dynamically construct the pairwise relations needed in the

inference process.

In our model graph, the nodes represent contour parts and their posi-

tion in a given shape class. They are learned automatically with partially-

supervised learning. While many state-of-the-art approaches construct part

models manually [67, 122], we limit manual labeling to a single contour. In

our approach, only one silhouette is manually decomposed into visual parts in

advance. Then, the part decomposition is automatically transferred to silhou-

ettes not only in the same class but also in different classes with similar shape

by shape matching. To deal with non-rigid objects, we use Inner Distance

Shape Context (IDSC) introduced in [63]. The constructed part bundles (see

§3.2) with proper position in the exemplar shapes form the nodes in the model

graph. The relations between the nodes represent the spatial layout between

parts. It is described by nonparametric density estimation, which has better

discriminative power than methods based on unimodal distributions modeled

as Gaussians, e.g., [27, 94]. To make the learnt model graph representative,

we use the well designed exemplar based clustering by Affinity Propagation

[33] to select a set of candidate silhouettes as exemplars for our model learning

approach.
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According to [121], there are no known algorithms for performing inference

for densely connected flat models, e.g., the performance of Belief Propagation

(BP) is known to degrade for representations with many closed loops. To

address this issue, we propose a Markov chain Monte Carlo (MCMC) approach

that is able to efficiently infer the values of the state variables representing

nodes of our fully connected model graph. The proposed MCMC approach

is based on Particle Filter (PF), but it differs fundamentally, since unlike

the standard PF framework, our PF framework can infer an order of random

variable (RVs). The inferred order follows the most informative paths in the

graph. Thus, we use PF to linearize the structure of the graph, which allows

us to avoid the problem of loops. Each particle may explore a different node

order in this linearization, which corresponds to the order of contour parts.

This fact is illustrated by two different detection examples shown in Fig. 3.1,

where the PF order of detected contour parts is color coded. This property

makes our algorithm different from other PF based method. As can be seen by

examining the relative position of consecutive parts, the proposed inference is

not limited to direct spatial proximity of the parts. This fact sets our approach

apart from existing approaches, e.g., [121, 52].

In order to show the advantages of the proposed approach, we test our

method on three widely used data sets, Weizmann horses [11], the ETHZ

[29], and the cow dataset from the PASCAL Object Recognition Database
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(a) (b)

Figure 3.1: Examples of two different inferred orders of detected contour parts.
Colors represent the order, which is 1=red, 2=cyan, 3=blue, 4=green, 5=yel-
low, and 6=black.

Collection (TU Darmstadt Database [61]). Our results measured by bounding

box intersection are comparable to state-of-the-art methods. Also, we perform

very well in the accuracy of boundary localization, which is evaluated by a

recently proposed measure in [30].

3.2 Partially-Supervised Model Learning

Our approach only requires marking object parts on one exemplar. We

then transfer this knowledge to other contours not only in the same shape

class but also to similar shape classes. Thus, our approach is able to construct

the part models for different classes of objects starting with only one exemplar

contour. The constructed model can describe a wide range of objects with

different poses.

As we learn the model from some exemplars, the first issue is which ones

should be chosen from a given training data set. We use Affinity Propagation

to select the exemplars, which are cluster centers in AP. These cluster centers
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are representative, so that they can describe most of the poses of objects.

The input pairwise distance between shapes is obtained by Oriented Chamfer

Matching (OCM).

3.2.1 Part model construction

We now describe a way to automatically decompose the exemplars E =

{E1, . . . , ENe} into meaningful parts. We first manually segment one selected

silhouette, say E1 into m different meaningful parts S = {s1, . . . , sm}. For

example, for horse, we have six parts: head, two front legs, two back legs,

and the body, shown in different colors in top left of Fig. 3.2(a). We then

use shape matching with IDSC [63] to transfer the parts to other exemplars

E2, . . . , ENe , e.g., to the second horse in Fig.3.2(a). The corresponding points

carry over the part decomposition. To ensure that the part decomposition is

transferred correctly, we require that the number of corresponding points for

a given contour part si is larger than a given threshold, e.g. 80% of the total

number of points in the contour part. If this is not the case, the corresponding

part is removed from the model.

We define part bundle Bi as a set composed of part si on E1 and all

corresponding parts on E2, . . . , ENe transferred by the IDSC matching for i =

1, . . . , m. Each part bundle Bi has at most Ne contour parts. We obtain a

set of m part bundles B = {B1, B2, ..., Bm} that defines the nodes of our part
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(a) (b)

Figure 3.2: (a) Six manually labeled parts on the horse in top left are marked
with different colors. The point correspondence obtained by shape matching
allows us to transfer the part structure to a different horse and to a giraffe.
(b)The horse head and horse body shown on the left hand side are very different
from our perception of a horse. Our measure of this fact is illustrated in the
rest of this figure.

model graph.

We can also employ shape matching to transfer the part structure to dif-

ferent but similar object classes. As illustrated in Fig. 3.2(a), our part decom-

position of the horse contour transfers easily to contours of giraffes. As long as

the objects in different classes have similar structure, the proposed approach

can transfer the structure knowledge from the known class to the other classes

and obtain the part bundle models. There are three advantages of the pro-

posed approach: 1) It requires very little manual labeling. 2) The constructed

model composed of part bundles can handle the intra-class variations as long

as the training silhouettes can represent the possible poses of objects. 3) The

structural knowledge can be easily transferred to different classes.



85

3.2.2 Relation between model parts

After learning the model from silhouettes, in order to make the model more

flexible, we permit the rotation for each part and also some shift. However,

with the increasing flexibility, the obtained model can be very different from

shapes in a given object class. To reduce the negative effect of flexible models,

we propose a soft way to constrain the flexibility. We allow the flexibility in

a range determined by shape similarity to example shapes in a given object

class. Here the shape similarity is described by spatial layout of model parts,

i.e., a new rotated spatial layout of parts is allowed if it is similar to a layout

previously seen for this class. An example is shown in Fig. 3.2(b). The horse

head and horse body shown on the left hand side are very different from our

perception of a horse. The head and body are too far away from each other

and their arrangement due to rotation is really strange. With the method

described below, we can offer a soft constraint on possible spatial layout of

parts.

The key idea is to construct a distribution describing the spatial layout

between different parts. In particular, given a part bundle Bi, the spatial

relation between it and another part bundle Bj forms a distribution. This kind

of distribution has been used in object detection to help describe the model

[94, 27], but the distribution is assumed to be Gaussian, whose parameters can

be easily learned from training samples. However, obviously, the distribution



86

of part relation is very complex and expressing it as Gaussian or any other

parametric distribution does not seem to be a good approximation. Instead,

we propose to learn the underlying distribution in a non-parametric setting.

We employ kernel density estimation, which is one of the most popular

non-parametric methods. Given are two rotated parts p′i and p′j that come

from different part bundles Bi and Bj respectively. Our goal is to find how is

p′j located with respect to p′i. For example, we want to find out how well the

green body is positioned with respect to the black horse head in Fig. 3.2(b).

For part p′i, we use OCMp′i to find the top k most similar exemplar parts

(pi(1), . . . , pi(k)) in part bundle Bi (the bundle of p
′
i). For these original parts

in Bi, we know the exemplar contours they came from. From these con-

tours, we extract parts (pj(1), . . . , pj(k)) that belong to the same bundle as p′j ,

i.e., to part bundle Bj. In Fig. 3.2(b), OCM retrieves the 3 red horse heads

(pi(1), pi(2), pi(3)) as most similar to the black head, which in turn carry over

from their original contours 3 blue horse bodies (pj(1), pj(2), pj(3)). Finally,

we measure the spatial layout between parts p′i and p′j by estimating the fitness

of p′j to the distribution described by (pj(1), . . . , pj(k)):

f(p′j|p′i) =
1

Cc

k∑
t=1

1

h
K(

OCMp′j(pj(t))

h
) (3.1)

where K is a kernel function with bandwidth h, which is Gaussian in the

paper and Cc is a constant value. The computation of f(p′j|p′i) in our example

is illustrated in the right column of Fig. 3.2(b). It is a function of the OCM
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distance between the green horse body and the 3 blue horse bodies.

3.3 Framework for Object Detection

Our goal is to infer the maximum of a posterior distribution p(B1, . . . , Bm | Z),

where (B1, . . . , Bm) is a vector of random variables (RVs) representing part

bundles, which are nodes of our shape model graph (§3.2). In our applica-

tion Z = (I, C) is a set of observations, where I is a RV ranging over binary

edge images and C ranges over classes of target objects including background.

Thus, Z is static, since the target edge image and the class of object are fixed

for a given detection process. The possible values of each RV Bi are vectors

of two elements, one is the location xi in the image and the second is the

part si chosen from the part bundle Bi in the model. In the case of a correct

detection, we expect part si to be located at xi in the image. We stress that

even though each part bundle has many parts, only one of them is chosen for a

given location in the image. To simplify the notation, we use b to represent the

pair of values (x, s) for each random variable, i.e., bl = (xl, sl). Consequently,

our goal is to find value assignments to RVs Bt = bt for t = 1, . . . , m that

maximize the posterior

b̂1:m = argmax
b1:m

p(b1:m | Z), (3.2)
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where b1:m is a shorthand notation for (b1, . . . , bm). We will achieve our goal

by approximating the posterior distribution with a finite number of particles

in the framework of Particle Filter (PF). Besides, only a small subset of the

search space is considered in the framework, which reduces the complexity

significantly compared to exhaustive search with sliding windows, e.g., [88].

Unlike the standard PF framework, the observations Z in our approach do

not arrive sequentially, but are available at once, i.e., Z is static. Therefore,

the observations have no natural order. Consequently, the states b1:m also do

not have any natural order, i.e., the order of indices 1, . . . , m does not have any

particular meaning. Therefore, we need to extend the PF framework to infer an

order of RVs, which may be different for each particle. Intuitively, we want to

determine such an order of RVs so that the corresponding order of observations

is most informative, which makes the particle reaches optimal solution faster

and more accurate. This makes the proposed PF fundamentally different from

classical PF. To represent the order of RVs we need a symbol of a bijection

(onto and one-to-one function) < · >(i): {1, . . . , m} → {1, . . . , m}. Although

we may have a different bijection for each particle (i), we will drop the index

(i) from < 1 : t >(i), since the state variables already carry the particle index.

For example, we denote (b
(i)
4 , b

(i)
5 , b

(i)
2 ) as b

(i)
<1:3>, where < 1 : 3 >= (4, 5, 2).

We first present the proposed PF algorithm followed by a discussion of

its major differences to standard PF approaches. As it is often the case in
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PF applications, we assume the proposal distribution to be q(b|b(i)<1:t−1>, Z) =

p(b|b(i)<1:t−1>). For each particle (i), where i = 1, . . . , N , the proposed PF

algorithm in each iteration t = 2, . . . , m performs the following three steps:

1) Importance sampling / proposal: Sample followers of particle (i) for

l ∈ {1, . . . , m}\ < 1 : t− 1 >

b
(i)
l ∼ p(bl|b(i)<1:t−1>) (3.3)

and set b
(i)
<1:t−1>,l = (b

(i)
<1:t−1>, b

(i)
l ). In particular, in the first iteration (t = 1)

we generate samples from each dimension of the state space, i.e., we sample

for l ∈ {1, . . . , m}

b
(i)
<1> = b

(i)
l ∼ p(bl) (3.4)

2) Importance weighting/evaluation: An individual importance weight is

assigned to each follower of each particle by

w(b
(i)
<1:t−1>,l) = p(Z|b(i)<1:t−1>,l). (3.5)

3) Resampling: At the sampling step we have generated more samples than

the number of particles. Thus we have a larger set of particles b
(i)
<1:t−1>,l for

i = 1, . . . , N and l ∈ {1, . . . , m}\ < 1 : t − 1 > from which we sub-sample N

particles and assign equal weights to all of them as in the standard Sampling

Importance Resampling (SIR) approach. We obtain a set of new particles

b
(i)
<1:t> for i = 1, . . . , N . The resampling is not performed in the last step, i.e.,
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when t = m.

Algorithm discussion:

1) This step provides our main extension of the classical PF framework. In

the classical PF framework, followers of each particle are selected from only

one conditional distribution, i.e., from the conditional distribution of RV at

dimension t given by p(bt|b(i)1:t−1), since the dimension index t represents a real

order of RVs 1 : t = 1, . . . , t. In contrast we sample the followers from each

dimension l ∈ {1, . . . , m} that is not already included in < 1 : t− 1 >.

The fact that one can consider more than one follower of each particle and

reduce the number of followers by resampling is known in the PF literature and

is referred to as prior boosting [37]. It is used to capture multi-modal likelihood

regions. However, all followers are selected from the conditional distribution

of the same RV (the same dimension t) in the classical PF framework.

2) We take the weight formula from [67], where it has been derived for PF

with static observations.

3) We stress that the resampling plays in our framework an additional and

a very crucial role. It selects the the most informative random variables

(i.e., state space dimensions) as followers of particles. Since the weight of

b
(i)
<1:t−1>,l is determined by the observations Z, and the resampling uses the

weights to selects a follower b<t> = bl from not yet considered dimensions
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l ∈ {1, . . . , m}\ < 1 : t−1 >, the resampling determines the order of RVs, i.e.,

the bijection < t > for t = 1, . . .m. Consequently, the order of RVs is heavily

determined by Z, and this order may be different for each particle (i). This is

in strong contrast to the classical PF, where observations Z have no influence

on the order of RVs, which is fixed.

In order to execute the derived PF algorithm, we need to define the pro-

posal distribution p(bl|b(i)<1:t−1>), and the evaluation pdf p(Z|b(i)<1:t−1>,l). As

stated in Eq. 3.4, the initial proposal distribution is defined by p(bl), where

l is an index of a RV representing a part bundle and bl = (sl, xl). In our

implementation, p(bl) is simply the probability of finding model part sl at

location xl, and it measures how well model part sl fits the edges in the im-

age. We compute it as a Gaussian of the oriented chamfer distance. Similarly,

p(bl|b(i)<1:t−1>) is the probability of finding model part sl at the location xl, but

now the location is constrained, since parts s<1:t−1> have already been placed

in the image. Thus, this conditional probability is picked around the expected

location xl determined by the locations x<1:t−1> of the previously added parts.

While the initial proposal distribution is computed at every image location,

the conditional proposal distribution is only computed at regions of interest

determined by the previously placed model parts.

As Z = (I, C), and I and C can be viewed as independent conditioned on
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b
(i)
<1:t−1>,l, we obtain:

p(Z|b(i)<1:t−1>,l) = p(I|b(i)<1:t−1>,l)p(C|b(i)<1:t−1>,l) (3.6)

We recall that in our detection framework, both I and C are instantiated,

since they are given prior to the detection, i.e., I = im, where im is a given

binary edge image and C = 1, which represents the class of the target object.

The first factor p(I = im|b(i)<1:t−1>,l) in Eq. 3.6 describes the goodness of fit

to the edge image im of the partial shape model determined by b
(i)
<1:t−1>,l, i.e.,

how likely the edges in im come from a picture of a shape like the shape of

b
(i)
<1:t−1>,l. The second factor p(C = 1|b(i)<1:t−1>,l) represents the probability of

the target class given the model b
(i)
<1:t−1>,l. Hence it can be viewed as shape

class constraints on the model. The conditional pdfs describing both factors

are defined in § 3.4.

3.4 Evaluation based on shape similarity

As b
(i)
<1:t−1>,l consists of the parts s

(i)
<1:t−1>,l and their locations x

(i)
<1:t−1>,l,

we construct a partial shape model μ by putting parts s
(i)
<1:t−1>,l at locations

x
(i)
<1:t−1>,l on the edge map im. The probability that the edge map im is an

image of a real object looking like our partial model μ is given by

p(I = im|b(i)<1:t−1>,l) = exp(−β · OCMim(μ)), (3.7)
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where OCMim(μ) returns the Oriented Chamfer distance between im and μ

and β is set to 10. Consequently, OCMim(μ) measures how well the con-

structed partial model matches to the edge map.

p(C = 1|b(i)<1:t−1>,l) expresses the probability of the target shape class given

partial shape model μ = b
(i)
<1:t−1>,l. We obtain by Bayes rule

p(C = 1|μ) = p(μ|C = 1)p(C = 1)∑
c=1,0 p(μ|C = c)p(C = c)

. (3.8)

p(μ|C = 1) measures the similarity between the constructed model and the

target class. Similarly, p(μ|C = 0) measures the similarity between the con-

structed model and the background. Eq. 3.8 helps to prevent accidental match

to the background, since it eliminates shape models with both high similarity

to a given object class and to the background, and favors models with high

similarity to a given object class and low similarity to the background. We

utilize a recursive computation in our PF framework to obtain

p(μ|C = c) = p(b
(i)
<1:t−1>,l|C = c)

= p(b
(i)
l |b(i)<1:t−1>, C = c) p(b

(i)
<1:t−1>|C = c)

= p(b
(i)
l |b(i)<t−1>, C = c) p(b

(i)
<1:t−1>|C = c)

= f(b
(i)
l |b(i)<t−1>) p(b

(i)
<1:t−1>|C = c), (3.9)

where f is defined in Eq. 3.1, and a given shape class C = c is modeled as a set

of exemplars E = {E1, . . . , ENe}, which are selected from training examples

by affinity propagation.f describes the pairwise relation between nodes in the
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graph, which is naturally utilized in our PF framework. When C = 0, we

randomly select some background edge configurations as training examples.

In the transition from 2nd to 3rd row in Eq. 3.9, we make a Markov assump-

tion that the new model part b
(i)
l only depends on the previously added part

b
(i)
<t−1> conditioned that we know the shape class C = c. This simplifies the

computation and makes the shape model more flexible in that the pose of the

new model part is only evaluated with respect to the pose of previously added

part. Finally, p(b
(i)
<1:t−1>|C = c) is remembered from the previous iteration of

particle (i).

3.5 Experimental Results

We have tested our algorithm on three widely used data sets: the extended

Weizmann Horses [11, 88], the ETHZ shapes [30] and the TU Darmstadt

Database [61]. During the testing for Weizmann Horses, only 12 automatically

selected horse silhouettes with one hand decomposed horse are used to learn

the shape model. All the other images are used for testing. The edge maps for

this dataset are obtained by Canny edge detector. We also test our method on

the class of giraffe in ETHZ shape dataset [30]. The reason why we only select

the category giraffes from ETHZ is that our model learning method can only

transfer between objects with similar structure and giraffe is the only object in

ETHZ having similar structure to horse. Only one hand decomposed horse and
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6 automatically selected giraffe silhouettes are used to learn the giraffe model.

Further, we work on the cow dataset the TU Darmstadt Database [61], since

cows have similar structure with the above two classes. It contains 111 images.

Only one hand decomposed horse and 6 automatically selected cow silhouettes

are used to learn the cow model. The edge maps for this dataset are obtained

by Canny edge detector.

To adapt to large scale variance, we generate multiple models by resizing

the original ones to 5 to 8 scales, and choose as the final result from the best

score in all the scales. We not only report our results on the commonly used

bounding box intersection, but also the accuracy of our boundary localization.

3.5.1 Detection according to bounding boxes

We first evaluate the ability of the proposed approach to localize objects

in cluttered images using bounding-box intersection, which is widely used in

traditional object detection task. We adopt the strict standards of PASCAL

Challenge criterion: a detection is counted as correct only if the intersection-

over-union ratio with the ground-truth bounding-box is greater than 50%.

Fig. 3.3 reports precision-recall (P/R) curve and detection rate vs false

positive per image (DR/FPPI) curve for the class Giraffes in ETHZ dataset.

In P/R, we compare to Lu et al. [67], Zhu et al. [122], Ommer and Malik [76]

and Ferrari et al. [30], whose results are quoted from [67]. In DR/FPPI, as
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Ferrari et al. [30, 29], Ommer and Malik [76] and Lu et al. [67] provide their

results, we compare to them. As Ravishankar et al. [82] do not give their

curves, we do not compare to them in Fig. 3.3. According to the curves, we

are better than Lu et al. [67], Ommer and Malik [76], Ferrari et al. [30, 29]

and perform equally well as Zhu et al. [122]. The performance of the proposed

method illustrates its ability to cope with substantial nonrigid deformations,

which are present in the class Giraffes. This is demonstrated by our example

results in Fig. 3.4(a).

Ommer and Malik

ICCV 09

Ommer and Malik

ICCV 09

Figure 3.3: Precision-recall curve and detection rate (DR) vs false positive per
image (FPPI) curve for the class Giraffes in ETHZ dataset.

Table 3.1 compares our detection rate to [121, 88] on Weizman Hores and

TU Darmstadt Cows. The detection rate on horses is estimated from the

DR/FPPI curve in [88]. The DR/FPPI curve for cows is not available in

[88]. The method in [121] is also matching based, while [88] is a classification

method. Some examples of our horse and cow detection results are shown

in Fig. 3.4(b). The detection precision/recall area under curve (AUC) is a

standard performance measure on the Weizmann Horses dataset. The AUC
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Figure 3.4: Examples of detection results for Giraffes, horses and cows.

for our approach is 79.84%, which is comparable to the result 80.32% in Xiang

et al. [6]. We compare to them as they also use the explicit shape model and

matching based method for object detection. The AUC of classification based

methods [88, 34] is 84.98% and 96%, respectively. We observe that classifica-

tion based methods are bounding box classifiers and utilize significantly more

information than matching based methods as ours. This explains why our

detection rate and AUC is lower than [88, 34].

Table 3.1: Detection rate.

Our method Zhu et al. [121] Shotton et al. [88]

Horses 93.97% 86.0% 95.20%

Cows 90.38% 88.6% N/A
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The proposed approach can not only succeed in extensive cluttered images,

but also handles the problem of large range of scales and intra-class variability.

This is demonstrated by several examples in Fig. 3.4. The images in the

bottom right of Fig. 3.4(a) with red rectangles are the ones we fail to detect.

The images of horses in Fig. 3.4(b) with red rectangles are false positives in the

negative images provided by Shotton et. al. [88] to complement the Weizmann

horse dataset. They show that the false positives in the negative set are caused

by really very cluttered edges or by the structure of edges happening to match

to the model very well. Interestingly, the rightmost false positive of horses is

due to a camel, whose shape is very similar to horse.

3.5.2 Localizing object boundaries

The method presented in this paper offers one important advantage com-

pared to texture based and classification methods like [19, 34, 22]. It can

localize object boundaries, rather than just bounding-boxes.

In order to quantify how accurately the output shapes match to true bound-

aries, we use the coverage and precision measures defined in [30]. Coverage is

the percentage of points from ground-truth boundaries closer than a threshold

t to the output shapes of the proposed approach. Reversely, precision is the

percentage of points from output shapes closer than t to any point of ground-

truth boundaries. As in [30] t is set to 4% of the diagonal of the ground-truth
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bounding box. The measures are complementary. Coverage captures how

much of the object boundary has been recovered by the algorithm, whereas

precision reports how much of the algorithm’s output lies on the object bound-

aries. These measurements are really useful and suitable for evaluating shape

based approaches. In comparison, bounding-box evaluation cannot represent

how accurate the detected shapes match the ground-truth boundary. It is

possible to have bounding-box intersection larger than 0.5 without having cor-

rectly identified the ground-truth object boundaries. Two examples of horse

detection are shown in Fig. 3.4(b) with green rectangles.

The first two columns of Table 3.2 show coverage and precision averaged

over all images of the class giraffes in ETHZ dataset in comparison to the

results in [30]. We measure the coverage and precision for the correct detections

at 0.4 FPPI, following [30]. The coverage of the proposed approach is over

11% better than [30], which shows that our approach can efficiently recover

the true boundary of objects. The precision is a little lower than [30]. More

importantly, the detection rate at our 0.4 FPPI is 86.75%. However, even for

20% bounding box intersection, the detection rate at 0.4 FPPI in [30] is only

around 60% , which is much less than us. It demonstrates that our approach

can correctly localize object’s boundary on more images.

For horses and cows, the coverage and precision are obtained over all correct

detections. The third column of Table. 3.2 shows the coverage and precision
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of the proposed method on the Weizmann Horse dataset. As the edges are

significantly worse than the ones provided for the giraffes, both measures are

worse than the results on giraffes. The coverage and precision results for cow

are shown in the fourth column of Table. 3.2. Due to less intra-shape variance,

the precision is 92.02%, which is much higher than giraffes and horses. How-

ever, the coverage is only 73.86%. The main reason for the difference between

these two values is that our model has a gap, since we removed the contour

part representing the horse tail from the horse contour used for part decompo-

sition. Thus, even if the model and object match perfectly, the coverage score

cannot be perfect (see examples in Fig. 3.4).

Table 3.2: Accuracy of the boundary localization.

Ours Results in [30] Ours Ours

on giraffes on giraffes on horses on cows

Coverage 79.4% 68.5% 77.5% 73.86%

Precision 74.6% 77.3% 61.7% 92.02%
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CHAPTER 4

Particle Filter with State

Permutations for Solving Image

Jigsaw Puzzles

4.1 Introduction and Problem Formulation

As shown in [21] the jigsaw puzzle problem is NP-complete if the pair-

wise affinity among jigsaw pieces is unreliable. Following [16], we focus on

reconstructing the original image from square and non-overlapping patches.

This type of puzzles does not contain the shape information of individual

pieces, which is quite important to determine the pairwise affinities among

them. This makes the problem more challenging, since it is more difficult to
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(a) (b) (c)

Figure 4.1: The goal is to build the original image (a) given the jigsaw puzzle
pieces (b). The original image is not known, thus, it needs to be estimated
given the observations shown in (b). The empty squares in (c) form possible
locations for the puzzle pieces in (b).

evaluate pairwise affinities among puzzles. This is different from most of the

previous approaches [53, 35, 80, 108], where the shape of the puzzle pieces is

utilized. While [16] also considers priors on the target image layout, we do

not assume any prior knowledge on the image layout. Thus, only local image

content information of the puzzle pieces is available in our framework, e.g., see

Fig. 4.1.

Now we briefly review the PF inference. We begin with a classical tracking

example. A robot is moving around and taking images at discrete time inter-

vals. The images form a sequence of observations Z = (z1, . . . , zm), where zt

is an image taken at time t. With each observation zt there is associated a

hidden state xt. In our example the value of xt is the robot pose (its 2D posi-

tion plus orientation). The goal of PF inferences, is to derive the most likely

sequence of the hidden states, i.e., to find a state vector x1:m = (x1, . . . , xm)

that maximizes the posterior p(x1:m|Z). We observe that here the observations

are ordered following their time stamps. In PF inference, this order is utilized
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to sequentially infer the values of states xt for t = 1, . . . , m. Now imagine that

the robot’s clock broke and the time stamps are random. Thus, we are given a

set of observations Z = {z1, . . . , zm}, they are indexed but their index is irrele-

vant. Of course, we can still associate state xt with observation zt, but the set

of observations is not ordered, and consequently, the corresponding states xt

are not ordered. Thus, we deal with unordered observations. This is exactly

the scenario of the image jigsaw puzzle problem, e.g., see Fig. 4.1. We are given

m square puzzle pieces described by a set of m observations Z = {z1, . . . , zm}.

Each observation zt describes part of the original image depicted on piece t

and is given by a vector of features, which are the color values of the pixels

on piece t in our experimental results. The puzzle pieces are numbered with

index t, but their numbering is random like the numbers in Fig. 4.1(b). The

value of the state xt of puzzle piece t is a location of an empty square in the

square grid, e.g., the value of xt is the index of an empty square in the square

gird shown in Fig. 4.1(c). Our goal is to determine the state vector x1:m that

maximizes the posterior probability p(x1:m|Z). Since the original image is not

provided, this probability is determined based on pairwise appearance consis-

tency of the local puzzle images, i.e., the posterior distribution is a function of

how well adjacent pieces fit together once they are placed on the grid. In other

words, a vector of grid locations x1:m maximizes p(x1:m|Z) if the puzzle pieces

placed at these locations form the most consistent image. We observe that
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the posterior distribution p(x1:m|Z) usually is very complicated and has many

local maxima. This is particulary the case when the local image information

of the puzzle pieces is not very descriptive.

Our main contribution is a new PF inference framework that works in this

scenario. In the proposed framework we extend PF to handle the situations

where we have unordered set of observations that are given simultaneously.

One of our key ideas is the fact that it is possible to extend the importance

sampling from the proposal distribution so that different particles explore the

state space along different dimensions. Then the particle resampling allows

us to automatically determine most informative orders of observations (as

permutations of state space dimensions). Consequently, we can use a rich set

of proposal functions in the process of estimating the posterior distribution.

The classical PF framework has been developed for sequential state estima-

tion like tracking [51, 91] or robot localization [99, 31]. There, the observations

arrive sequentially and are indexed by their time stamps, as our tracking exam-

ple illustrates. It is possible to apply the classical PF framework as stochastic

optimization to solve this problem by utilizing a fix order of states. However,

by doing so, we would have selected an arbitrary order, and the puzzle con-

struction may fail because of the selected order and would require extremely

large number of particles. Our framework on the other hand can work with

fewer particles because each particle explores different order. This gives us a
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rich set of proposal distributions as opposed to having one fixed. Moreover,

the observations are given simultaneously at the same time. Hence, there is

no reason to favor any particular order without utilizing this fact.

In our experimental results, we compare the solutions obtained by the pro-

posed inference framework to the solutions of the loopy believe propagation

under identical settings on the dataset from [16]. In particular, we use exactly

the same dissimilarity-based compatibility of puzzle pieces. The proposed PF

inference significantly outperforms the loopy believe propagation in all eval-

uation measures. The main measure is the accuracy of the label assignment,

where the difference is most significant. The accuracy using loopy believe

propagation is 23.7% while that using the proposed PF inference is 69.2%.

The rest of the chapter is organized as follows. After introducing the

preliminaries in §4.2, our key extensions for permuted PF are explained in

§4.3 and §4.4. §4.5 provides implementation details. §4.6 shows and evaluates

the experimental results not only the dataset from [16], but also an extended

dataset.

4.2 Particle Filter Preliminaries

In this section we present some preliminary facts about Particle Filters

(PFs). They will be utilized in the following sections when we introduce the

proposed framework. Given is a sequence of observations Z = (z1, . . . , zm),
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i.e., the observations are ordered. Our goal is to maximize the posterior dis-

tribution p(x1:m | Z), i.e., to find the values x̂t of states xt such that

x̂1:m = argmax
x1:m

p(x1:m | Z), (4.1)

where x1:m = (x1, . . . , xm) ∈ Xm is a state space vector and each state xt has

a corresponding observation zt for t = 1, . . . , m.

This goal can be achieved by approximating the posterior distribution with

a finite number of samples in the framework of Bayesian Importance Sampling

(BIS). Since it is usually difficult to draw samples from the probability density

function (pdf) p(x1:m|Z), samples are drawn from a proposal pdf q, x
(i)
1:m ∼

q(x1:m|Z) for i = 1, . . . , N . Then approximation to the density p is given by

p(x1:m|Z) ≈
N∑
i=1

w(i)δ
x
(i)
1:m

(x1:m), (4.2)

where δ
x
(i)
1:m

(x1:m) denotes the delta-Dirac mass located at x
(i)
1:m and

w(i) =
p(x

(i)
1:m|Z)

q(x
(i)
1:m|Z)

(4.3)

are the importance weights of the samples. Typically the sample x
(i)
1:m with

the largest weight w(i) is then taken as the solution of (4.1).

Since it is still computationally intractable to draw samples from q due to

high dimensionality of x1:m, Sequential Importance Sampling (SIS) is usually

utilized. In the classical PF approaches, samples are generated recursively

following the order of dimensions in state vector x1:m = (x1, . . . , xm):

x
(i)
t ∼ qt(x|x1:t−1, Z) = qt(x|x1:t−1, z1:t) (4.4)
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for t = 1, . . .m, and the particles are built sequentially x
(i)
1:t = (x

(i)
1:t−1, x

(i)
t ) for

i = 1, . . . , N . The subscript t in qt indicates from which dimension of the state

vector the samples are generated. Since q factorizes as

q(x1:m|Z) = q1(x1|Z)
m∏
t=2

qt(xt|x1:t−1, Z), (4.5)

we obtain that x
(i)
1:m ∼ q(x1:m|Z). In other words, by sampling recursively x

(i)
t

from each dimension t according to (4.4) we obtain a sample from q(x1:m|Z)

at t = m.

Since at a given iteration we have a partial state sample x
(i)
1:t for t < m,

we also need an evaluation procedure of this partial state sample. For this we

observe that the weights can be recursively updated according to [100]:

w(x
(i)
1:t) =

p(zt|x(i)
1:t, z1:t−1)p(x

(i)
t |x(i)

1:t−1)

qt(x
(i)
t |x(i)

1:t−1, z1:t)
w(x

(i)
1:t−1). (4.6)

The above equation is derived from (4.3) using Bayes rule. Consequently,

when t = m, the weight w(x
(i)
1:m) of particle (i) recursively updated according

to (4.6) is equal to w(i) (defined in (4.3)). Hence, at t = m, we obtain a set

of weighted (importance) samples from p(x1:m|Z), which is formally stated in

the following theorem [18]:

Theorem 4.2.1. Under reasonable assumptions on the sampling (4.4) and

weighting functions (4.6) given in [18], p(x1:m|Z) can be approximated with

weighted samples {x(i)
1:m, w(x

(i)
1:m)}Ni=1 with any precision if N is sufficiently
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large. Thus, the convergence in (4.7) is almost sure:

p(x1:m|Z) = lim
N→∞

N∑
i=1

w(x
(i)
1:m)δx(i)

1:m
(x1:m). (4.7)

In many applications, the weight equation (4.6) is simplified by making a

common assumption that qt(x
(i)
t |x(i)

1:t−1, z1:t) = p(x
(i)
t |x(i)

1:t−1), i.e., we take as the

proposal distribution the conditional pdf of the state at time t conditioned on

the current state vector x
(i)
1:t−1. This assumption simplifies the recursive weight

update to

w(x
(i)
1:t) = w(x

(i)
1:t−1)p(zt|x(i)

1:t, z1:t−1), (4.8)

and implies that the samples are generated from

x
(i)
t ∼ pt(x|x(i)

1:t−1). (4.9)

Analogous to (4.4) pt in (4.9) indicates the dimension of the state space from

which the samples are generated.

Now we summarize the derived standard PF algorithm. For every time

step t = 1, . . . , m and for every particle i = 1, . . . , N execute the following

three steps:

1) Importance sampling / proposal: Sample followers of particle (i) ac-

cording to (4.9) (a special case of (4.4)) and set x
(i)
1:t = (x

(i)
1:t−1, x

(i)
t ).

2) Importance weighting / evaluation: An importance weight is assigned

to each particle x
(i)
1:t according to (4.8) (a special case of (4.6)).
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3) Resampling: Sample with replacement N new particles form the current

set of N particles

{x(i)
1:t|i = 1, . . . , N}

according to their weights. We obtain a set of new particles x
(i)
1:t for i =

1, . . . , N , and renormalize their weights to sum to one. This procedure is a

variant of Sampling Importance Resampling (SIR) [100]. It is an important

part of any PF algorithm, since resampling prevents weight degeneration of

particles.

4.3 Key Extension to Permuted States

As stated above, the standard SIS in Eq. 4.9 and particle evaluation in

Eq. 4.8 utilize the sequential order of the states x1:m = (x1, . . . , xm). Of

course, this is the best choice in many applications where the order is de-

termined naturally by the time stamp of the observations. In contrast, the

proposed approach is aimed at scenarios where no natural order of observa-

tions is given and the observations Z are initially known as in the image jigsaw

puzzle problem.

The key idea of the proposed approach is not to utilize the fix order of the

states x1:m = (x1, . . . , xm) induced by the order of observations Z, but instead

explore different orders of the states (xi1 , . . . , xim) such that the corresponding
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sequences of observations (zi1 , . . . , zim) is most informative. In particular, we

do not follow the order of indices of observations in Z. This way we are able

to utilize the the most informative observations first allowing us to use a rich

set of proposal functions. To achieve this we modify the first step of the PF

algorithm so that the importance sampling is performed for every dimension

not yet represented by the current particle. Intuitively, for example, if the first

puzzle piece has a local image very similar to many other puzzle pieces and

the second puzzle piece has a very distinctive local image that matches only a

few other pieces, then our approach will first process the second puzzle piece,

since it is more informative.

To formally define the proposed sampling rule, we need to explicitly repre-

sent different orders of states with a permutation σ : {1, . . . , m} → {1, . . . , m}.

We use the shorthand notation σ(1 : t) to denote (σ(1), σ(2), . . . , σ(t)) for

t ≤ m. Each particle (i) now can have a different permutation σ(i) of the puz-

zle pieces in addition to their locations. Thus the particles are now represented

as x
(i)
σ(1:t). We drop the superscript (i) of σ(i) in the context of a particle which

already carries the index (i). For example, Fig. 4.1(c) shows the configuration

of a particle at time t = 2, where puzzle pieces numbered 3 and 1 in Fig. 4.1(b)

are placed at locations (a) and (b), correspondingly. Hence σ(i)(1 : 2) = (3, 1)

and x
(i)
σ(1:2) = (a, b). Thus, a sequence of states xσ(1:t−1) visited before time t

may be any subsequence (i1, . . . , it−1) of t−1 different numbers in {1, . . . , m}.
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We are now ready to formulate the proposed importance sampling. At

each iteration t ≤ m, for each particle (i) and for each s ∈ σ(i)(1 : t− 1), we

sample

x(i)
s ∼ ps(x|x(i)

σ(1:t−1)), (4.10)

where σ(i)(1 : t− 1) = {1, . . . , m} \σ(i)(1 : t− 1), i.e., the indices in 1 : m that

are not present in σ(i)(1 : t−1) for t ≤ m. The subscript s at the posterior pdf

ps indicates that we sample values for state s. We generate at least one sample

for each state s ∈ σ(i)(1 : t− 1). This means that the single particle x
(i)
σ(1:t−1) is

multiplied and extended to several follower particles x
(i)
σ(1:t−1),s. Consequently,

at iteration t < m particle (i) has m − t + 1 followers. Each follower is a

sample from a different dimension of the state (i.e., represents a location of

a different puzzle piece). Going back to our toy puzzle example, we recall

that the current state vector of particle (i) in Fig. 4.1(c) at time t = 2 is

x
(i)
σ(1:2) = (a, b), where σ(i)(1 : 2) = (3, 1). For sampling at time t = 3, we have

σ(i)(1 : t− 1) = (2, 4, 5, 6). Consequently, we sample four followers of particle

(i) in (4.10), one for each state s = 2, 4, 5, 6, where x
(i)
2 is the sampled location

of puzzle piece 2, x
(i)
4 is the sampled location of puzzle piece 4, and so on.

In contrast, in the standard application of rule (4.9), at each iteration t

particle (i) has one follower. Even when sometimes each particle (i) has many

followers, all followers are samples from the same state, since there is only one

unique state at time t. For our toy example, this means for particle (i), only
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locations of say puzzle piece 2 are sampled and not those of puzzle piece 4,

since a fixed order of the state dimensions is followed in the classical setting.

We do not make any Markov assumption in (4.10), i.e., the new state x
(i)
s

is dependent on all previous states x
(i)
σ(1:t−1) for each particle (i).

4.4 Particle Filter with State Permutations

Now we are ready to outline the proposed PF with state permutations

(PFSP) algorithm. In addition to the change is in the importance sampling

step, the other two steps are also modified. For every time step t = 1, . . . , m

and for every particle i = 1, . . . , N execute the following three steps:

1) Importance sampling / proposal: Sample followers x
(i)
s of particle (i)

from each dimension s ∈ σ(i)(1 : t− 1) according to (4.10), which we repeat

here for completeness,

x(i)
s ∼ ps(x|x(i)

σ(1:t−1)), (4.11)

and set x
(i,s)
σ(1:t) = (x

(i)
σ(1:t−1), x

(i)
s ) and σ(i,s)(t) = s, which means that σ(i,s)(1 :

t) = (σ(1 : t− 1), s). As stated before, we drop the superscript (i, s) in x
(i,s)
σ(1:t),

since it is already present as the particle index.

2) Importance weighting/evaluation: An individual importance weight is

assigned to each follower particle x
(i,s)
σ(1:t) according to

w(x
(i,s)
σ(1:t)) = w(x

(i)
σ(1:t−1))p(zs|x(i,s)

σ(1:t), zσ(i)(1:t−1)), (4.12)
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3) Resampling: Sample with replacement N new particles form the current

set of N × (m− t+ 1) particles

{x(i,s)
σ(1:t)| i = 1, . . . , N, s ∈ σ(i)(1 : t− 1)}. (4.13)

according to the weights. Thus, we obtain a set of new particles {x(i)
σ(1:t)}Ni=1.

We also renormalize their weights to sum to one. This is a variant of the

standard Sampling Importance Resampling (SIR) step [100] as in the classical

PF framework.

We observe that the particle weight evaluation in (4.12) is analogous to

(4.8) in that the conditional probability of observation zs is a function of

two corresponding sequences of observations and states plus the state xs. The

only difference is that the sequences are determined by the permutation σ(i)(1 :

t− 1).

Sampling more than one follower of each particle and reducing the num-

ber of followers by resampling is known in the PF literature as prior boosting

[37, 13]. It is used to capture multi-modal likelihood regions. The resampling

in our framework plays an additional and a very crucial role. It selects the

the most informative orders of states. Since the weights of w(x
(i,s)
σ(1:t)) are deter-

mined by the corresponding order of observations zσ(i)(1:t−1), and the resam-

pling uses the weights to selects new particles x
(i)
σ(1:t), the resampling determines

the order of state dimensions. Consequently, the order of state dimensions is

heavily determined by their corresponding observations, and this order may
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be different for each particle (i). This is in strong contrast to the classical PF,

where observations are considered only in one order Z.

The fact that each particle explores a possibly different order of dimensions

σ(i)(1 : m) is extremely important for the proposed PFSP, since it allows for use

of rich set of proposal functions with fewer number of particles. However,at t =

m all state dimensions are present in each sample x
(i)
σ(1:m). Hence we can reorder

the sequence of state dimensions σ(i)(1 : m) to form the original order 1 : m by

applying the inverse permutation
(
σ(i)

)−1
and obtain x

(i)
1:m = x

(i)

σ−1σ(1:m), i.e.,

the state values are sorted according to the original state indices 1 : m in each

sample (i). In analogy to Theorem 4.2.1, we state the following

Theorem 4.4.1. Under reasonable assumptions on the sampling (4.11) and

weighting functions (4.12) given in [18], p(x1:m|Z) can be approximated with

weighted samples {x(i)
1:m, w(x

(i)
σ(1:m))}Ni=1 with any precision if N is sufficiently

large. Thus, the convergence in (4.14) is almost sure:

p(x1:m|Z) = lim
N→∞

N∑
i=1

w
(
x
(i)
σ(1:m)

)
δ
x
(i)
1:m

(x1:m). (4.14)

Proof. Due to Th. 4.2.1, we only need to show that {x(i)
1:m, w(x

(i)
σ(1:m))}Ni=1 rep-

resent weighted samples from p(x1:m|Z).

The key observation is that p and q are probabilities on joint distribution

of m random variables, and as such the order of the random variables is not

relevant. This follows from the fact that a joint probability is defined as the
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probability of the intersection of the sets representing events corresponding

to the value assignments of the random variables, and set intersection is in-

dependent of the order of sets. Consequently, we have for every permutation

σ

p(xσ(1:m)|Z) = p(x1:m|Z) (4.15)

q(xσ(1:m)|Z) = q(x1:m|Z) (4.16)

According to the proposed importance sampling (4.11), x
(i)
σ(1:m) is a sample

from q(xσ(1:m)|Z). Consequently, by (4.16), x
(i)
1:m = x

(i)

σ−1σ(1:m) is a sample from

q(x
(i)
1:m|Z) for each particle (i).

By the weight recursion in (4.12), and by (4.15) and (4.16)

w
(
x
(i)
σ(1:m)

)
=

p(x
(i)
σ(1:m)|Z)

q(x
(i)
σ(1:m)|Z)

=
p(x

(i)
1:m|Z)

q(x
(i)
1:m|Z)

. (4.17)

Thus {x(i)
1:m, w(x

(i)
σ(1:m))}Ni=1 represent weighted samples from p(x1:m|Z).

4.5 Implementation Details

In order to utilize the derived PF algorithm to solve the jigsaw puzzle

problem, we need to design the proposal pdf in (4.11) and the conditional pdf

of a new observation in (4.12). Both are detailed in this section.

Given are a set of m puzzle pieces P = {1, . . . , m} and a rectangular grid

with m empty squares G = {g1, . . . , gm}, e.g., see Fig. 4.1(b,c). In order to
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solve the image jigsaw puzzle we need to assign locations on G to the puzzle

pieces in P . The observation associated with each puzzle piece (of size K×K)

is the color information of the partial image depicted on it, i.e., zi is aK×K×3

matrix of pixel color values and the set of observations is Z = {z1, . . . , zm}.

A sample particle at time t ≤ m is given by xσ(1:t) = (xσ(1), . . . , xσ(t)),

where σ(i) ∈ P and xσ(i) ∈ G. This means the puzzle piece σ(i) is placed

on the grid square with index xσ(i). The corresponding observations zσ(1:t) =

(zσ(1), . . . , zσ(t)) represents the color information of the partial images on the

puzzle pieces. In this section we drop the particle index (i), since all definitions

apply to each particle.

We now define an affinity matrix A representing the compatibility of the

local images on the puzzle pieces. It is a 3D matrix of size m×m×4 with the

third dimension being an adjacency type, since two puzzle pieces can be adja-

cent in four different ways: left/right, right/left, top/bottom, and bottom/top,

which we denote with LR, RL, TB, and BT.

In order to be able to compare our experimental results to the results in [16]

we define A following the definitions in [16]. They first define a dissimilarity-

based compatibility D. Given two puzzle pieces j and i, D measures dissimilar-

ity between their images zj , zi by summing the squared LAB color differences
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along their boundary, e.g., the left/right (LR) dissimilarity is defined as

D(j, i, LR) =

K∑
k=1

3∑
c=1

(zj(k, u, c)− zi(k, v, c))
2, (4.18)

where u indexes the last column of zj and v indexes the first column of zi.

Finally, the affinity of the LR connection is given by

A(j, i, LR) = exp(−D(j, i, LR)

2δ2
), (4.19)

where δ is adaptively set as the difference between the smallest and the second

smallest D values between puzzle piece i and all other pieces in P , see [16] for

more details.

Proposal and weights. The proposal distribution ps(x|xσ(1:t−1)) : G → R

is a discrete probability distribution of placing puzzle piece s on each grid

square x. ps(x|xσ(1:t−1)) = 0 if x is occupied or is not adjacent to any square

in σ(1 : t − 1). Now say x is free and is adjacent and is to the right of grid

square xσ(j) for some j = 1, . . . , t. Then

ps(x|xσ(1:t−1)) ∝ A(s, σ(j), RL). (4.20)

Hence this probability is proportional to the LR similarity between puzzle

pieces s and σ(j). The definition is analogous for the other three adjacency

relations LR, TB,BT . If square x is adjacent to more than one grid squares

in {xσ(j)|j = 1, . . . , t}, then ps(x|xσ(1:t−1)) is proportional to the product of the

corresponding A values.
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Let xs be a sample from (4.11) at time t, and as above xs is adjacent and

is to the right of grid square xσ(j) for some j = 1, . . . , t. The difference is that

xs is occupied now with the puzzle piece s. Then

p(zs|xσ(1:t), zσ(1:t−1)) ∝ A(s, σ(j), RL). (4.21)

The definition is analogous for the other three adjacency relations LR, TB,BT .

If square xs is adjacent to more than one grid squares in {xσ(j)|j = 1, . . . , t},

then p(zs|xσ(1:t), zσ(1:t−1)) is proportional to the product of the corresponding

A values.

To summarize the proposal distribution is a function of how well puzzle

piece s fits to the already placed pieces and assigns the probability of placing s

to all grid squares, while in the evaluation we already know the grid location of

puzzle piece s as well as its adjacent squares. We then use this information to

compute the evaluation probability according to A. Hence, both the proposal

and evaluation of a given particle are functions of how well adjacent pieces fit

together following the order in which the pieces have been added.

For a given image jigsaw puzzle with m pieces, the time complexity of the

proposed inference framework is O(m2N), where N is the number of particles.

It follows form the fact that at iteration t < m particle (i) has m − t + 1

followers. We set the number of particles N = 10 in all our experiments

described in the next section.



119

4.6 Experimental Results

We compare the image jigsaw puzzle solutions obtained by the proposed

PF inference framework to the solutions of the loopy believe propagation used

in [16] under identical settings. We used the software released by the authors

of [16] to obtain their results and also to compute the affinities defined in

Section 4.5 used in our approach. The results are compared on the dataset

provided in [16], which we call MIT Dataset. It is composed of 20 images. In

addition, we also consider an extended dataset composed of 40 images, i.e.,

we added 20 images. As we will see below, the results of both methods on the

original and extended datasets are comparable. Our implementations will be

made publicly available on an accompanying website.

The experimental results in [16] are conducted in two different settings:

with and without any prior on the target image layout. In [15] the prior of

the image layout is given by a low resolution version of the original image.

[16] weakens this assumption to a statistics of the possible image layout. We

focus on the results without any prior of the image layout. Consequently, we

focus on a harder problem, since we only use the pairwise relations between

the image patches, given by pair-wise compatibilities of located puzzle pieces

as defined in Section 4.5.

In the probabilistic framework in [16], a puzzle piece is assigned to each grid

location. In our PF framework, it is more natural to assign a grid location to
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each puzzle piece. The solutions of both methods are equivalent, since a final

puzzle solution is a set of m pairs composed of (puzzle piece, grid location),

where m is the number of the puzzle pieces. We call such pairs the solution

pairs.

We use three types of evaluation methods introduced in [16]. Each method

focuses on different aspects of the quality of the obtained puzzle solutions. The

most natural and strictest one is Direct Comparison. It simply computes

the percentage of correctly placed puzzle pieces, i.e., for a puzzle withm pieces,

Direct Comparison is the number of correct solution pairs divided by m. A less

stricter measure is Cluster Comparison. It tolerates an assignment error

as long as the puzzle piece is assigned to a location that belongs to a similar

puzzle piece. The puzzle pieces are first clustered into groups of similar pieces.

Moreover, due to lack of prior knowledge of target image, the reconstructed

image may be shifted compared to the ground truth image. Therefore, a

third measure called Neighbor Comparison is used to evaluate the label

consistency of adjacent puzzle pieces independent of their grid location, e.g.,

the location of two adjacent puzzle pieces is considered correct if two puzzle

pieces are left-right neighbors in the ground truth image and they are also left-

right neighbors in the inferred image. Neighbor Comparison is the fraction

of correct adjacent puzzle pieces. This measurement does not penalize the

accuracy as long as the adjacent patches in original image are adjacent in the
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reconstructed image.

The results on the MIT Dataset are shown in Table 4.1 and on the extended

dataset in Table 4.2. The proposed PF inference framework significantly out-

performs the loopy believe propagation in all three performance measures.

Moreover, the reconstruction accuracy (according to the most natural mea-

sure, Direct Comparison) of the original images by our algorithm is improved

three times.

In order to demonstrate that the considered image jigsaw puzzle problem

is also very challenging to humans, we show some example results in Fig. 4.2.

There we show the original images, but we would like to emphasize that the

original images are not used during the inference. Fig. 4.2 also demonstrates

that the reconstructed images obtained by the proposed algorithm compare

very favorably to the results of [16]. In order to demonstrate the dynamic of

the proposed PF inference, we show reconstructed images of the best particle

at different times (iterations) in Fig. 4.3.

Both methods are initialized with one anchor patch, i.e., with one correct

(puzzle piece, grid location) pair. We always assign a correct image patch to

the top left corner of the image. In all our experiments we divide each test

image into 108 square patches resulting in m = 108 puzzle pieces.
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[16] Our algorithm

Direct Comparison 0.2366 0.6921

Cluster Comparison 0.4657 0.7810

Neighbor Comparison 0.6628 0.8620

Table 4.1: Experimental results on MIT Dataset.

[16] Our algorithm

Direct Comparison 0.2137 0.7097

Cluster Comparison 0.4500 0.8018

Neighbor Comparison 0.6458 0.8770

Table 4.2: Experimental results on the extended dataset.
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Figure 4.2: First row: the original images. Second row: the jigsaw puzzle
solutions of [16]. Third row: our solutions.

Iter = 1 Iter = 20 Iter = 40 Iter = 60 Iter = 80 Iter = 107

Iter = 1 Iter = 20 Iter = 40 Iter = 60 Iter = 80 Iter = 107

Figure 4.3: The reconstructed images of the best particle at different iterations.



124

CHAPTER 5

Conclusion

The body of work here addresses many problems in Shape retrieval, Shape

Based Object Detection and Jigsaw puzzles.

Firstly, we adapted a graph transductive learning framework to learn new

distances with the application to shape retrieval, shape classification, and

shape clustering. The key idea is to replace the distances in the original

distance space with distances induces by geodesic paths in the shape mani-

fold. The merits of the proposed technique have been validated by significant

performance gains in all presented experimental results. However, like semi-

supervised learning, if there are too many outlier shapes in the shape database,

the proposed approach may not be able to improve the results.

Secondly, we introduce an innovative method for inserting synthetic points

into data sets. Unlike other feature based methods, our synthetic points, which
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we call ghost points, are added in distance space. Using geometric analysis,

we show that the distances are preserved between the ghost points the other

points in the distance space. We use ghost points in different domains (mining

imbalanced time series data sets and shape similarity and retrieval), and use

different performance metrics to show the broad application of ghost points.

For imbalanced data sets, adding ghost points to the minority class improved

the overall classification accuracy of SVMs on most data sets, and significantly

improved the precision and recall rate for minority classes. In shape retrieval,

adding ghost points densified the underlying shape manifold, allowing graph

transduction algorithms to take advantage of the densified manifold. With

ghost points, we obtained the highest ever bull’s eye score on the MPEG-7

data set at that time.

Thirdly, the proposed framework for shape and image retrieval can be ap-

plied whenever original pairwise distances/similarities cannot perfectly rank

the database objects. The key advantage of the proposed Tensor Product

Graph diffusion is the utilization of higher order similarity relations, which

are both local and long range. Usually higher order relations lead to a sub-

stantially higher computation cost. However, we are able to introduce an iter-

ative algorithm to compute TPG diffusion that has the same space and time

complexity as the classical diffusion on the original graph. We also provide a

formal proof that the iterative algorithm and the TPG diffusion converge to
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the same solution. Hence the proposed TPG diffusion explores the benefits of

higher order relations without the price of higher computational cost.

Fourthly, the shape based object detection mainly contains two contribu-

tions: shape model learning through shape matching and a novel framework

for shape based object detection. The proposed model learning method can

not only learn the model for non-rigid or articulated objects with partially-

supervised learning, but also transfer the structure information to different

kinds of objects. More importantly, the spatial layout between parts is also

modeled. We extend the classical particle filter framework in order to be able

to infer an optimal label assignment to RVs whose dependencies are described

by a complete graph. The values of RVs represent contour parts of our shape

model and their locations. In our framework each particle explores a different

order of detected contour parts, and the most informative order is selected

by particle resampling. Presented experimental results demonstrate that the

proposed approach can not only detect the objects but also correctly local-

ize object boundaries, which is very crucial in many applications like pose

estimation or object manipulation. Although the proposed method can per-

form well on three widely used datasets, it has a common problem with other

shape matching based object detection methods. All of them require that

edges present in the edge map contain reasonable parts of true object con-

tours, which is still an open problem in computer vision, in particular, for low
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resolution images.

Finally, we introduce a novel inference framework for solving image jigsaw

puzzle problem. Our key contribution is an extension of the PF framework to

work with unordered observations. Weighted particles explore the state space

along different dimensions in different orders, and state permutations that

yield most descriptive proposal functions are selected as new particles. By

exploiting the equivalence of importance sampling under state permutations,

we prove that the obtained importance samples represent samples from the

original target distribution. We evaluate the performance of the proposed PF

inference on a problem of image jigsaw puzzles. As the experimental results

demonstrate, it significantly outperforms the loopy belief propagation. Image

jigsaw puzzle problem is an instance of labeling (assignment) problem. There-

fore, our future work will focus on a broader spectrum of labeling problems.
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