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Abstract

For many fundamental problems of computer vision, adopéirgyraph-based framwork
can be straight-forward and very effective. In this thekistopose several graph-based
inference methods tailored for different computer visipplecations. It starts from study-
ing contour-based object detection methods. Comparedhter anage cues, the outline
contour (silhouette) is invariant to lighting conditionsdavariations in object color and
texture. More importantly, it can efficiently represent geastructures with large spatial
extents. Because of these advantages, contour informatigidely used in object detec-
tion and recognition methods. However, the contour-basettiods mainly suffer from the
fact that the contour is not very distinctive and informatiespecially when considered
locally. We made several efforts to address this problene first effort we made is not
directly related to graph-based modeling but rather togase the distinctness of contour
matching. We propose a novel technique that significantlyroves the performance of
oriented chamfer matching on images with cluttered baakggo Different to other match-
ing methods, which only measures how well a template fits tedge map, we evaluate
the score of the template in comparison to auxiliary corgpuhich we call normalizer-
s. We utilize AdaBoost to learn a Normalized Oriented Charbiistance (NOCD). Our
experimental results demonstrate that it boosts the detecte of the oriented chamfer
distance. The simplicity and ease of training of NOCD on alemamnber of training
samples promise that it can replace chamfer distance aedted chamfer distance in any
template matching application.

While this method can significantly reduce the number ofefalkarms, the object is
still represented by a star-model ( a spatial case of gragecobject representation), and
hough voting method is adopted to perform the inferenceofidtecally this method is still
prone to clutter background because no effort has been maatztirately cut and match
the contours. We propose a novel framework for contour babgett detection, by re-

placing the hough-voting framework with finding dense sabpyrinference. Compared to
iii



previous work, we propose a novel shape matching schenabiufor partial matching of
edge fragments. The shape descriptor has the same geooretsi@s shape context but
our shape representation is not histogram based. The kéyldgion is that we formulate
the grouping of partial matching hypotheses to object dietetiypotheses is expressed as
maximum clique inference on a weighted graph. Consequezdlsh detection result not
only identifies the location of the target object in the imalget also provides a precise
location of its contours, since we transform a complete rhodetour to the image. We
achieve very competitive results on ETHZ dataset, obtainedpure shape-based frame-
work, demonstrate that our method achieves not only acewlject detection but also
precise contour localization on cluttered background.

Similar to the task of grouping of partial matches in the comtbased method, in many
computer vision problems, we would like to discover cerfaattern among a large amount
of data. For instance, in the application of unsupervisedeéwiobject segmentation, where
we need automatically identify the primary object and segntiee object out in every
frame. We propose a novel formulation of selecting objegtare candidates simultane-
ously in all frames as finding a maximum weight clique in a visggl region graph. The
selected regions are expected to have high objectness @owgy potential) as well as
share similar appearance (binary potential). Since bo#ryuand binary potentials are
unreliable, we introduce two types of mutex (mutual exauo$iconstraints on regions in
the same clique: intra-frame and inter-frame constraifeth types of constraints are
expressed in a single quadratic form. An efficient algorithapplied to compute the max-
imal weight cliques that satisfy the constraints. We appiyraethod to challenging bench-
mark videos and obtain very competitive results that odigper state-of-the-art methods.
We also show that the same maximum weight subgraph with noatestraints formulation
can be used to solve various computer vision problems, ssigoiats matching, solving

image jigsaw puzzle, and detecting object using 3D contours



Graph-based modeling can be also the foundation in seneirgiged learning frame-
work. We propose an approach based on standard graph tcdiosgdusemi-supervised
learning (SSL) framework. Its key novelty is the integratiaf global connectivity con-
straints into this framework. Although connectivity leadshigher order constraints and
their number is an exponential, finding the most violatedneativity constraint can be
done efficiently in polynomial time. Moreover, each suchgtoaint can be represented
as a linear inequality. Based on this fact, we design a @tlane algorithm to solve
the integrated problem. It iterates between solving a conuadratic problem of label
propagation with linear inequality constraints, and firgdine most violated constraint. We
demonstrate the benefits of the proposed approach on diceaiid very challenging prob-
lem of cosegmentation of multiple foreground objects intphmollections in which the
foreground objects are not present in all photos. The obthiasults not only demonstrate
performance boost induced by the connectivity constraimisalso show a significant im-

provement over the state-of-the-art methods.
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Chapter 1

Contour-based Object Detection



1.1 Boosting Chamfer Matching by Learning Chamfer

Distance Normalization

1.1.1 Introduction

Chamfer matching has been widely used for edge based olgjestitebn and recognition in
computer vision. However, its performance is seriouslytiahin cluttered images. One of
the main drawbacks of chamfer matching is the fact that angiemplate often fits better
to a cluttered background than to the location of a true tasbgect. Oriented chamfer
matching (OCD) [127, 125] adds orientation informationjetisignificantly improves the
performance of chamfer matching, but the problem still neis\aas illustrated in Fig. 1.1.
The proposed approach provides a solution to this problerodoyparing the matching
score of the template to normalizers, which are curve setpénarying but simple shape.
There are two key properties of the normalizers. (1) If thgeatemplate matches well to
a cluttered background, then very likely some of the normeaéi match well too. (2) If
the template matches well to a true object location, it iy wenikely for any normalizer to
match well. Consequently, the normalized oriented chadigtance (NOCD) significantly
improves the discriminative power of OCD. Some exampleshosvn in Fig. 1.1.

Since it is hard if not impossible to satisfy (1) and (2) witfirate set of normalizers
for a given set of target templates, we treat normalized ébadistances as weak clas-
sifiers and employ AdaBoost to learn their weights. The wisigitovide a soft way of
selecting adequate normalizers for a given template. Asrperimental results demon-
strate, AdaBoost is able to learn the normalizer weights small set of training images,
which makes the proposed approach suitable for all prd@pmalications currently based

on (oriented) chamfer matching.



Figure 1.1: Example detection results on 250 test images ffd Darmstadt Pedestrian
Dataset. The first row shows the detection results of theqeep NOCD, while the second
row shows oriented chamfer matching results. The greeamgtg denotes the ground truth

bounding box.

The section is structured as follows. In Section 1.1.3, weeve basic definitions of
chamfer distance and oriented chamfer distance. The neeepbof distance normaliza-
tion is introduced in Section 1.1.4. and AdaBoost learnihtheir weights is described in
Section 1.1.5. Section 1.1.6 describes a simple framewarbklject detection. Finally,
Section 1.1.7 introduces our set of normalizers. The perdoce of our method is evalu-

ated and compared to OCD in Section 2.7.

1.1.2 Related work

There is alarge number of applications of chamfer matchmmgmputer vision and in med-
ical image analysis. Chamfer distance was first introdugdsidsrow et al. [5] in 1977 with

a goal of matching two collections of contour fragments.ildntday chamfer matching is
widely used in object detection and classification task duesttolerance to misalignment
in position, scale and rotation. Borgefors [14] introdu@echodified chamfer matching

method called hierarchical chamfer matching, which codddgarded as a coarse-to-fine



process by matching edge points using a resolution pyraifnidecimage. This method
focuses on alleviating the computational load for chamfataming. Meanwhile, chamfer
matching meets the real-time system requirement due tanfggémentations of distance
transforms. Gavrila and Munder [53] performed templateamag based on chamfer dis-
tance transform as a core technique to construct a reald@teetion system of pedestrians.

Leibe et al. [79] used chamfer matching to detect pedesiniamowded scenes, and
combined segmentation as a verification to prevent the tdiens that mostly lie in the
cluttered background. Stenger et al. [131] introduced gtata hierarchy which is formed
by bottom-up clustering based on the chamfer distance.(d4][Xpelt et al. used cham-
fer distance to score each boundary fragment for selecfioaralidate contour fragments.
Opelt et al. also compared each boundary fragment from eatelgary to all existing al-
phabet entries using chamfer distance in [105]. Other nustttwat utilize chamfer distance
as shape similarity metric include [58, 153, 75]. Chamfstatce plays also an important
role in medical image analysis, e.g., [143, 99, 41].

However, methods that utilize chamfer distance to measwaimilarity between the
template and edge maps suffer from mismatching to the chatteackground. Itis general-
ly agreed that main negative effect of using chamfer digasthe potential risk of increas-
ing false alarms occurring in background with high level bitier noise. Thayananthan
et al. [134] compared the localization performance of cleamiatching and shape con-
text [9], and concluded that chamfer matching is more roliuslutter than shape context
matching even though most failure cases in chamfer matarimgtill due to false positive
matches.

Recently, Shotton et al. [127, 125] proposed an orientechédradistance (OCD) that
exploits edge orientation information in the form of edgadjents. OCD linearly com-
bines chamfer distance and orientation difference betweraplate points and their closest
matches, which leads to reduction of mismatching casesetmdisy background. Trinh

and Kimia [140] proposed Contour Chamfer Matching (CCM)rtgorove OCD. In this

4



method, based on the observation that the accidental atighbetween a contour and the
image edges always forms a zig-zagging contour, after finthe corresponding points
in edge map, another orientation for edge points is complésed on the new generat-
ed curve, and an additional term which is the difference mgéamt direction is taken into

account when computing the Contour Chamfer Distance.

Since proposed method is not designed specifically for tatechamfer distance, it
could be also used to boost the performance of any distantécrtieat aims to capture
edge support for a model. In particular, it would be possiblapply the proposed method
to Hausdorff distance and oriented Hausdorff distancegweg in [62, 101], which is also
widely used in computer vision applications. However, i@{lLexperimental evidence is

provide that OCD has better performance than Hausdorfiaés.

1.1.3 Oriented Chamfer Distance (OCD)

In this section we define chamfer distance and oriented datradigtance (OCD), which is
a simple linear combination between distance and oriemtaérms.
Chamfer Distance Chamfer distance was first proposed in [5] as an evaluatid2Dof
asymmetric distance between two set of edge points. Itesdat to slight shape distortion
caused by shift in location, scale and rotation. Given a tatefi’ positioned at location
in an imagel and a binary edge map of the imagel, the basic form of chamfer distance
is calculated as

ASi0e) = o 3 min o+ ) = . 1.1)

z€T

where||.||2 is I; norm and|T'| denotes number of points in templdfe Chamfer distance

can be efficiently computed as:

1
A () = 77 2 DTl o). (1.2)
€T
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where DTy is a distance transform defined for every image poiat / as

DTp(z) = min [jz — ][> (1.3)
Meanwhile, in practice, distance transform is truncatea tonstant [127]:

DT} (z) = min(DTg(x), T) (1.4)

This reduces the negative effective due to missing edgés and allows normalization to
a standard range, 1]:

Al (x) =

cham,T

T\T
xe €T

Oriented Chamfer Distance (OCD) Shotton et al. [127] proposed an improved chamfer
distance called oriented chamfer distance (OCD), whicls adidiitional robustness by ex-
ploiting edge orientation information. To define it, we fingted a notation of an argument

of a distance transform (ADT) that gives the locations ofasekt point.
ADTg(x) = arg mi% ||z — xl2. (1.6)
Te€
To evaluate a mismatch in orientation, the difference igésm directions is computed

dogini(z) = |T|Z|¢xt H(ADTp(x, + )|, (L7)

€T

where¢(x) denotes tangent direction at poinaind ranges between zero and|¢(z;) —
¢(x2)| gives the smallest circular difference betwegr;) and ¢(z,). Using a simple

linear combination between the distance and orientationgeoriented chamfer distance



is defined as

0CD" P (x) = (1= X)) -dTP (2) +x-dTE) (2) . (1.8)

cham,T orient

For clarity, we will omit £ and A below when possible, and useCD(T,z) =
0CD{""(z) to represent the oriented chamfer distance of templatat location

z el

1.1.4 Normalization of Oriented Chamfer Distance

Although oriented chamfer matching adds orientation terawvbid mismatching, cluttered
background still may match much better to the template thameal object contours. The
reason is that cluttered background offers a large varieggge orientations, consequently,
any shape has a large probability of a good oriented charofees This suggests that we
need to compare the score of the target template with scérgsnee random shapes. If
both have good OCD score at a given location, then the teepiatch is most likely to
be accidental. Based on this insight, we introduce a nommahs an auxiliary, random
shape to evaluate how well the template matches to the edgeainaacertain location. For
a target templatd’, we propose to generaf€ normalizers, denoted b = {n| k =
1,...,K}. A procedure to generate normalizes is described in SedtibrY. Instead
of only calculatingOCD(T, z) at each location:, we also comput€C D(n;, x), and

compare the ratios

OCD(T, x)

= 0Dy

(1.9)

We call R, (T, x) anormalized score
Now we provide some details about the role of normalizersnproving chamfer s-

core. The analysis is divided into three qualitative cakasitlustrate an intended correct



behavior of the normalizers. In practice, not all normabaeill behave in this way, which
is addressed in Section 1.1.5.

Case 1: At a correct location containing a target object in a giverag®, OCD(T, z)
is small andOC'D(ny, ) is large, so thaOCD(T,z) < OCD(n,z). Consequently,
Ry(T, x) will become comparatively smaller thanC' D(T, =), which better indicates a
correct match.

Case 2: In a cluttered area in which the target object is not preseoth OC D(T, x)
and OCD(n, x) are small, butODCD(T,z) > OCD(ng,x), so R,(T,x) will become
comparatively larger tha@C D(T', =), which better indicates a wrong match.

Case 3:In an area that is neither cluttered nor contains the tatgject bothOC'D(T', z)
andOC D(ny, ) are large, buOCD(T, x) > OCD(ny, x), SOR, (T, x) will become com-
paratively larger thawC D(T, x), which better indicates a wrong match.

Cases 1 to 3 clearly demonstrate that normalizers incréasdiscriminate power of
OCD. However, they are based on an assumption that we hawdealset of normalizers
{mx| k =1,..., K} behaving as described in cases 1 to 3. Even though it may rpuidse-
ble to find normalizers satisfying cases 1 to 3 for a given fatefi’, we propose to utilize
machine learning methods to learn which normalizers yieldect scores?, (7, =) for a
given templatél’. For a given set of candidate normalizers, we use AdaBodSedation
1.1.5 to learn the weights of normalized scofgg7, z). Thus, we treat each normalized
score as a weak classifier. The weights provide a soft setectia set of normalizers with
our intuition being that this selection best approximakeshiehavior described in cases 1

to 3.

1.1.5 Learning Normalized OCD with AdaBoost

The standard AdaBoost [51] allows us to select a set of nazeralby assigning weights
to their normalized scores and to combine them as a weightedrlcombination, which
yields a more robust matching score. Given is a set of trgiimmages with positive and
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negative examples, i.e, a set of bounding boxes contaihi@garget object and a set of
bounding boxes without the target object. AdaBoost autmalit learns the weight for
each weak learner and combine them to form a strong learB&r J19]. We use the ratios

Ry (T, x) as weak learners fdr =1, ..., K. To be precise, a weak learner is defined as

1 for Ry(T,x) < thy
he(T, ) = (1.10)

0 for otherwise.

In each iteration, . . ., K, we search for a weak learner with the best detection pegnom
on the training set. During the search, the optimal threshi) for each weak learner
is chosen to minimize the misclassification error (ME). Atleateration of AdaBoost,
each training example carries a classification weight. MBeBned as the sum of the
classification weights of misclassified training examphestif positives and negatives). As

the output we obtain a strong learner

K
H(T,x) =Y wy - hy(T, ) (1.11)
k=1

In the AdaBoost terminology, the value of the strong leaindicates how likely a given
image locationr belongs to the class of templdfe The larger the value the most likely
this is the case. We propose to replace the oriented chanstande ofl” with the value
of H(T,z). We define aNormalized Oriented Chamfer Distanceas NOCD(T,z) =
H(T,z). While OCD is a distance in that the smaller is OCD value thi¢ebeNOCD is
a similarity measure, i.e., the larger the NOCD value, thetriikely the target object is
present at location.

We use a simple strategy to select training examples for AdaB Given is a set of
training images with ground truth bounding boxes enclosanget objects. For each train-
ing image we select only 5 positive and 5 negative examples5 positive examples we
randomly select 5 locations in a small neighborhood arobedjtound truth locations. We
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select as negative examples 5 locatiensith locally smallest oriented chamfer distance
OCD(T, z) such that the area of the intersection of the bounding boteceth atr with

any ground truth bounding box is less th#.

1.1.6 Object Detection with NOCD

In order to be able to evaluate the performance of NOCD, weriesa very simple ap-
proach for object detection in this section. We keep it seriplallow for clear comparison
to OCD. However, we use a flexible shape model in our appraachder to be able to
evaluate the performance of the proposé@C' D on state-of-the-art test datasets.

Our flexible object model is denoted &4 = {B;| i = 1,..., N}, whereB; is a part
bundle composed of contour parts describing the same éwcat the contour of a given
shape class, e.g., human head or arm,/dmslthe number of bundles in mod&fl. Contour
parts from bundle; are represented by;, and hence3;, = {¢;;|7 = 1,..., M;}. Since
every part bundlé3; describes a specific part of an object, we assumehg} B; = ()
if ¢ # j. Fig. 1.2 shows an example of human model, h&re= 4 and M; = 5 for
1 =1,2,3,4. Our model was manually constructed. Thus, our model costhie total of
20 contour parts;;. Each part;; is treated as templaté, and NOC'D(c;;, x) is learned
as describe in Section 1.1.5.

For an inputimagé, we first use Canny edge detector to compute the edgefin&pr
each locatior: in I, we useNOCD(¢;;, z) to represent the normalized oriented chamfer
distance of model contour par}; placed at point:. With a simple but efficient sum-max

framework, the model fit at point € I is defined as:

N

Si(M,z) =) max NOC'D(cj, 7). (1.12)
=1 9=

Thus, we select from each bundlg the part with the largest NOCD score and sum the

maximal scores over the bundles in the shape maddeUsing sliding window we calculate
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Figure 1.2: Human modeM composed of 4 part bundleB,, B,, B3, B4 representing
head, front, back, and leg parts, respectively. Each bumaieés contour parts.

S1(M, x) at each point € I. We define the model fit score as
Sr(M) = max Sr(M, z) (1.13)
and the detection center point as paihte I as

x* = argmax S;(M, z) (1.14)

zel

The detection results fapC'D follow the same framework, but with max replaced with

min in the above formulas.

1.1.7 Normalizers

It remains to describe how we select a set of normaliZers £ = 1,..., K'}. We first
observe that a good normalizer should be more likely to m@tcloise than a given contour
part. This implies that a normalizer should have a signifigasimpler shape than the

contour parts of a target shape model. We also want that aali@en should be less
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likely to match to a true object edges in an image than a gieatour part. Consequently,

normalizers should not be similar to any contour parts inghape models.

— /|| =O<=AV

Figure 1.3:Basic normalizers.Our set of basic normalizers contains 11 simple shapes.

We satisfy both constrains by first generating a small setrople geometric curves
that are treated as a basic structuring elements to geressteof normalizers. A set of
11 basic shapes that we have selected is shown in Fig. 1.3y foha the first 11 ele-
ments of our set of normalizeys = {n;| k = 1,..., K}. We obtain further normalizers
by pairwise combining the 11 structuring elements, wheeecthmbination is simply a u-
nion of their aligned images. Since the normalizer comimmat symmetric and we only
combine different structuring elements, we obtain= (11 x 10)/2 additional normaliz-
ers. Fig. 1.4 shows a complete set/6f= 66 normalizers obtained this way. They are
ordered according to their weights obtained by the sum oB&d&t weights of their corre-
sponding weak classifiers by training the AdaBoost stroagsifiers on the TU Darmstadt
pedestrian dataset [2] (see Section 2.7 for more detaildarger weight indicate that a
given normalizer makes more contribution in helping NOCEBtidguish true positive from
clutter background. The weight order of the normalizerdicams the simplicity principle
that guided our design of normalizers in that simpler norrea are usually more signif-
icant. However, the weights of the normalizers are also emibe by their ability to match
well to noise, which may be image class specific. For exansgpiaight lines in horizontal
and vertical direction belong to a common background dluttéenner city images as the
images of the TU Darmstadt pedestrian dataset.

For each contour part of a target modg| we resize the normalizers to let them have

the same bounding box as the contour pgrtConsequently, the resized normalizers cover
12
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Figure 1.4: Our 66 normalizers displayed in order of theirghes.
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the same area. Fig. 1.5 shows the resized normalizers geddoan each bundle of the

human model.

Ly

i

Figure 1.5:Human model normalizers. The resized normalizers for four part bundles are

shown in blue. The red curves are the original model partedch bundle.

1.1.8 Experimental Evaluation of Detection Rate

In this section we compare object detection performancé@eptroposed normalized ori-

ented chamfer distance (NOCD) to the oriented chamfermst§OCD) and to chamfer
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distance on standard test datasets. The detection metbeddsbed in Section 1.1.6. We
use exactly the same flexible models and the same experimsettiags for both methods.
In particular, for each image, the edge map was computedebgathny edge detector with
the same threshold. The chamfer distance was computedyeractiefined in formula
(1.5). The same constantand )\ were used to truncate the distance transform and linearly
combine the distance and orientation terms when calcgl#tie oriented chamfer distance.
Results are quantified in terms of detection rate. We usetéimelard PASCAL criterion to
identify correct detections. A detection is regarded asembiif the area of the intersection
of the bounding box containing the detected object with tteaigd truth bounding box is
at least0% of the area of their union.
TU Darmstadt Pedestrian Dataseluman detection is very challenging for shape-based
matching methods, because in many poses the shape of huntanrsas relatively simple.
In surveillance images, there is often a complex backgrpwiile humans are relatively
small, which also increases the chance for an accidentahimagt

TU Darmstadt pedestrian dataset [2] consists of seveliaissef video images contain-
ing side-view humans. It provides two training dataset®, loas 210 images and another
has 400 images. In our experiment, we use training 400 ddtasie training of NOCD.
After that, we test both NOCD and OCD on the test dataset wsthithages. The 250
test images are significantly more challenging than the 4&@ihg images. To handle
the variance of the human shape caused by people walkingoostp directions, we flip
our model with respect to vertical axis, and take the bestesobthe original and flipped
models. Consistent with the results of théearning procedure reported in Shotton [127],
we also observed that detection accuracy of oriented chiasigance increases when
becomes larger. In all human detection experiments, we Ased).8 for both OCD and
NOCD, which was the best performing. As it is often the casAdaBoost applications,

we discarded weak classifiers with very small weights. Afiteining phase, we retained
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Chamfer distance 4.4% HOG [33] 72%
OCD 35.2%| 4D-ISM [123] 81%
proposed NOCD| 70% || Andriluka et al. [2]| 92%

Table 1.1: Detection rate on Test 250 of the TU Darmstadt $t6da Dataset. The pro-
posed NOCD doubled the OCD detection rate with exactly theeseontour model.

only 37 normalizers with largest weights to form the stroegrler for each model contour
part. This allows us to reduce the object detection cost ¢exityp.

The detection rate is shown in Table 1.1. We observe thatrihygoged NOCD near-
ly doubled the detection rate of OCD on the 250 test image® iffiprovement is very
significant given the fact that the detection rate of OCD iy Vew: 35.2%.

Several detection results are displayed in Fig. 1.1. As ihestrate OCD fails when
the human contours are broken and distorted while at the sama¢he background is clut-
tered. This is exactly when the proposed NOCD performs mhe well. We also report
the performance of pure chamfer distance in Table 1.1. iardadshow that OCD performs
significantly better than chamfer distance on this datdaether, we include the detection
rates of state-of-the-art approaches estimated form gnaggorted in [2]. We observe that
our detection rate is compatible to a popular appearancedb@detector, HOG [33]. We
stress that our approach is still a matching approach. Ardriet al. [2] obtained the cur-
rently best performance on this dataset. It is obtained ypgmoach specifically designed
for pedestrian detection that utilizes a sophisticatetissizal inference framework and
learning to handle articulations; both not present in oygrapgch. Similarly, the approach

in [123] is designed to handle articulations for pedestdeatection.

Cow dataset This dataset [77] is from the PASCAL Object Recognition batse Col-

lection. There are 111 images in which cows appear at vagosisions. Since no training
part is provided, we divided the dataset into two parts. \Waldsst 55 images to train our
detector, and tested it on the remaining 56 images. Thenaimett on the second part,

and tested on the first 55 images. This way we are able to repogerformance on the
15



whole dataset. The detection rates are shown in Table 1.2inAge report a substantial
increase in the detection rate by over 17% of NOCD in comparie OCD. Interestingly,
OCD is not able to improve the performance of pure chamfeadce. For this dataset, we
used) = 0.2, which indicates that the orientation information is nottigalarly useful.
This is most likely due to a particular kind of backgroundtu present in this dataset as
can be seen in the example result images in Fig. 1.6. The aittadense vertical lines in
the edge maps confused oriented chamfer matching. Oriehtedfer matching could not
tell the ground truth location from such noise, since mogsheffalse alarms appear in that
area. The proposed NOCD was able to learn the differencegleetauch noise and the true
targets. For images with little clutter in the backgrounothbOCD and NOCD performed
equally well.

The performance of NOCD on this dataset also compares falyota a very sophis-
ticated learning and inference approach published vegntgcby Zhu et al. [159]. This
comparison may not be quite fair, since this approach usessgample learning, while
our flexible cow model is constructed from 5 cow contours. kEeev, on the other hand
our detection algorithm is a simple max-sum. Thus, we do ngiley any sophisticated

inference in the detection process.

Chamfer distance 73.9% | proposed NOCD 91.0%
OCD 73.9%| Zhuetal. [159] | 88.2%

Table 1.2: Detection rate on Cow Dataset.

Infrared images Without extra training, we use the same human model and tine sa
normalizers as for TU Darmstadt Pedestrian dataset to canrgeveral tests on infrared
images. In these images, humans are small, about 40 pixels, which increase the

possibility of misalignment to background. Some detectesults are shown in Fig. 1.7.
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Figure 1.6: Example detection results on the cow dataseft dodumn NOCD. Right
column OCD. Green rectangle denotes the ground truth olgjeation.

1.1.9 Conclusions

By adding the term of orientation in the evaluation of theregoriented chamfer distance is
more robust to accidental alignment to the background rtbese chamfer distance. How-
ever, as our experimental results clearly demonstratesthisloes not solve the problem
of matching to cluttered background, which often leads tete score than the score at
true object location. The proposed NOCD provides a solutidhis problem by utilizing
AdaBoost to learn normalization of OCD. The key idea is to pam the chamfer match-
ing score of a given template to scores of a set of normaliZ€re obtained ratios are
interpreted as weak learners, and the strong learner ety AdaBoost is interpreted as
a normalized OCD. Based on specific application, the praposethod could be modified
by replacing oriented chamfer distance with oriented Hatfédistance, or using sparse

logistic regression instead of Adaboost in training phase.
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Figure 1.7: Detection result for infrared images. The ordimages are in the first column.
The second column shows result of NOCD while the third colwhaws the results of
OCD. Blue and red dots represent the corresponding parteahbdel. Green rectangle
denotes the ground truth bounding box. The edge map is adémlavhite on the original
images.
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1.2 From Partial Shape Matching through Local Defor-
mation to Robust Global Shape Similarity for Object

Detection

1.2.1 Introduction

Compared to other image cues, the outline contour (sileyistinvariant to lighting con-
ditions and variations in object color and texture. More ariantly, it can efficiently repre-
sent image structures with large spatial extents [126]aBse of these advantages, contour
information is widely used in object detection and recagniimethods. Recently, several
contour-based methods have been demonstrated to workmiiledask of object detection
and recognition, such as [46], [45], [126] and [130].

Given a gray scale image, edge pixels are obtained by an extgetdr, such as Can-
ny [22] or Pb [98]. Then edge pixels are grouped to edge fragsia a bottom up process
using an edge-linking algorithm, e.g., [73]. An example bfaned edge fragments is
shown in Fig. 1.8(b), where each edge fragment is marked avdfifferent color. These
fragments usually form the input to a contour-based objet#ation algorithm. Given the
contour of the target object as a model, the goal of contaset object detection is to
select a small subset of edge fragments that match well tonthakel contour. The pro-
cesses of selection and matching are challenged by theviatjoproblems with extracted
edge fragments in real images: (1) Edge fragments repiaggueart of the target object
are missing, e.g., lower part of the legs in Fig. 1.8(b). (8y&fragments are broken into
several pieces. In our example image in Fig. 1.8(b) bothatostof the woman and the
swan are broken in many pieces. (3) Part of the true contotiteofarget object may be
wrongly connected to part of a background contour resultiragsingle edge fragment. An

example is given in Fig. 1.8(c), where the yellow edge fraghoentains part of the true
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contour of the swan neck and its reflection in water, whichi@lsly does not belong to

the true contour of the swan.

(©) (d)

Figure 1.8: (b,c) show edge fragments obtained from (a)cwhsually are the input to
shape based object detection algorithms. (d) shows a aetestample of the proposed
approach; the corresponding parts in model and image hawathe colors.

These problems are unavoidable in real applications, sipefect edge detector does
not exist [98]. In addition (1) may also result from partiaictusion of the target object,
which is common in cluttered scenes. Therefore, any objetgation approach must ad-
dress problems (1-3). Assuming that the contour of the tagject is given, problems (1,
2) imply that edge fragments can only match parts of the olgectour. The situation is
significantly more complex due to (3), which implies thatyophrt of an edge fragment

may match to part of the object contour. While all recent apphes , e.g. [130] [93],

20



address the problems (1,2), they suffer from problem (3)gesithey treat the edge frag-
ments as nonseparable building blocks of the target cositdthiis may result in missing
the target object in the image or locating the object inaataly, e.g., if the entire yellow
fragment is assigned to the swan, the detected bounding tidxeWarger than the ground
truth. To our best knowledge, only the approach in [115] ieip} addresses problem (3)
by introducing an efficient partial matching schema basemt&gral image [149].

However, the final detection evaluation in [115] is appeeeabased (SVM on HOG
features), which demonstrates weakness in the discrimeadwer of their partial match-
ing schema. There are at least two main reasons for this,sotine iselection of the best
matching fragments in the integral image framework and theras simply weak discrim-
inative power of their shape descriptor, which is only arigsed.

We utilize the well-known geometric relations of shape eshas shape descriptor, but
without any histogram representation. One of our main dautions is the selection of the
best matching contour fragments in the integral image fraonle, which by the virtue of
the problem is very different from image matching framevgor&s the result we obtain a
powerful shape matching framework particularly tailoredpartial shape matching. This
framework allows us to solve problem (3), since the partiape matching automatically
selects parts of edge fragments that best match to parts @élnsontour, we essentially
generates a new sets of edge fragments. We observe thatfehebenew edge fragments
has a known correspondence to part of the model contour., plaumsal shape matching is
utilized not only to establish the correspondence of edagnfients to model contour parts
but also as edge fragment filter.

Given the set of filtered edge fragments and their correspraees to parts of the con-
tour model, our next step is to infer the possible locatiditbe target object in the image.
The inference must simultaneously perform selection andgng of the edge fragments
so that the similarity to the model contour is maximized. W& ftonstruct a graph whose

nodes are the partial correspondences and edges repiesenntpatibilities of these cor-
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respondences. The location hypotheses are determinedxasahaliques in this graph,
i.e., as subgraphs of the weighted graph with maximal ajfofitall pairwise connections.
To infer the maximal cliques we utilize a recently proposkgbathm [90]. It is very ro-
bust in a noisy affinity graph and the number of nodes in a dsabgraph is automatically
determined. This features makes it extremely suitable fioitask, because the number of
fragments to be grouped is unknown and it varies a lot depgnoin the quality of edge
fragments and the shape of single edge fragments in the irmageally not very discrimi-
native. Each object location hypothesis is identified byesahpartial correspondences. For
example, in Fig. 1.8(d), four partial correspondencestifiethe target object. We stress
that we not only selected the edge fragments in the imagel$mttze corresponding parts
of the model contour. Therefore, we can perform a holistadation of the location hy-
pothesis with global shape similarity, i.e., we score eatldion hypothesis with a global
shape similarity of grouped edge fragments to the modelbcwnt

However, the target object in the image may be distorted, @ug to view point change
or nonrigid deformation. In addition, as stated above soaresf the model contour do
not have any correspondence in image due to missing edgedrag. Therefore, the shape
similarity measure must tolerate deformations and mispants. However, this makes it
less discriminative and increases the risk of "hallucimgitithe target object in the back-
ground. It follows that it is impossible to tolerate defotinas and at the same time keep
high discriminative power to avoid hallucinating. This igexy important problem that has
not been explicitly addressed by most of the existing apres.

We address this problem by performing a nonrigid defornmatibthe model contour
according to each detection hypothesis. A nonrigid deftiondaransformation is obtained
by a composition of local affine transformations. Our intantis that if a detection hy-
pothesis is correct, the deformed model will become morelaino the selected edge
fragments, while at the same time it remains similar to thegimal model. If a detection

hypothesis is wrong, the composition of local affine transfations will likely result in a
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completely deformed model that resembles neither ther@ignodel nor the configuration
of the selected edge fragments. However, the key benefiegirtbposed local affine trans-
formation is its high capability in estimating the positieirmissing model parts (i.e., parts
that do not correspond to any selected edge fragments). nbhignly results in a robust
scoring of the detection hypotheses but also allows us toheutdeformed model contour

on the image.

1.2.2 Related Work

In recent years a large number of contour-based objectti®ieand recognition methods
has been proposed. Many methods achieve state-of-thexddrmance by only utiliz-
ing edge information. For example, Shotton et al. [126] apelOet al. [103] first learn
codebooks of contour fragments, then use Chamfer distaneetch learnt fragments to
edge images. Ferrari et al. [46] [45] build a network of ngattaight adjacent segments
(KAS). In [159], Zhu et al. formulate the shape matching aftoair in clutter as a set to set
matching problem, and present an approximate solutioretbdind combinatorial problem
by using a voting scheme. They use a context selection schgrakgebraically encoding
shape context into linear programming. Ravishankar eLaB]use short segments to ap-
proximate the outer contour of objects. They decompose thdehshapes into segments
at high curvature points. Dynamic programming is used tagthe matched segments in
a multi-stage process which begins with triples of segment®t al. [93] first decompose
the model into several part bundles. They use particle Silasrinference tool to simulta-
neously perform selection of relevant contour fragmentsdge images, grouping of the
selected contour fragments, and matching to the model aoatdo address the non-rigid
object deformation, Bai et al. [4] use the skeleton infoliorato capture the main structure
of an object, and use Oriented Chamfer Matching [126] to mtite model parts to images.
Most recently, Srinivasan et al. [130] address the contoaugng problem as many-to-one
matching, and use this scheme in both training and testinaggsh For purpose of improv-
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ing detection and score ranking, a sophisticated traininggss is designed in which latent
SVM is used to guarantee the many-to-one score is tunedirdisatively. Besides of

literature mentioned above, edge information is alsoagdiin [115, 96, 102, 10].

1.2.3 Shape Descriptor

We propose a novel shape descriptor that is particulartglsia for shape matching of edge
fragments in images to model contours of target objectshdsic geometric units are the
same as in shape context [8]. Shape context (SC) appearoteels the best performing
shape descriptor and definitely the most popular one. Giy#arar setX composed of a
finite number of points, for every pointe X we consider both the length and direction of
the vector frome to other points inX. However, different from SC, we do not build any
histograms representing the lengths and directions.

Given two sequences of poinis= {p; - -p,,} and@ = {q¢ - - - ¢, } representing two
contour fragments in 2D, we compute two matrices, one reptesy all lengths and the
second representing all pairwise orientations of vectan:feacty; € P to eachg; € Q.
As a special case wheh = (), the matrices describe the shape of the contour fragfent

The distanceD"?) (i, j) from p; to ¢; is defined as Euclidean distance in the log space

DR (G, j) = log(1 + ||pi — Gjl|2) (1.15)

We add one to Euclidean distance to make ihé'@ (i, j) positive. The orientation

O"Q)(4, 1) from p; to ¢; is defined as the orientation of vectdr— g;:

0P (i, j) = £(p; — @) € [, 7. (1.16)

The relative geometric relation of two contour fragmeftand() is encoded in twan x n

matricesD"?) andO”%), An example is given in Fig. 1.9.
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Figure 1.9: Shape descriptor.

Given another two contour fragmeritsandU consisting of the same number of points
as P and @, respectively, we define two affinity matrices that measheesimilarity of
the two fragment configuratiof®, ()) to the other two fragment configuratio®, U). The
first affinity matrix is based on comparison of distances leetwtwo pairs of corresponding
pairs of points

(D(RQ) (Z>]) - D(T’U) (273))2)
(DWR)(i, j) 0)? '

Ap(P,Q,T,U) = exp(— (2.17)

whereo represents the tolerance of distance differences (it isosef2 in all our experi-
ments).
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To make the value ofl , (P, Q, T, U) invariant to scale, we divide each distance differ-
ence by the distance between the first pair of points. Thenskaffinity matrix is based on
angle comparison of vectors connecting the correspondiirg pf points

(OPQ)(4, j) — 0TV)(4, j))?
52

Ao(P,Q,T,U) = exp(— ), (1.18)

where the difference of angles is taken moduloi.e., it is the angle between vectors
Di — 4 andt; — i;, andy represents the tolerance of angle differences (it is sét ito
all our experiments). Since both, and Ag are normalized, we can simply add them to

obtain the affinity matrix
A(P,Q,T,U) = Ap(P,Q,T,U) + Ae(P,Q,T,U). (1.19)

We observe thatl ism x n matrix representing the similarities of correspondingippairs
in (P,Q)and(7,U). The similarity of two configurations of contour fragmefi3 ()) and
(T, U) is defined as

n m

U(P,Q,T,U) = %ZZA(P, Q,T,U). (1.20)

i=1 j=1

As a special case of Eq. (2.24), we obtain a similarity betw®e contour fragment#
and7 defined as

U(P,T)=V(P,P,T,T) (1.21)

(here we slightly abuse the notation for the sake of simgliciwhen( is the same as
Pin Eq. (1.15) and (1.16), the matricés” ") ando"") represent all pairwise distances
between all pair of points of and corresponding angles of the vector connecting the
points. Thus, two matrices form a shape descriptor of théozoriragment? and similarly

for T. HenceV (P, T) simply compares the shape descriptor of the contour fratsiien

andT.
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1.2.4 Partial Matching between Edge Fragments and Model Cdour

Given an imagel, using edge-linking software [73], a set of edge fragmehts—=
{e1---ex}is generated. Each fragmentis a list of N, points (i.e., pixels)q, - - -, qn, }-
According to our descriptor, the geometry of fragments encoded in twaV, x N, ma-
trices: Ap andAe. Similarly, two M x M matrices are used to fully represent the contour
of a modelM composed of point§py, - -+, pas}-

Our goal is to find the best matching between a part of image @dgment,, with a
part of model fragmentM. Thus, we need to find a paktt (i,1) = {p;, -+ , pirvi—1} € M,
wherei is the starting point of the part arids its length. (The indices are moduld if
the model contour fragment is a closed curve.) Since carxpot that the whole image
fragment participates in the matching, we need to simuttasky select part(j,1) =
{¢j,- - .q;+1-1} C ey, wherej is the starting point of the fragment part and its length is
alsol.

Our goal can be expressed as finding two corresponding sthsbéd their shape ma-
trices with the maximum similarity defined in (1.21). To achieve this goal we construct
a 4D tensor matrix

T(i,j, 1, k) = (M, 1), ex(5,1)) (1.22)

and observe thaf (i, j, [, k) can be computed efficiently by utilizing the integral image
algorithm, since it allows to access any element in the 4Diriatconstant time [35, 149].
Intuitively, when very few points are involved in a matchjribe shape similarity is
neither reliable nor discriminative enough. Therefore seta threshold on the minimal
number of matching points and dét;, j, [, k) = 0 if [ < 7. We then take the maximum of

the 4D matrix along different, and suppress it to

S(i, j, k) = max T (i, j, 1, k) (1.23)
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We observe that the index of the maximal valueSofletermines a pair of best matching

subsegments of1 andey:

Based on these local observations, the most popular methtatrh object location
hypothesis is using Hough voting, such as in [115]: local imaxof S (i, j, k) for certain
fragmente, are identified, and corresponding fragment correspondesieeused to esti-
mate object location by Hough voting. However, Hough vosegms not to be an optimal
choice here. When each part correspondence independeastig gote, the cluttered back-
ground is more likely to get a larger score, since single édggments are unlikely to carry
discriminative shape information.

More discriminative shape information can be obtained bysatering all pairwise
shape relations of several edge fragments. We introducephdrased clustering method
to find location hypothesis through which shape dependehdycal edge fragments is

naturally captured.

1.2.5 Object Localization as Maximal Clique Computation in a

Weighted Graph

Each vertexo € V of our graph corresponds to a partial matety, j, k) (1.24), i.e.,v
represents a model segmemt(i, /) selected as best matching to paytj, /) of the edge
fragmente,. To limit the number of vertice& (i, j, k), for each point in model M, we
only choose the besk’” matches as vertices according to their corresponding aittyil
S(i, j, k). Therefore, for a given modeélt contour withA/ points, the number of vertices

is equal toM x K.
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Given two pairs of matches, i.e., two verticgs= {M i1, 1), e,,(j1,01)} andv; =

{M(ia,ls), en(ja2, 12) }, If v; # v; we define the edge weight as

A(’L,]) = \II(M(’Ll, ll), M(ig, lg), em(jl, ll), 6n(j2, lg)), (125)

which measures the shape similarity of the configuratiomvofrnodel segment$A(i,, [;)
andM((is, [5) to a corresponding configuratiep,(j1, ;) ande,, (js, l2) of two parts of edge

fragments. As a special case, we define

A<Zv7'> = \P<M<i17l1>7€m<jlal1>>7 (126)

which measures the shape similarity of a single model setywtfi, , [;) to a correspond-
ing edge part,, (ji,11).

To sparsify the affinity matrix4, we observe that,,(j;, 1) ande,,(j2,>) can only
correspond toM (i, ;) and M iy, l5) if they are relatively close to each other. In practice,
we compare the average value of distance mafris:1.h).em(i212) to average value of
DWMUh).M2:12) - |f the difference is larger than a reasonable value, weliggtj) = 0
(for instance in our experiment, it is the square root of mhedm multiply the scale).

Meanwhile, partial matching; andv,; may refer to the corresponding of the similar
position of model only with a few pixels offset. We do not waathave these kind of
partial matches co-occur in a solution of clustering, sifacea true positive configuration

of an object hypothesis, it is impossible that several fragt® in image corresponding to

|M(i1,1) M (i2,l2)]

the same part of model. Based ¢n= M ) OM D]

, we tell if v; andv; get the same
part of model involved in. Iff < ¢, we setA(i, j7) = 0. In experiment{ equals to 0.5.

The obtained weighted affinity graph is denotedzas- (V, A). Our goal is to find all
maximal cliques in this graph. As stated in [107], a maxim@gjue is a subset oV with
maximal average affinity between all pairs of its verticehjol is equivalent to the fact
that the overall similarity among internal elements is leigtihan that between external and
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internal elements. In our case, given a shape model andspomding partial matches in
the image, clustering is expected to find several pairs othest with high values of all
pairwise similarities. To formally state our goal, we irdte an indicator vectot over
the verticed/, i.e., hasM x K coordinates. A vertex € V is selected as belonging to a
maximal clique if and only ift, > 0, wherex, denotes the coordinate ofr. Then each
maximal clique is defined as the solution of the following dadic program

maximize f(x) = x* Ax

(1.27)
subjecttox € A,

whereA = {x € RM*K . x >0 and e'x = 1} is the simplex inRM* %,

Each maximal clique corresponds to a local solution of ERTL We are using the
recently proposed algorithm in [90] to compute the localiiohs. Each solution, i.e.,
maximal clique, is treated as an object detection hypothdsiconsists of several model
contour segments and the corresponding parts of edge fragmehe final evaluation of

the hypotheses is presented in the next section.

1.2.6 Evaluation of Detection Hypothesis

By considering the partial matches as a whole, a detectipothesis is expressed as the
correspondence between a subset of points on the model ansat ©f edge points in
image. We denote the subset of model points\ds C M, and subset of image edge
points asty, C E. Clearly there exists a bijectich betweenM, ¢ M andE, C F, i.e.,

if r € M,,T(x) € E,. For each hypothesis, there are usually some points in titeimo
that have no correspondence in the image, iy, = M \ M, # @. The mappindl” :

2 — RN? can be regarded as affine-transformatibwhich consists of scaling, translation

and rotation. Here, we intend to exteihdo conclude the transformatiofi for x € M,,.
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Therefore, we defin@ for x € M as following:

T(x)= M,— E,, if xeM,
(1.28)
= zZ, fxeM,

For each pointamon1,, our goal is to determine the appropriate affine-transfdiona
based on existing mapping relation$, — E,. We attempt to locally estimate for every
x € M,. This is motivated by the observation that affine transfdioms of points belong
to the same part of model are usually consistent, e.g., thdspon swan neck. Based on
the distance of indices in the model points sequence, welimd tertain number of close
points ofx € M,, and denote them by (z) C M,. The reason that we define distance as
difference between points indices instead of their gegyradtrseness isM is an ordered
points set, point connectedness is more important thanldisemess in geometry. Theh
is computed as:

7 = H%l*n d(T(N(x)), N(z)Z") (1.29)

Here, functiond is simply computing the accumulate square distance betWgémn z))

andN (z)Z*. Thus, Eqg. (1.29) is turned into

T(x)= My — E,, if €M,
(1.30)
= emin dT(N(), N@)2"), it z€M,

By applying mappindl” on every point: € M, a set of points’(M) corresponding to

model points is obtained. It is used for later scoring.

1.2.7 Scoring and Ranking

As mentioned above, the confidence for a hypothesis is eealdieom two aspects.

S(T(M)) = B(M, T(M)) x W(T(M),T'(M)) (1.31)
31



The first score indicates how welll is corresponded t@'(M) considering the geo-
metric arrangement, which is simply computed using Eq4(R.2

Moreover, we also need to measurelifM) is consistent with the contour cues in
image. This is indicated by the second score. For this perpwes first calculate tangent
directiond for both points inT'(x),z € M, and edge point€ in image. This makes
each point to be 3D data, .6z, y,]. In this 3D space, for each point ifi(z),z € M,,
we use kd-tree algorithm to find the closest pointfdin All these closest points from
E are aggregated, together with the pointstin are denoted by”(M). We measure
the similarity betweer’’(M) and7”(M) using Eg. (2.24). Finally, we rank all obtained
hypothesis according to the confider$@’(M)).

1.2.8 Experimental Results

We present results on the ETHZ shape classes [46] whichrésstive diverse classes (bot-
tles, swans, mugs, giraffes, apple-logos) and containtahdb255 images. For all cate-
gories, there are significant inner-class variations gsclahnges, and illumination changes.
Most importantly, the dataset comes with ground truth geaell edge maps, which is
computed by Pb edge detector [98]. This makes it possiblave ka fair comparison of
contour-based object detection methods.

Depending on the way of selecting shape models for each agtege follow two
different experiment protocols. First, we utilize sing@nld-drawn shape model for each
class, and testing is done on all 255 images. Second, wenvdtile protocol in [45]. We
use the first half of images in each class for training, ancbiethe second half of this class
as positive images plus all images in other classes as wegaiages. In our approach we
only use the ground truth outlines of objects present in tis fialf of images for each
class. We apply our shape descriptor to compute pairwis#éasity of the outlines, and
use affinity propagation clustering algorithm [52] to autdimally obtain several prototype
shape models. Thus, our training is only used to select fypéccontour models.
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| | Applelogos| Bottles| Giraffes| Mugs | Swans| Mean |

Our method 0.881 0.920 | 0.756 | 0.868| 0.959 | 0.877
Srinivasan et al. [130] 0.845 0.916 | 0.787 | 0.888| 0.922| 0.872
Maji et al. [96] 0.869 0.724 | 0.742 | 0.806| 0.716 | 0.771
Felz et al. code [42] 0.891 0.950 | 0.608 | 0.721| 0.391 | 0.712
Lu et al. [93] 0.844 0.641 | 0.617 | 0.643| 0.798 | 0.709

Table 1.3: Comparison of interpolated average precisid?) @ ETHZ Shape classes.

For the purpose of detection evaluation, we follow the PAECAteria, i.e., a detection
is deemed as correct if the intersection of detected bogratix and ground truth over the
union of the two bounding boxes is larger tHel¥s.

To convert the gray level edge map to binary edge map, we kpixals with their
values larger than 0 as edge pixels. This means we do not éldguthreshold to get better
edges. During detection, 5 different scales are searchegl/éry image. Non-maximum
suppression is used to remove duplicate hypothesis.

We focus on comparison to the state-of-the-art contouedbabject detection methods,
in particular to [45, 130, 93]. We plot the precision/re¢RIR) curves in Fig. 1.10. Table 1.3
shows the interpolated average precision (AP) value for thoas. Our method achieves
the best mean AP and the best AP for category Swans. Our ARriparable to the best
ones in the other four classes. The mean AP of our methodjtstistibetter than [130] and
much better than the other contour-based methods.

We also show the false positives per image (FPPI) vs. deteddite (DR) in Fig. 1.11.
Table 1.4 compares the detection rates at 0.3/0.4 FPPI. éimath also achieve comparable
result to [130], but the mean value of [130] is slightly bettean ours for this measure. We
observe that our method is the only one with no differenceeitection rates at 0.3 FPPI
and 0.4 FPPI. The curve of our methods increases sharplg &etjinning and reaches the
peak of the detection rate before 0.3/0.4 FPPI.

Besides the presented evaluation of the object detectiomracy, which is based on

bounding box intersection, accuracy of localizing the tamy of detected objects is ex-
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Figure 1.10: Precision/Recall curves of our method conpéwelu et al. [93], Felz et
al. [42], Maji et al. [96], and Srinivasan et al. [130] on ETldHape classes. We report both
the results with single hand-drawn model and with learnedeaits

tremely important in many applications. Since our final déts evaluation includes non-
rigid deformation of a contour model and positioning theodefed model on the edge im-

age, we are able not only to precise localize the boundarglbatto complete the missing

contours. This fact is illustrated by our example detectasults shown in Fig. 1.12.
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Figure 1.11: Comparison of DR/FPPI curves on ETHZ shapeetas

To qualitatively evaluate the contour detection accuragyise the coverage and preci-
sion measure defined in [45]. The coverage value shows whagmpage of true boundaries
have been successfully detected. The precision valuesunesasow many detected edge
points are inside the true boundaries. We compare the apagmacision of our method

with [45] in Table 1.5. Our method achieves a higher preaisialue on all 5 classes, es-
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| Applelogos |  Bottles [ Giraffes |  Mugs [ Swans | Mean |

Our method 0.92/0.92 0.979/0.979| 0.854/0.854| 0.875/0.875 1/1 0.926/0.926
Srinivasan et al. [130] 0.95/0.95 1/1 0.872/0.896| 0.936/0.936 1/1 0.952/0.956
Maji et al. [96] 0.95/0.95 0.929/0.964| 0.896/0.896| 0.936/0.967| 0.882/0.882| 0.919/0.932

Felz et al. code [42] 0.95/0.95 1/1 0.729/0.729| 0.839/0.839| 0.588/0.647| 0.821/0.833
Luetal. [93] 0.9/0.9 0.792/0.792| 0.734/0.77 | 0.813/0.833| 0.938/0.938| 0.836/0.851
Riemenschneider et al. [115] 0.933/0.933| 0.970/0.970| 0.792/0.819| 0.846/0.863| 0.926/0.926| 0.893/0.905
Ferrari et al. [45] 0.777/0.832| 0.798/0.816| 0.399/0.445| 0.751/0.8 0.632/0.705| 0.671/0.72

Zhu et al. [159] 0.800/0.800| 0.929/0.929| 0.681/0.681| 0.645/0.742| 0.824/0.824| 0.776/0.795

Table 1.4: Comparison of detection rates for 0.3/0.4 FPREDHZ Shape classes.

| Our method| Ferrari et al. [46]

Applelogos| 0.923/0.948 0.916/0.939
Bottles | 0.845/0.903  0.836/0.845
Giraffes | 0.456/0.784  0.685/0.773
Mugs 0.735/0.803  0.844/0.776
Swans | 0.848/0.909 0.777/0.772

Table 1.5: Accuracy of boundary localization of the detdabbjects. Each entry is the
average coverage/precision over trials and correct detecat 0.4 FPPI.

pecially there is a big improvement for Applelogos, Bottl@sd Swans. For coverage, our
method is better on 3 classes, but worse on the classes dfeSieand Mugs. The reason
is that our models for Giraffes and Mugs are very simple, itipalar, we do not have the
inner contour of the mug handle and the lower part of the fgirafitline as can be seen in
Fig. 1.12. Therefore, some part of the true boundaries, asithe internal handle of mugs,

are not detected.

1.2.9 Conclusion

We present a novel framework for contour based object deteutith three main contri-

butions. First, we introduce a partial shape matching sehamtable for matching of edge
fragments, in which the shape descriptor has the same ggoreits as shape context
but is not histogram based. Second, we group partial majdiypotheses to object de-
tection hypotheses via maximum clique inference on a wetjlgraph instead of hough

voting. Third, a unique feature of our approach is that wéquar nonrigid deformation of
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Figure 1.12: Some detection results of ETHZ dataset. The etp is overlaid in white
on the original images. Each detection isshown as the wemsd model contour in black.
The red framed images in the bottom row show two false p@stiv



a contour model and position the deformed model on the edggemOur deformation is

based on a local affine-transformation guided by the partéthing to edge fragments. By
combining these components, we obtain an effective putepa-based object detection
framework. Our method compares favorable to other stateefirt purely shape based
methods. In particular, we achieve the best average poec{#P) value averaged over
all 5 classes of the ETHZ dataset. The evaluation on the ETétdset demonstrates that
the proposed method not only achieves accurate objecttabetdmit also precise contour

localization on cluttered background.
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Chapter 2

Computing Maximum Weight

Subgraphs with Mutex Constraints
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2.1 Introduction

In many applications mutual exclusion (mutex) constragas significantly improve the
guality of solutions. This is particularly the case whenmyrend binary potentials are un-
reliable, which is rather a rule than exception in real aygtions. As an example let us
consider matching feature points between two images inrdsepce of perspective distor-
tion and occlusion. It is well-known that qualitative spéatielations such as above/below
and left/right can significantly improve the quality of sttuns. These relations define
incompatible matching pairs and as such can be expressedtas constraints.

Since mutex constraints are hard pairwise combinatoriasicaints, they lead to non-
submodular terms with large values of the energy functiorheWwthe number of mutex
constraints is large, general binary Markov Random Fiel®BYlsolvers cannot handle it
very well. In this section we focus on problems whose adexjmaideling requireglobal
mutex constraints, meaning that at least one mutex cons#iaplies to each variable (MRF
side). As demonstrated in the experimental results on pgdications, the state-of-the-art
general MRF solvers LBP (Loopy Belief Propagation), QPB@4d@ratic Pseudo-Boolean
Optimization) [15, 71], QPBOP [16], and QPBOI [117] fail teltver acceptable solutions
for such problems. Therefore, we propose a novel algorithem is tailored for solving
problems with global mutex constraints. Our algorithm nollyasignificantly outperforms
LBP, QPBO, QPBOP, and QPBOI, but also Integer ProjecteddA@nt Method (IPFP)
[84] as well as application specific algorithms. It can beméd as an extension of two
recent works, [84], where a quadratic objective is subjedinear constraints, and [20],
were a linear objective is subject to quadratic constraiBiscontrast, our algorithm has
both the objective and constraints in quadratic form.

Since MAP inference in MRF can be expressed as solving a reamstl maximum
weight subgraph (MWS)roblem, we use the MWS formulation in this section. Given an
undirected grapl with weights on the vertices and edges, the constrained Misgm

is to find a subgraph having the largest total weight subgesbime constraints. In its most
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general form, the MWS problem is formulated as an integedratec program:

maximize g(x) = x’ Ax
2.1)
subjecttox € {0,1}" and x € P

wherex is an indicator vector over the vertices of graghand A is the affinity matrix
(a weighted adjacency matrix) with all nonnegative entries, A;; > 0 for all 4, =
1,...,n. Without loss of generality we also assume ﬂj% A;; < 1. In the applications
we consider matrixd is usually indefinite.

P represents additional constraints imposedobJsually one-to-one (1-1) constraints
are imposed o in the case of graph matching problems, and many-to-ondreams are
often required in MAP inference problems. The two kinds aistoaints can be expressed
as linear equality constraini8x = 1, wherel is a column vector of ones. This instance

of problem (2.1) can be then formulated following [84] as

maximize g(x) = x* Ax
(2.2)
subjecttox € {0,1}" and Bx = 1.

We aim at solving a more general instance of problem (2.2¢esive consider quadratic

equality constraint:

maximize g(x) = x* Ax
(2.3)
s.t. x € {0,1}" and xT Mx =0,

whereM € {0,1}™*™ is a symmetric matrix representimgutex(short for mutual exclu-
sion) constraints. I/ (i, j) = 1, thenz; - x; = 0, meaning that nodes j cannot belong
to the same MWS. Hence mutex constraints represent incaogaertices that cannot
be selected together as part of the solution. Mutex comsgrare very important in many
computer vision and machine learning applications. Inipaldr, they make it possible

to enforce qualitative spatial relations like left/rightcaabove/below as shown in salient
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points matching in Sec. 2.7. Of course, both 1-1 and mamyngmatching constraints
can be expressed as mutex constraints.

The goal of (2.3) is to select a subset of vertices of gr@ptuch thaty is maximized
and the mutex constraints are satisfied. Sinée the sum of unary and binary affinities
of the elements of the selected subgraph, the larger is thggraph, the larger is the value
of g. However, the size of the subgraph is limited by mutex cansts. We assume that
a discrete vectox € {0,1}" exists that satisfies the constraints. We also assume that
Vi M(i,i) = 0.

The mutex constraintgs™ //x = 0 cannot be expressed as linear equality constraints,
but can be expressed as linear inequality constraintse $ihi, j) =1 = z;-x; =0)is
equivalent tar; + z; < 1, givenz;, z; € {0, 1}. However, this equivalence does not hold
if « is relaxed to the continuous domain, i.e.zjfz; € [0, 1], then the mutex constraint
x; - x; = 0 is stronger than the linear inequality constraint- =; < 1. (For instance,

x; = 0.5 andz; = 0.5 satisfiesr; + z; < 1, but does not satisfy; - x; = 0.)

If the sum of each row o#/ is at least one, theh/ representglobal mutex constraints
As stated above, this simply means that at least one comistigplies to each variable. We
observe that both 1-1 and many-to-one matching constraiatglobal mutex constraints.

The first step in our approach is the relaxation of the mut@staints by moving them
to the target function:

maximize f(x) = x"Wx = xT Ax — xT Mx

(2.4)
s.t. x € {0, 1}".

wherelV = A — M. Hence, wherx violates the mutex constraintg(x) will decrease.
Although mutex constraints are relaxed, our goal is to endloat any solution satisfies
x'Mx = 0.

Problem (2.4) is known as an integer quadratic program (I@mRt of effort has been
spent on finding good approximate solutions of (2.4) by relgthe constraints, e.g., in the
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case of graph matching problemsin[138, 95, 136, 32, 11]iratiee case of MAP inference
algorithms for MRFs in [112, 81, 31]. This is usually achidugy relaxing the discrete
vertex selection vectax to a continuous vector. We also relax the binary constramts
(2.4) to continuous ones:

maximize f(x) = x"Wx = xT Ax — xT Mx

(2.5)
s.t. x € 0, 1]".

Our main contribution is a novel algorithm for solving prey (2.5), presented in Sec-
tion 2.3. Its key property is the fact that if solutiari is discrete, thex* is guaranteed
to satisfy all mutex constraints, i.€x*)T Mx* = 0, as we prove in Section 2.6. Conse-
guently, a discrete solutiaa® of (2.5) is also a solution of the original problem (2.3),c&n
f(x*) equals tgy(x*) in (2.3).

Problem (2.4) can be viewed as a special form of binary MResvéver, standard opti-
mization techniques, such as Iterative Conditional Mo#iéMj and Simulated Annealing
(SA), suffer from mutex constraints (hard pairwise conats, and do not perform well
[117]. The main reason is the fact that mutex constraintsdhice large non-submodular
terms to the energy function (or equivalently large negetirms in (2.4)).

Recently, several successful binary MRFs solvers focusingoptimizing non-
submodular function have been proposed. QPBO via roof tyuafiables graph cuts
algorithm to solve problems with non-submodular terms, ditén provides only part of
optimal solution. Its usefulness depends on how many Vi@sadre labeled, which is still
an open question, and can be only examined through expdsmi&l]. As pointed out
in [63], only a very small percentage of variables get assiglabels by QPBO in the
presence of large non-submodular terms. This fact is alebrated by our experimental
results.

The most famous extensions of QPBO are QPBOP (probing) Ab{EPBOI (improv-
ing) [117]. Both methods address the problem of partialllageof QPBO. QPBOI shows
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excellent results on some applications whose modelingnegia limited number of local
hard pairwise constraints, such as Interactive Segmentftil7]. In [117], QPBOP and
QPBOI are combined in to a unified method called QPBOP + |, wii@lso shown to be
superior to both methods. Simply speaking, QPBOP + | boilsrdto first running QP-
BOP and then initializing QPBOI with the partial solutiortstained by QPBOP. However,
QPBOP + | is also unable to handle global mutex constraiintseghey lead to large non-
submodular terms and there is at least one such term for eable (each MRF side).
The same applies to LBP. This fact is in accord with the olzg@rms in [63] and we will
also provide a clear experimental evidence supporting it.

Moreover, the proposed algorithm significantly outperferdfdFP [84], even if we re-
strict mutex constraints to be equivalent®ax = 1. As is the case for IPFP, the proposed
algorithm does not guarantee that the obtained solutioistsete, in which we can output
the last discrete solution obtained during the computgttdowing [84]. However, in all
our experimental results on real data all obtained solstare discrete. This in turn guar-
antees that the solutions satisfy the mutex constraintss i$ta very important property
for practical applications, since mutex constraints giggeat flexibility for modeling ap-
plication specific constraints, which can substantiallptiove the quality of the solution.
As we demonstrate in the experimental results, this is ofikgyortance for applications
where the unary and binary potentials are not particulafiyrmative.

The rest of the section is structured as follows. Relateckwsdiscussed in Section
3.2. In Sections 2.3 and 2.4, the proposed algorithm for agimg maximal subgraphs
that satisfy global mutex constraints is described. Itsitbitcal properties are analyzed in

Sections 2.5 and 2.6. Experimental evaluation is present8dction 2.7.
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2.2 Related Work

A special instance of the MWS problem called maximum weigjigiue (MWC) problem
is well-known, where the solution subgraph is also requicetie a clique, i.e., any two
of its vertices are connected by an edge with a positive vieighe first formulation of a
matching problem as a maximal clique in a correspondencaii graph introduced for
object recognition in [1].

Recently an extension of MWC to weighted graphs was propos¢ti08], where a
special case of (2.2) is considered in whiBh= 17, a row vector of ones. Hence the
L, norm of x must equal one, meaning thatbelongs to a simplex. This formulation
essentially finds cliques with maximum average weights, taedsolution is sparse [108,
13]. [108] showed that wheB = 17, problem (2.2) generalizes the concept of maximum
cliques from un-weighted graphs to weighted graphs. Naoa¢ tin IPFP [84] and our
approach, the solution is not restricted to a simplex, b /.; norm ofx is not restricted
to equal 1.

Our algorithm is related but very different from the Franloif® (FW) algorithm [49]
and other line search algorithms. We elaborate on thisoelat Section 2.5. There is also
a big difference in the target function, since FW algorittemot designed to optimize an
indefinite target function and in general performs badlyhis tase [29].

As stated in the introduction, MWS problem is also relateghdeudo-boolean opti-
mization [15], from the point of view of energy function anthéry discrete domain. In
fact, it is easy to notice that Eq. 2.4 is in a special form ofdoy MRFs, and the energy
function has both submodular and non-submodular terms.leMmary MRFs with all
submodular terms can be efficiently solved by graph cutsrigtgos, energy function with
non-submodular term, which arise naturally in real appiice, are in general NP-hard.
One simple way to deal with non-submodular terms is 'trungathem, i.e., replacing a

function with a submodular approximation and optimize titer [118]. However, when
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the number of non-submodular terms is large, the truncatiay not be appropriate [71].
In our MWS problem formulation, non-submodular terms conoenf mutex constraints.
The proposed algorithm for solving problem (2.5) has beest fiublished by the
authors in a conference paper [94]. However, since the fottlss paper was on object
video segmentation, neither theoretical properties oflgerithm nor the solutions were
analyzed. Moreover, no comparison to the recent MRF solvasspresented. In addition
to this new theoretical content, we provide experimentahgarison to the MRF solvers
on two challenging combinatorial problems feature pointtahimmg and image jigsaw
puzzle solving. Now we review these applications as wellhasvtorks on video object

segmentation.

Feature point matching: itis well known that graph matching framework is very pofuér
and robust when it is used to address the feature correspoagwoblem [54]. There
exist tons of work where graph matching framework is appte@edolve computer vision
problems related to feature point matching, such as shapehing, object recognition
and video analysis [11, 83, 139, 156, 37, 25, 38, 26]. In algraptching framework,
each local feature is represented by a node, and edge tdtitbthen used to represent
the spatial relation between local features. The main daaWwlof graph matching lies
in its NP-hard nature. Existing approaches either proposelmgraph matching algorithm
based on various approximations [80, 25], or consider adnighder relation between local
features [37, 74, 86]. In some works [85, 82], a better edgiate affinity is learned to
improve the graph matching results.

Different from the existing methods, we consider mutex t@msts in a graph match-
ing framework to address the feature point matching problémparticular, while the
affinity between edge attribute is usually utilized in a sofinner in most existing work,
we consider the hard, mutual exclusive constraints, sucfuasitative spatial relations

above/below and left/right, which significantly improveetljuality of solutions. These
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are global mutex constraints if for each feature point thexists at least one other point

above/below or left/right to it, which is the case in real lgadions.

Image jigsaw puzzle Shape based jigsaw puzzle problem has been a long starmding p
lem in computer vision [34, 50, 72]. Recently, image jigsavzie problem is revisited in
[27], where each image is divided into squared pieces, angdal is to use these pieces
to reconstruct the original image. It is easy to see thatithes combinatorial problem.
A MRFs formulation is adopted in [27], and loopy belief prgp#ion is used to solve it.
In [155] it is observed that by strictly enforcing the oneetoe correspondence between
puzzle pieces and board locations the image reconstruotisults can be significantly
improved. To ensure that these hard mutex constraints tisfiesha particle filter frame-
work (sequential Monte Carlo) is adopted. The drawback isfriethod relies in its high
computational complexity. (To be more accurate, to achevelatively good solution
quality, a large number of particles must be utilized.) Iis thvork, we also enforce the
one-to-one constraints. However, we formulate the prol@dsrfinding MWSs with mutex
constraints and solve it with the proposed algorithm. Alifioimage jigsaw puzzle seems
not to be very practical by itself, it is shown to be a very efifee framework in image

segmentation [24] and scene labeling [110].

Video object segmentation Given an unannotated video, the task is to automatically i-
dentify the primary object, and segment that object out ergframe. Unsupervised video
object segmentation is important for many potential agpions, such as activity recogni-
tion and video retrieval. Existing methods explore tragkaf regions or keypoints over
time [19, 21, 114] or perform low-level grouping of pixel®in all frames using appear-
ance and motions cues [61, 56]. However, as pointed out i)y fiése methods lack an
explicit notion ofwhat a foreground object should look like video. In [147], an object

cosegmentaiton problem in a set of static images are solvedlbcting one region propos-
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al per image in a way that their coherence is maximized. Bsdombinatorial problem,
and A* algorithm is utilized in [147]. However, due to the complgxf A*, it can only
solve small scale problems. To address the video objectesaigwion problem, we use the
similar idea as in [145]. However, in addition to the conistrahat one region proposal
is selected each image, we also enforce the constraintedidiom the motion coherence.
Finally, we formulate the problem as finding MWS that satibigse mutex constraints and
solve it with the proposed algorithm. As the solution we ob&xactly one foreground
object in all frames simultaneously.

Video object segmentation We propose an approach for view-invariant object detactio
directly in 3D with following properties: (i) The detectiasibased on matching of 3D con-
tours to 3D object models. (ii) The matching is constrainét gualitative spatial relations
such as above/below, left/right, and front/back. (iii) hder to ensure that any matching so-
lution satisfies these constraints, we formulate the magcproblem as finding maximum
weight subgraphs with hard constraints, and utilize a nmfelence framework to solve
this problem. Given a single view of an RGB-D camera, we ob8® contours by "back
projecting” 2D contours extracted in the depth map. As oyreexnental results demon-
strate, the proposed approach significantly outperformsthte-of-the-art 2D approaches,
in particular, latent SVM object detector, as well as relygmtoposed approaches for object

detection in RGB-D data.

2.3 Algorithm Description

The proposed algorithm has similar properties to IPFP [B4hat it iteratively seeks the
solution between discrete domain and continuous domaitevdeeping the score of the
target function climbing. It does not guarantee that theaioletd solution is discrete, al-
though it always targets a discrete solution, and the finadicoous solution is most often

discrete in practice. However, our algorithm differs froRFP in three key aspects: (Al)

48



Our final problem formulation (2.5) is very different fromHP. In particular, we relax the
mutex constraints at the beginning and move it to the tangettion as a penalty term,
while the linear constraints are enforced directly in IPRAR2) Consequently, the proposed
algorithm targets a discrete solution in a different waynthlFP. IPFP handles the lin-
ear equality constraints explicitly when finding the disersolution in each iteration, e.g.,
Hungarian algorithm is used in the case of one-to-one caingst Consequently, each
intermediate discrete solution must satisfy all the camsts. This significantly narrows
the search space, but with a serious danger of losing betiigiians. In contrast we do
not force the intermediate solutions to satisfy the com#isawhich often leads to better
solutions as compared to IPFP. In each iteration step wedtiize a current continuous
solution by performing a local first-order Taylor approxtma, which results in a simple
discretization step introduced in [20]. While the goal adittalgorithm is maximization of
a linear function, our goal is maximization of a quadratiedtion. (A3) In order to gain ex-
pressive power, we allow for mutex constraints expressedgoadratic forme” Mz = 0
as opposed to linear equality form. As we elaborate abowenthtex constraints in the
relaxed formulation are stronger than both linear equality inequality constraints.

Aweighted graplt- is defined agr = (V, A), whereV' = {v,...,v,}is the vertex set,
n is the number of vertices, antlis a symmetria: x n affinity matrix with all nonnegative
entries, i.e.A;; > O0foralli,j =1,...,n.

In the remainder of this sectiof(x) = xT1¥x denotes the objective function in (2.5),
wherelV is a symmetric matrix.

The proposed algorithm visits a sequence of continuous@in) € [0,1]"}i=12,....
We assume that the initial assignmepy, satisfies the mutex constraints, ixgq)” My o) =

0. This implies thatf (y)) > 0, since all entries ind are nonnegative.
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In each iteratiork, we have two steps. First, we compute the first-order Taydprax-

imation of f(y) aroundy, as

~ 2(y —yw)'W
Fy) ~ fym) + 20y = yw) Wya (2.6)

=2yWyw — f(yw)

Since the second terif(y ) in (2.6) does not depend gn the first-order Taylor approx-
imation of f(y) only depends oy Wy ), which is a linear function of. This fact allows

an easy computation ofdiscretemaximizer

X(k) = arg max yTWy(k) (2.7)
y€[0,1]"

as

(0 )s = Lo it (Wyw)i >0 2.8)
0, otherwise
In the second step of iteratidn we want to verify whether the obtainégl, can be
accepted as a valid discrete solution that incregsds the case thaf (Xu)) > f(yw))
we setyx+1) = X). Hence we prefer a discrete solution if it increases fthealue, but
if f(Xw)) < f(yw)), we estimate the local maximizer ¢fin the continuous domain by
performing line search, i.e., by maximizing one dimensidaaction h(a) = f(yw) +
a(Xwk) — yu))) over the line segment from to y (). In Section 2.6 we show that o)
obtains its maximum at defined in (2.9). We also show thak « < 1, which guarantees

that line search will not reach outside the Box1]".

~ o TW
o= — (Xa) —Yw) Wy (2.9)

(X = Yu)TW (X — YY)

Thenwe sey (i11) = Y + a(Xaw) — Yw))-
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In the above two caseg|y 1)) > f(yx)) as we will show in Proposition 1 below.

Our algorithm stops when the followirgjop conditiorholds for all coordinatesof vector

X" = Y(kt1)

if (Wx*), >0, thenx] =1
(2.10)
if (Wx*), <0, thenx; =0

We observe thatVx* = ;V f(x*). Hence(Wx*); > 0 means that the direction of the
increase off coincides with the direction oth coordinate, whilé1W'x*); < 0 means that
the direction of the increase gfis opposite to the direction ath coordinate. Therefore,
the stop condition tells us thgtx*) already has the maximum possible value for every
increase direction of. In other words, we cannot increagavithout leaving our domain
0, 1]", meaning thak* is a local maximum off over|0, 1]".

By Proposition 1 belowf (y)) is strictly increasing in each iteration. Consequently,
f(ya) > f(y@) = 0for k > 0. This fact in turn implies thatVy ) # 0. Suppose
Wyw = 0. In this casef(yx)) = yu)’ Wyw = 0, which contradictsf (y)) > 0.
Hence, the assumptiof(y)) > 0 implies that for every iteratioh > 0 the gradient off

is a nonzero vector.

2.4 Algorithm

2.5 Relation to Frank-Wolfe Algorithm

In FW and related algorithms [49, 29], after obtaini&g, with Eq. (2.8), the maximum
value of the target function along the line from to X is always computed, which
is also done in lines 8, 9 of our algorithm. However, we prefatiscrete solutior )

if it increases the target function (lines 5, 6), even if tledue of f (X)) is lower than
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Input:  Matrix W, f(y)) > 0, ande > 0
1: repeat

2. Use (2.8) tofindk) = argmaxycio 12 YWy (1)
3: if i(k) =Yk then

4. Yk+1) = X(k)

5:  elseif f(Xu)) > f(yw)) then

6: Yit1) = X

7. else

8: Use (2.9) to compute.

9 Yer) = Yk + a(Xw) — Yi)

10:  end if
11: until y (41 satisfies (2.10) of (y(x+1)) — f(yw)) <€
Output: Y(k+1)

the maximal value along the line. In contrast, FW always $ake maximal value along
the line. The preference for discrete solutions in each Btspa dramatic impact on the
obtained final solutions. We obtain discrete solutionslinegll applications and matriX”

in the target function is always indefinite, while FW and tethalgorithms cannot obtain
any reasonable solution in this case. Of course, we needdsssthat FW and related

algorithms are designed for optimizing the target functlefined with a PSD matri¥/.

2.6 Properties of the Algorithm

In this section, we are going to establish the main propeudiethe proposed algorithm.
With a symmetridV, we first show that the target functigiincreases in every iteration in
Proposition 1 below. Considerinfjis an upper bounded function, our algorithm is guar-
anteed to converge. In Proposition 2, we state the key piyppéthe proposed algorithm:
if the algorithm halts with a discrete solution, then theusioh is guaranteed to satisfy the
mutex constraints.

We begin with a simple observation thakif, = y ) in line 3, then the stop condition
(2.10) in line 11 is true. In this case the solutipn ) = X is discrete. This holds,

since thenx ) is a fixed point of the operator in Eq. (2.8), and consequegittbatisfies
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condition (2.10).

Proposition 1. f increases in every iteration, i.e., yf;) does not satisfy (2.10), then

f(Y(k+1)) > f(y(k)) for all k.

Proof. In iterationk of the algorithm, iff (X)) > f(yu)) then the next point visited by
algorithm isy 1) = Xq). In this case, the implication is trivially true, singey 1)) =
fXao) > flyw)-

If f(Xa)) < f(yw)), we perform line search by,+1) = Xa + a(Xw) — yx))- Here,
according to the algorithm, we have two conditions validdbefwve execute the line search

step:Xw) # yu) andf(Xu)) < f(yw))- Since

fyws) = fyw +aXa —yw))
= flymw) + 20(Xao — y)) Wy (k)

+ 02 (Rag — yw) W (Xa — )

we obtain

F¥ o) — F(yw) = h(e) = da® + 2ca (2.11)

by settinge = (X — ()" Wy andd = (Xag — y)' W (Xao — yir)-

h(«) is a quadratic function in, andh/(«) = 2(da + ¢). Henceh(a) can only have its
maximum atw = — .

We will show below that: > 0 andd < 0 and that0 < —£ < 1. This implies that
a = —% isindeed the maximum df(«). Sincea > 0 and2c + ad = ¢ > 0, we obtain

and that> 0:

h(a) = f(yus+n) — f(y@) = a(da +2¢) >0 (2.12)
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Therefore f(y(+1)) > f(yw)-

In the remainder of the proof we first show that (Xa — y )" Wy > 0. Since
Wy &) is @a nonzero vector due to the initializationyif,) does not satisfy condition (2.10),
there either exist$ such that(Wy ), > 0 and(y)); < 1 or there exists such that
(Wy@w)i <0and(yw)): > 0.

For everyi for which (Wyuy); > 0 and (yx)); < 1 hold, we have(Xy) —
Yi))iWyam )i > 0, since(Xuy — ym): > 0in this case.

We arrive at the same conclusionWy,); < 0 and(y@)); > 0 hold, since we have
(X)) — Y@))i < 0, and therefore(Xu — yw))i(Wyw)): > 0. Since all other coordinates
of vectoriWy ,, are zero, we obtain that= (X — yx))" Wyw) > 0.

In order to show that < 0, we observe

d=(Xag — Y)W Ea — Yo

= f(Ra) = 2% Wyw + f(yw)

(2.13)

Since we havegf (Xa)) < f(y), we obtaind < f(yw)) — 2% Wyw + fyw) = —2¢ <
0.

Sincec > 0 andd < 0, thusa = —5 > 0. In addition, we haver = —< < 1, because
ct+d= Ka —ym) Wk < f(yw) — Y Wxa < 0, which guarantees the line
search will not reach outside the cube. Thus, we have justisiioatc > 0, d < 0, and

O<a=-%5<1. O

alo

Proposition 2. If the algorithm halts with a discrete solutiorf = y ), i.e., the stop
condition (2.10) applies ta* andx* is discrete, thex* satisfies the mutex constraints,

e, (x)TMx* = 0.

Proof. Suppose that the proposition is not true, i.e., there existth x* = 1 that violates

a mutex constraint. Thefx*)" Mx* > 1. Becausgx*)? Ax* < 1, we obtainf(x*) =
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(x*)TAx* — (x*)"Mx* < 0. A contradiction, since by Proposition f(x*) > f(y()) >

0. U

Complexity: In each iteration, the algorithm in Section 2.4 has comiptex O(w) where
w is the number of nonzero entries in mathix. Complexity is determined by line 8, in
which several vector multiplications with’ is computed following Eq 2.9. As illustrated
in Section 2.7)V is very sparse in many applications. Depending on the pnobie our

experimental results the number of iterations was betw&eamil 130.

2.7 Experimental Evaluation

A large number of machine learning and computer vision tasksbe expressed as con-
strained MWSs. First, we consider two challenging tasksckvare known as hard combi-
natorial optimization problems, matching salient poil@sc 2.8) and solving image jigsaw
puzzle (Sec 2.9). We demonstrate that the proposed algosipnificantly outperforms
state-of-the-art methods on both tasks. As stated in thedattion, the main reason is the
presence of global mutex constraints. In particular, wevidea clear evidence that LBP,
QPBO, QPBOP +I cannot handle the resulting non-submoderiars.

In these two experiments, we use the same initializatiomidhe compared methods.
Particularly, for IPFP and our method, the sarpés used. For LBP, QPBO, QPBOP +I, we
use the same initializatiar, by performing the operation called "fixing a node” following
[117], which essentially manipulates the graph througigasgsg sufficiently large constant
to those nodes whose corresponding elemeng iis 1.

Furthermore, in Sec 2.10, we demonstrate how MWSs can betosadve the video
object segmentation problem effectively, and how globalexgonstraints (GMCs) can be
used to significantly improve the quality of the solution.

Finally, in Sec 2.12, we conduct a random matrix test to exarhiow often the pro-

posed algorithm converges to a discrete solution undeemerconditions.
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In all of our experiments is set to bele — 6.

2.8 Matching of Salient Points on Faces

We use the face dataset from [97], e.g., see Fig. 2.1, whickists of 107 face images of 11
different people. There are scale and strong pose vargahetween different faces. Each
face is represented by 7 or less salient points located oey® nose and mouth. Some
salient points are missing in some images due to self oariusie match each image to
all other images. Thus, there am@r x 106 face pairs and9980 points correspondences in
total.

Given a query point se® on one face witm,, points and point sep with n, points on
another face, we aim to find the assignments of pairmts’ to i’ € @. In our framework,
each assignmelrtt, i) between two points is represented by a node in the correspoerd
graph. Therefore, the best configuration of matchings istitied as a constrained maxi-
mum weight subgraph.

The weightA(u, u) of vertexu = (i,4") (unary potential) encodes the similarity be-
tween local appearance (SIFT) featurgsnd f;; of points: and’ in two images. The
weight of the edge betweem = (i,7/) andv = (j, ;') (binary potential) encodes the
pairwise distance consistency between two assignméiitsy) = eXp(—W),
whered(i, 7) is the Euclidean distance betweeandj in one image, and(, ;') is the
Euclidean distance betweérand;’ in the other imagec, controls the sensitivity to vari-
ations of geometric deformation.

In order to define mutex constraints, we make a few simplerghsens. We observe
that some qualitative geometric relations between fagerdggloints are usually preserved,
even under some serious perspective distortion. For exarvpb corner points of left eye
are always on the left of the right eye points. Similarly,gsion the nose are always

above the mouth points. Hence if two assignments; (i,7') andv = (3, '), violate
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the qualitative geometric constraints, themndv should not appear in the same MWS.

Formally, we can define the left-right mutex constraint as

L, if |2x_]x| >9,|’i;—j;,| >0
Ml/r<u7v) = and ('Lq: _]x)(llm _]:;c) < 0

0, otherwise

wherei,, j., i, andj. are the x-coordinates of pointsj, i, j'. Threshold) excludes points
whose x-coordinates are too close to each other. In othaitsmdcontrols the amount of
allowable deformation in the horizontal direction. Simlyawe can define the above-below
constraints\/, ;. HencelM;,, vV M, represents qualitative geometric constraints (QC).

To enforce the standard one-to-one constraints (1-1) intahimey problem, we define
the mutex relation between two nodes= (i,i') andv = (j,7") asM;_1(u,v) = 1 if
(t=jandi # j) or (i # j ands = j'), andM;_;(u,v) = 0 otherwise. The mutex matrix
is then defined as logical av/ = M,_; vV M;;, V M,;,. We observe that both matrices
M,_, and M, V M, represent global mutex constraints. By settifig= A — M, the
problem of the face salient point matching is expressed@sgm (2.3), and the proposed
algorithm (Sec. 2.4) is used to solve it.

Note that, if the only constraints used are 1-1 constraifhisn xTA/x = 0 in our

method is equivalent tésx = 1in [84]. xTMx = 0 implies>. _.z; < 1, whereC is a

z,€C
maximal set of nodes such that every two node§ are mutually exclusive. Since there
are no other constraints, always one vertex fioms selected in order to increasé Ax,
which implies thatzmiec x; = 1.

We observe that the qualitative geometric constraints @t formulated in a linear
equality form, which implies that they cannot be utilizedIB¥P. Therefore, we ran two
versions of our algorithm, one without QC constraints, baly with 1-1 constraints, called

Alg. w/o QC, in order to directly compare to IPFP, and one viith and QC constraints,

called Alg., in order to illustrate the performance gainaabéd by the modeling flexibility
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Figure 2.1: Example of face salient points matching. The fog/ is obtained by our
method without qualitative constraints (QC). The secondisoobtained with QC.

of mutex constraints in the quadratic form. An example tloatpares their results is shown
in Fig. 2.1.

The results are reported in Table 2.1 as the percentage m@ctanatching pairs (i.e.,
recall), the value of the target functigh(the higher the better), and the running time in
seconds. With the same 1-1 constraints, our method outpesftPFP by24%. With 1-1
and QC our method increases the performancé’byand outperforms other state-of-the-
art methods: [97], which is directly focused on modelingmetric constraints under view
point change for point matching, and [91], which solves)®ri a simplex, i.e., computes
MWCs with maximal average weights. The results of these twthiods are quoted from
[91]. The two methods ([97] and [91]) optimize differentgat functions, hence we do
not report their target function value. Note that, with ofihl constraints, the size of the
subgraph is larger than with qualitative constraints (Q@grefore, thef-values can be

larger than the values of the last four approaches. LBP, QRBEEBOP + | maximize

http://www.robots.ox.ac.uk/ ~ojw/files/imrender_v2.4.zip
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method recall | f-value| time
[97] 95.7 - -
[91] 97.1 - -
IPFP [84] 67.1 | 26.92 | 0.03s
Our Alg. w/o QC| 91.3 | 27.54 | 0.02s

LBP 80.6 | 24.81 | 0.46s
QPBO 147 | 0.21 | 0.01s
QPBOP + | 64.8 | 19.97 | 0.23s
Our Alg. 97.3 | 26.88 | 0.02s
CPLEX 97.4 | 26.89 | 7.20s

Table 2.1: Results on face dataset [97].

the same energy function as our Alg. with 1-1 and QC (to beigpeethey minimize the
negative of our target functiof).

We observe that our method significantly outperforms LBFBQPQPBOP + | in both
recall and the value of the target functign Our running time is only slightly worse than
QPBO. However, QPBO assigned values to dhlyr% of variables, which also explains
why its scores are extremely low. In contrast, our method? laBd QPBOP + I, assigned
values to all variables.

In addition, we compare to CPLEX with exact the same quadtatget function and
constraints. IBM CPLEX (v12.4) which is able to solve mixeteger quadratic (linear)
programming problems using a branch-and-bound algority&b), a well-known method
aiming for a global optimal solution for non-convex probkenthe fact that both the recall
and thef-value of our algorithm are nearly identical to those of CRLdemonstrates that
the proposed algorithm can get as close to globally optiroitions as CPLEX. While
CPLEX takes 7.20s on average to solve one problem, it takes @or our method, which
is 360 times faster. This shows that our algorithm can saal® larger problems that are
prohibitive for CPLEX if they can be formulated as MWS wittoghl mutex constraints,

for example, the image jigsaw puzzle problem consideredemext section.
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2.9 Solving image jigsaw puzzle

While the problem considered in Section 2.8 is a small probige move to a significantly
larger problem now, which is the problem of solving image§gy puzzles. It is defined
as reconstructing an image from a set of square and nonapyenlg image patches [27].
Since the original image is not given, this problem is vergllgnging, even for humans,
e.g., see Fig. 2.2.

Givent different puzzle piece§, . .., pr) andk board locationgly, . . ., ), our goal
is to assign puzzle pieces to board locations. Each posafidiggnment is a node in a
correspondence graph, and a solution of the jigsaw puzalggm is identified as a MWS
that satisfies 1-1 mutex constraints.

Formally, each node in the association grapf¥ is defined asp;, [,,), which means
puzzle piece; is assigned to locatiok),. Therefore, if there ark locations and: different
puzzle pieces, the total number of nodes in graph isk. Two nodesy = (p;, l,,) and
u = (p;,l,) are adjacent if and only if,, and!,, are adjacent board locations. For each
locationli,,,, we define its 4-neighbors (if they exist): left, right, tdqmttom, as its adjacent
locations. If nodes: andv are not adjacent, we seit(v, u) = 0. We also ensure that the
affinity matrix A has positive values when nodesindv are adjacent. We observe that the
number of nonzero entries ia is not larger thantk?, since each of: board locations is
adjacent to at most 4 other locations, each of which can bgres$k puzzle pieces. In
other words, each df graph nodes has no more théinadjacent nodes. This implies the
k? x k?* affinity matrix A is sparse. In order to compute the affinity value in mattifor a
pair of adjacent nodes, we follow exactly the same compnats in [27]. In fact we use
the code released by the authors of this paper to computdfifieyanatrix A.

Of course, the main constraint required for a good solutfdh@image jigsaw puzzle
problem is 1-1 correspondence, i.e., 1) a puzzle piece dhmtlbe assigned to multiple
locations, and 2) multiple puzzle pieces should not assigm¢he same location. The 1-1

mutex matrix) is defined as in Sec. 2.8. We again recall thatepresents global mutex
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method DC | f-value | time
LBP 0.05| 50.565 | 70.3s
QPBO | 0.02| 0.001 | 1.90s
QPBOP +1| 0.04 | 12.824 | 45.67s
IPFP [84] | 0.83 | 148.705| 1.52s
Our Alg. | 0.92| 157.298| 0.32s

Table 2.2: Image Jigsaw Puzzle Results on MIT dataset withedéhes [27].

constraints. By setting)’ = A — M, the problem of the image jigsaw puzzle is expressed
as problem (2.3), and the proposed algorithm (Sec. 2.4)d tessolve it.

To evaluate the performance of solution for puzzle recotibn, we usd®irect Com-
parison (DC) following [27]. The inferred reconstruction result is coanged directly to the
ground-truth. DC is defined as the ratio of the correctly @thpuzzle pieces to the total
number of locations.

We initialized all methods with one anchor patch. We assighe correct image patch
to the top left corner of puzzle image. For all methods we wsexdttly the same pairwise
potentials, which were computed by the code released byutihees of [27]. The diagonal
of matrix A is set to zero, meaning that there is no prior on the expentade layout, i.e.,
no knowledge of either the target image or its image classssraed. Since 1-1 constraints
can be expressed as linear constraints, we ran IPFP withe#ae same mutex constraints
as our algorithm. Also the same 1-1 constraints are usedB&y QPBO, and QPBOP + I,
and CPLEX. Hence all methods optimize the same target fomcti

The results on the MIT dataset [27] with 48 puzzle pieces laogva in Table 2.2. The
proposed algorithm significantly outperforms the otherhuds in both the quality of the
solution (DC) and the values of the target function. Morepitas at least few orders of
magnitude faster than the other algorithms. QPBO was onéytalassign values to a very
small percentage of variables, ordy)8% of variables received values. The extremely low
values of LBP, QPBO, and QPBOP + | clearly demonstrate tlustetimethods are unable

to handle global mutex constraints even on moderate sizdens.
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method DC | f-value | time

LBP 0.03| 124.669| 1518.1s
QPBO 0.01| 0.001 21.7s
QPBOP +1| 0.02| 27.263 | 544.8s
IPFP [84] | 0.71| 266.627| 70.2s
Our Alg. | 0.91| 326.347| 10.4s

Table 2.3: Image Jigsaw Puzzle Results on MIT dataset wihpHiches [27].

Some example reconstructions are shown in Fig. 2.2. Thé Blgigares represent im-
age puzzle locations that were assigned no label (puzzte pi&hey demonstrate another
difficulty of LBP and QPBOP+I for problems with global mutegnstraints. Although
LBP and QPBOP+I assign labels to all variables, represgmi#irs (puzzle patch, puzzle
location), they do not select all valid puzzle locationsheit solutions, i.e., they assign
value 0 to all pairs that involve the same puzzle locatiotience this location results in a
black patch at,. Since not all patches are assigned, there exists at leagtaiohp;, such
that adding the paifp;, [y) to the solution would decrease the energy function (or equiv
alently increase th¢-value), since no mutex constraint is violated then. Thes tdearly
demonstrates that LBP and QPBOP+I are unable to reach glaptimal solutions, which
severely impairs the solutions of QPBOP+I in our experiment

Although an image jigsaw puzzle with 48 puzzle pieces is atikadly small puzzle,
CPLEX was not able to complete it (we ran CPLEX on a PC with B2GPU, it did not
finish the computation for reconstructing one image in 12rfpulro evaluate the scale-up
ability to larger problems, we applied the same algorithsygharable 2.2 to solve larger
puzzles with 108 puzzle pieces. The results are presenikabie 2.3.

For 108 puzzle pieces, our method achieves perfect recmtisin, i.e.,100% accuracy
in direct comparison oinl out of20 testimages from [27]. On average, our algorithm needs
128 iterations to converge. All experiments were ran on aaquae 3.4Ghz PC. IPFP and
our algorithm are implemented in Matlab. LBP, QPBO, QPBOPatd implemented in

C++.
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2.10 Video Object Segmentation

In this section, we address the problem of video object segatien, which is to automat-
ically identify the primary object and segment the objedtialevery frame. An example
is shown in Fig 2.3. The selection of object region candislatenultaneously in all frames,
is formulated as finding a maximum weight subgraph in a weightgion graph. The
selected regions are expected to have high objectness @swgy potential) as well as
share similar appearance (binary potential). Since bo#ryuand binary potentials are
unreliable, we introduce two types of mutex (mutual exauo$iconstraints on regions in
the same subgraphs: intra-frame and inter-frame congdraddoth types of constraints are
expressed in a single quadratic form, and algorithm intceduin Sec 2.3 is applied to
compute the maximal weight subgraphs. that satisfy thetcainss.

In Sections 2.10, 2.10, and 2.10, we introduce the edge wiigithe region graph, the
mutex constraints on regions, and express region seleatidimding constrained MWSs,
respectively. In Section 2.10, we utilize the regions delgéin Section 2.10 to achieve a
more accurate pixel-level foreground object segmentatidre experimental comparison

to state-of-the-art methods is presented in Section 3.6.

Region Graph Construction

Our goal is to segment a foreground object in video withoytrandel of the target. Since
we assume no prior knowledge on the size, location, shappp@asance of the target
object, we first produce a bag of object "proposals” in eaemt using [39]. The model
used in [39] is learned for a generic object from BerkeleyrBegtation data, and therefore,
it is category independent. Each proposal is a region inrttagje, an example is shown in
Fig 2.4.
For each frame in the video, we retrieseregions. (We sefy = 300 in all experi-

ments.) Given a video consisting of frames, we havéd x N regions in total. Our goal

is to discover a small subset of regions that contain the $areground object across all
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the frames. We construct a weighted gré&phk- (1, A), in which each node corresponds to
one of theK x N regions, and4 is its adjacency matrix. The weighit(u, «) of the node

u represents the "objectness” of the regigiwhile the weightA(u, v) between two nodes
u andv represents the similarity between the two regions. Botluafmed below.

We follow the computation of the region "objectness” in [78pecifically, for a region

A(u,u) = ob(u) = sob(u) + mob(u), (2.14)

combines its static intra-frame objectness sco¥g¢«) and motion inter-frame objectness
scoremob(u). The static scorgob(u) is computed using [39]. It reflects the confidence
that a region contains a generic object. Several static axgessed to compute this score,
such as the probability of a surrounding occlusion boundang color differences with
nearby pixels.

In [76], the motion objectnessob(u) is introduced to complement to the static score
in the case of videos. It measures the confidence that regionresponds to a coherently
moving object in the video. Optical flow histograms are coteddor the region: and the

pixelsw around it within a loosely fit bounding box. The score is coteglas:
mOb(u) =1- eXp(_X?low(LhH))? (215)

Whel’exfclow(u,ﬂ) is the y2-distance betweenh,-normalized optical flow histograms. The
motion score essentially describes how the motion of thenediffers from its closest
surrounding regions. Both static score and motion scoesi@malized using the distri-
butions of scores across all regions in the video.

Each region is also described using its Lab color histograime similarity between

two regionsu andv is computed as:

A, 0) = 0D~ ot (1,0). (2.16)
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where?, (u,v) is the xy*-distance between unnormalized color histograms ahd v,
and() denotes the mean of thg/-distance among all the regions. Consequently, if two

regions have similar color and similar size, their affingynigh.

Mutex Constraints between Regions

One of the key contributions of the proposed work to videorsagtation lies in the utiliza-
tion of hard, mutex (short for mutual exclusion) constrainthey specify which regions
cannot be simultaneously selected as part of the segmantadlution. They allow us to
eliminate unreasonable configurations of regions, whitlemwtise have large joint poten-
tials, since both the unarng(u,«) and binary potentialsi(u, v) are unreliable. Further-
more, the utilized inference framework allows us to enfahze the solutions satisfy all the
constraints. The proposed mutex constraints are basecdalkbwing two insights.
Intra-frame mutex constraint: We assume that a true object should appeaveryframe,
and within each frame, onlgneproposal region should be selected. However, the object
may be partially occluded or self occluded. This constramlies that only one objec-

t regions candidate produced by [39] is selected for eaaghdraThe same constraint is
also utilized in the problem of object co-segmentation fistatic images [147]. The fact
that exactly one object region candidate is selected in &aadhe is essential for a good
selection of candidates mainly for two reasons: 1) Sinceymegions in the same frame
overlap, their affinities are usually much higher than aifsi of true object regions in
different frames due to inter-frame variations, such asrihation change. Hence, by ex-
cluding affinities of regions from the same frame from coasadion in a single subgraph,
the comparison of affinities from different frames becomesennformative. 2) Since we
guarantee to select one region weryframe, the region selected can be further used as
location prior.

Inter-frame proximity constraint: two regions selected in two neighboring frames should

be not spatially far away from each other, since the changeedbcation of the same ob-
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ject in adjacent frames should be smooth.
We encode these two constraints through a binary mutexxnetefined over all vertices

of graphG as

1, if uwandv are in the same frame

or (if w andv are in adjacent frames
M(u,v) = (2.17)
andd(C(u),C(v)) > 1)

0, otherwise

\

whereC(u) andC'(v) are the centroid of two regions, amds their Euclidean distance
in pixels. 7 reflects the maximum spatial displacement allowed betweandv. We set

7 = 100 for all the experiments in order to allow for fast moving atige

Finding Objects as Constrained MWSs

We formulate a region selection problem as finding constéciimaximum weight sub-
graphs in graph. For the affinity matri®, the diagonal elements (unary potentials) are
objectness measure, with off-diagonal elements (pairpigentials) are object proposals
coherence measure. For the mutex mabix if M (i,j) = 1 then the two vertices, j
cannot belong to the same maximum subgraph(i,i) = 0 for all verticesi. In other
words, mutex represents incompatible vertices that tweatlgroposals cannot be selected
together.

We use the algorithm introduced in Sec 2.3 to solve the MW8blpm with mutex
constraints. Since the maximal subgraph seeking algonitlenuse converges to a local
optimum, multiple initializations are required to promsdetter performance. We rank
the regions in grapltz according to their unary scoré(u, ), and find the topt best
regions. Each time, we use one regioselected from those top-best regions to initialize
the maximal weight subgraph seeking algorithm. We denaeénitialization asx ), then
we set(x)), = 1 and(x(q); = 0 for all i # u. Starting from thex,, we obtain a
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maximal subgraph indicated by a binary vector x* is a local maximizer ok’ Ax while
satisfyingx*” Mx* = 0.

Therefore, we obtaid, maximal subgraphs in total. We select the best one according
tox” Ax. We find the selected regions as one entries in the indicatovof this solution.
Since the solution satisfies the constraimtslefined in Sec 2.10, we select only one region
in each frame, and guarantee every two regions selectedjnbaging frames are relatively
close to each other. These regions reflect the rough appeaasa location of the object
in each frame.

In all video segmentation experiments, the obtained swigtiare discrete, and thus,
they satisfy all mutex constraints. We also observe thdt bwtricesA andW are indefi-

nite for all test videos.

Foreground Object Segmentation

The obtained segmentation of the object in video in form ddécded regions is not very
precise. In particular, the segmentation error is lowardated by the object region can-
didates produced by [39]. The error may due to the inaccunhdiye original superpixel
extraction or merging. Therefore, we follow the strategutilizing the selected regions to
learn the appearance model for both foreground and backdraug., [76, 147]. In addi-
tion, we also utilize the location priors. It is particuladasy in our framework, since we
have exactly one object region in each frame. Finally, weGusdCut [116] to infer a more
accurate pixel-level object segmentation. For efficieratper than labeling pixels in three
consecutive frames at once by constructing a space-tingh@sin [76], we simply run
the GrabCut [116] for each frame separately. This is possibbur framework, since the
data term, defined below, which is obtained by our constcai®/Ss is very informative.
We denote the pixels in each frame 8s= {pi,...,p,}, and their labelsy =

{71,---,7%} 7 € {0,1} with O for background and 1 for foreground. Then the energy
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function for minimization is:

E() =Y _Di(v)+36 Y Vi;(v) (2.18)
€S i,jEN
whereN consists of 8 spatially neighboring pixels.
For the smoothness tertn, we use the standard contrast-dependent function defined in
[116], which favors assigning the same label to neighbopimgls that have similar color.

Similar to [76], our data tern; (y;) defines the cost of labeling pixeWwith label~; as:

Di(y) = —log(1 — P{(%) - Pi(7) (2.19)

where Pf(v;) is the probability of labeling pixel with label~; based on the appearance
(color) cues P! (v;) is the probability based on location prior. Both are definelbw.

To computeP?(~;), we first estimate two Gaussian Mixture Models (GMM) in RGB
color space to model the foreground (fg) and background dpbgearance. Since the col-
or may vary significantly over the video frames, we need tonléhe color models over
all video frames, which is an easy task since we have the blggons inferred as the
constrained MWSs. The foreground GMM modet”" is learned from pixels in the re-
gions selected in the constrained MWSs computation. Thiegspaand GMM modebg'o"
is learned from pixels contained in the complement of setécegions in all the frames.

Then given these two color distributiofige*” andbg°'e", we define for each pixel;:

P(pi| fg=or), if =1
Pe(y) = (2.20)

P(pilbge'r), if ;=0

For the computation of location probabiliy/ (+;), we utilize the object regions selected
in the constrained MWSs. Given the selected region (we halyeame region per frame),

we first compute its distance transform. l&p,) denotes the distance of pixg] to the
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selected object region. We compute

Pl(’y) _ exp(—@), if Vi = 1 (2 21)
Z 1 —exp(—422) i 5; =0

(e

where o indicates the confidence of the location prior, the larger,ishe lower is the
confidence. We comput&(v;) - P!(;) as the probability of foregroundy{= 1) and
backgroundq; = 0). As illustrated in Fig 2.5(b), the color probability i®tparticularly
informative in a global scale of the whole frame, and the miaiarmation comes from
the probably map of the location shown in Fig. 2.5(c). Howetlee color information is
informative if constrained by the location probability dastrated by the joint probability
shown in Fig 2.5(d).

After obtaining the data term» and smoothness terin, we use the popular method in
[18] to find the optimalf that minimizes the energy function (2.18), and obtain thalfin

foreground objects in each video frame.

Segmentation Results

We first examine our method on the SegTrack dataset [141}eTdre six videosionkey-
dog, bird, girl, birdfall, parachutte, pengu)n For each video, a pixel-level segmentation
ground-truth is provided for the primary foreground objéelttis enables a statistical eval-
uation of our method. Object segmentation in these vided&@remely challenging due
to several facts, such that the primary object are with |sifwggpe deformation and fore-
ground and background color has overlap. Same as [76], wetevaluate our method
on penguinvideo since only a single penguin is labeled as the foregtaloject among a
group of penguins.

Given a video, we first produce [39]0 object candidate regions per frame. We use
Lab space histograms to describe color for each region. Eabhchannel has 20 bins.
For the color model of the foreground and background, we 8B Bolor space, and two
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GMMs with 5 component are learned. Same as [76], we descriti®@musing optical flow
histograms computed from [89] with 60 bins per x and y di@ttiThe region’s bounding
box is dilated by 30 pixels when computing the backgrountbgimms. To initialize the
maximal weight subgraph computation, each time we seleetfimm the best0 object
regions candidates accordingAdu, v) = ob(u). In the graph cut energy function (2.18),
0 = 1in all our experiments.

Due to the efficiency of the proposed constrained MWSs dlgori on a PC with
3.4Ghz and 8GB RAM, it only takes 2 minutes to select regionsdnstrained MWSs
with 50 different initializations. The binary graph cut angle frame takes about 0.1s in
average.

We compare the results with three state-of-the art methogls [141] and [28]. The
method in [76] and our method are unsupervised. They autoatigitdiscover the primary
object in image as well as segment the object out. The metihddg1] and [28] require
minor supervision with the object labeled in first frame. Tésults are shown in Table 2.4.
Our method has the lowest average per frame segmentatmmoeer the 5 test videos. It
also achieves the lowest segmentation error on 3 out of ®8ideéompared to [76], which
also does not require manual object initialization, we eehibetter results on 4 out of 5
videos. Some segmentation results are shown in Fig. 3.4.

The results in Table 2.4 report the average per-frame, pixet rate computed in com-

parison to the ground-truth segmentation. Specially,coisiputed as [141]:

error = w (2.22)

where f is the label for every pixel in a given video, GT is the groundah label, andF
is the total number of frames in a given video. Since all vglae roughly of the same
size, the average error rate over the 5 videos is computedeaage over all frames in all

videos, i.e., we treat all 5 videos as a single video and af2032).
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| Video (No. frames) Ours| [76] | [141] | [28] |
birdfall (30) 189 | 288 | 252 | 454
cheetah (29) 806 | 905 | 1142 | 1217
girl (21) 1698 | 1785| 1304 | 1755
monkeydog (71) | 472 | 521 | 563 | 683
parachute (51) | 221 | 201 | 235 | 502
Average 542 | 592 | 594 | 791
Manual seg.: No No | Yes | Yes

Table 2.4: Segmentation error as measured by the averageenwhincorrect pixels per
frame. Lower values are better.

| | Ours| constrained MW§ Lower bound|

birdfall 189 311 295
cheetah | 806 1258 700
girl 1698 3063 2973
monkeydog 472 497 493
parachute | 221 803 680

Table 2.5: Segmentation error comparison. We compare adue @noposed method (Ours)
to the region segmentation results obtained by the regiectsen as constrained MWSSs.
The lower bound error is the lowest possible error of regfmasiuced by [39].

As we mentioned above, even without the pixel-based obgmingntation described
in Secion 2.10, the object regions selected by constrain&sslin Section 2.10 alone can
be regarded as the segmentation result. In Table 2.5, wet rieapixel error of the con-
strained MWSs regions segmentation results, althoughawisr-bounded by the accuracy
of the region candidates produced by [39]. The lower-bourar & computed as the error
of the region candidate with the lowest error as compareldagtound-truth pixels. This
reflect the lowest segmentation pixel error we could achigvenly selecting regions from
computing the constrained MWSs.

We can see that, for videdsrdfall, monkeydogthe results are very good merely us-
ing regions selected by constrained MWSs. Moreover, wighetkception otheetahthe
pixel error is rather close to the lower bound. This demateg that the proposed region

selection scheme as constrained MWSs is a powerful toolifl@ossegmentation.
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| | constrained MW§ w/o constraints

birdfall 311 589
cheetah 1258 1772
girl 3063 3742
monkeydog 497 2024
parachute 803 883

Table 2.6: Segmentation error comparison of the consuldf&/Ss optimization with and
without the mutex constraints.

The proposed algorithm for constrained MWSs computatiowemged after 207 itera-
tions on average. Moreover, for all videos, the proposedrdlgn converged to a discrete
solution. This is extremely important, since it impliestttiee mutex constraints are satis-
fied.

As shown in Table 2.6, the segmentation error increasesfisamtly if inter-frame
proximity mutex constraints, which express spatial coheygare not taken as input to the
constrained MWS optimization. We also provide a visuakiitation of the importance of
this mutex constraints in Fig. 2.7. We compare the trajéesoof the constrained MWSs
region centroids computed with and without this mutex c@msts. They are shown over-
laid over the first video frame. We can see that with the cairds, the trajectory of the
centroid is very smooth, and the selected regions are alfwaysing on the primary object,
i.e., the monkey in the example video. This shows that theemcnstraints significantly
increase the robustness of the constrained MWSs optimizaiThey allow us to elimi-
nate unreasonable region selection hypotheses, which fiegn unreliable region affinity
relations, and consequently, play a critical role in séhgotorrect object regions.

We also examine our method on two videasNa KimandWaterskifrom [56]. While
[56] focus on labeling every pixel in image using motion apearance cues, we auto-
matically identify the primary object, i.e., ice skater amater skier, and segment them out

in every frame. Qualitative results are shown in Fig 2.3.
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2.11 View-Invariant Object Detection by Matching 3D
Contours

Introduction

Since the beginning of computer vision, the researchers healized that 3D informa-
tion makes object detection and recognition simpler andemaipust than using 2D image
information only. In particular, contours of 3D objects bdween utilized in object recog-
nition many decades ago, e.g., [6, 92], since they offer & wwariant representation of
3D objects. Moreover, in contrast to 3D surfaces, 3D corstaifer a simpler 1D like
representation of complex shapes in 3D like chairs or othem-made objects. However,
extraction of 3D contours from single 2D images or stereogenpairs turned out to be
a challenging problem. Only due to recent progress of RGRssrs, robust extraction
of 3D contours became possible. However, we still face tloblpm of matching of 3D
contours. The main challenges are intra class object «@jang., everyday objects like
chairs come in different sizes and shapes, and occlusion.

Contour is an important cue for human to recognize objecis has been widely used
in 2D single-view object detection in [47, 128, 106]. Whit¢our has certain advantages,
such as its low computation cost and its invariance to catortaxture changes, it varies
significantly under different viewpoints. This challengesst of current state-of-the-art
shape-based detection approaches on a multi-view objéettamn task. As early com-
puter vision approaches, we address this challenge bytlgingorking with contours of
3D objects instead of their 2D projections. In our approaed,still utilize the fact that
contours of 3D objects project to 2D contours. It allows usdficient recovery of 3D
contours from 2D contours extracted from depth maps. Thi®ssible thanks to Kinect,
which is the most popular RGB-D camera. Since depth infaonatan be obtained from

a single view of a given scene, it is possible to recover 3Mpdoud representing object
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surfaces. Depth map certainly provides more informatiat ¢hsingle RGB image, and
has proved to boost the performance of object recogniticihoaks [12].

Object detection in 3D point clouds is an active researcltioghe robotic community,
e.g., seeq] for an overview. There objects are recognized by directitahing 3D point
clouds or by fitting surfaces to 3D point clouds. While suelaare appropriate models for
certain object classes, e.g., a ball, it is very hard if ingildle to model object classes like
chairs with surfaces alone. Contours appear to be a vetdeaitepresentation for RGB-D
images. We observe that contours of 3D objects project ttocos in 2D images. This in
particular means that we can obtain 3D contours by liftingko@ontours from 2D images
to 3D.

The processing flow of the proposed approach is illustratédg. 2.8. After obtaining
an RGB and depth images of a single view of a scene with Kimezfjrst run Canny edge
detector on the depth map. By linking the edge pixels, weinl2a edge fragments shown
overlaid on the depth map in Fig. 2.8(b) with different csloBince for each pixel in the
depth map we can recover the 3D point that projects to it (exteption of out of range
readings), we can "back project” each edge fragment to afs3 @oints, which we call
3D contour fragment. In Fig. 2.8(c) we see the 3D points reced form the depth map in
(b); for clarity of visualization the floor points are not stta In Fig. 2.8(d) we show the
3D contour fragments in different colors. Each 3D contoagiment is represented with a
set of 3D line segments fitted to the 3D points "back proj€ttenn the corresponding 2D
edge fragment. While one can recognize there the 3D conadure two chairs and the
stand, there are also many other contours present. Thegsegiredges of walls and the
background clutter.

After this preprocessing phase, we are ready for the prapaisgect detection. The 3D
contours that belong to two detected chairs are shown inmddyeeen in Fig. 2.8(e). All
other 3D contours are shown in cyan. The detection is olddyematching the model

chair shown in Fig. 2.8(f) to all 3D contours in (e). In our ®m we used only one
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extremely simplistic model chair, as shown in (f), in orderdemonstrate the power of
matching 3D contours. The main challenges addressed bydpesged approach are intra
class variability of 3D contours and occlusion. Occlusionl &elf-occlusion results in

missing parts of 3D contours, which makes their matchindlehging. To address these
challenges we utilize the fact that geometric relationsveetn 3D contours have more
expressive power, and consequently, are less ambiguoysacechto 2D.

We propose to solve the object detection by 3D matching prolidy finding maximal
weight subgraphs (MWSs) that satisfy mutex constraints.eRample result is shown in
Fig. 2.9. There for each of the three detected chairs, we mihkthe same color their 3D
segments and the corresponding model segments. We obkat\kéd three chairs vary in
shape and size, and all are substantially different formsmgle model chair. Moreover,
due to self-occlusion, and since some edge fragments ardetetted in the 2D depth
images, all three chairs have some missing parts. The pedpuatching approach is able
to robustly deal with these challenges. This is possibletdweir inference framework for
finding MWSs that allows us to enforce hard, mutual exclugontex) constrains. The
mutex constraint, which express qualitative spatial retet such as above/below as well
as prohibit grouping 3D contours that are too far from eabtlepieliminate the majority of
impossible matching configurations. This allows us to abtairrect detections with weak
shape similarity relations, which in turn allow us to tokera significant shape and size
variance of 3D contours representing objects in the sanygestiass. In particular, we use
only one chair exemplar in our experiments on chair detactio

We compute the MWSs on the correspondence graph composdidpafira (model
segment, 3D scene segment). As shown in Fig. 2.8(f), our pberohair is composed
of 11 line segments. If we have 200 segments in a given 3D séenexample, then the
correspondence graph has 2200 nodes. In order to detect MWM8s graph, we initialize
with one correspondence, and compute a MWS that contaimsdhiespondence, i.e., we

have 2200 initializations. Then we sort the MWSs accordmtheir weights. The three
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detected chairs in Fig. 2.9 represent MWSs with three higlhiegihts. As can be seen the
subgraphs have 8 to 10 nodes. Thus, our inference framewadpiable of finding very
small MWSs in graphs with a few thousand nodes.

In Sec. 2.11, we review related works. In Sec. 2.11, we inicedour shape repre-
sentation and matching, also how to formulate the objeclination problem as finding
maximal weight subgraph with mutex constraints. In S&,..a formal definition of max-
imal weight subgraph with mutex constraints will be giver @m algorithm we used to

solve it is described. Experiment results are shown in Sdd.. 2

Related Work

There are some recent works utilizing 3D contour infornratamperform object detections
in range images. Stiene et al. [132] proposed a detectiohodeh range images based
on silhouettes. Drost et al. [36] use a local hough-likengtscheme that uses pairs of
points as features to detect rigid 3D objects in 3D pointdfouHinterstoisser et al. [59]
proposed a multimodal template matching approach basedGBt[R data that is able to
detect objects in highly cluttered scenes.

In a very early work, Ponce et al. [111] established a 3D dbygognition framework,
where objects are collections of small (planar) patchesy, thivariants, and a description of
their 3D spatial relationship. Ferrari et al. [48] propoaadethod to compute feature tracks
densely connecting multiple model views of a single objetf135], Implicit Shape Model
[78] and [48] are combined, and activation links for tramsfe votes across views are
used to address the object detection from arbitrary viemtpoSavarese and Fei-Fei [121]
propose a compact model of an object by linking togetherrdiatic parts of the objects
from different viewpoints. Instead of recovering a full 3@ametry, parts are mutually
connected by homographic transformation in this approktdre recently, a probabilistic
approach to learning affine constraints between objecs paimtroduced in [133]. In [87],

discriminative part-based 2D detectors and generativeepesentation of the object class
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geometry which can be learned from a few synthetic 3D modelscambined. Yan et
al. [154] collect patches from viewpoint-annotated 2Drtiiag images and map them onto
an existing 3D CAD model. In [3], a 3D implicit shape model istained via sparsely
annotated 2D feature positions. Payet and Todorovic [109pgsed a shape-based 3D
object recognition method, in which a few view-dependeapgitemplates are jointly used
for detecting object occurrences and estimating their 3§epo

A recent work by Janoch et al. [64] explores different opsi@m how to utilize the
depth information from RGB-D cameras to improve the detecticcuracy of objects seen
from different viewpoints. They call Deformable Part Mod@PM) [43] applied to depth
images Depth HOG, and conclude that Depth HOG is never libtetHOG on the original
2D image. The best performing system on their dataset iseafdinombination of DPM
running on the original image with the size distribution afjigen object class, which is
modeled with a single Gaussian. We call this system DPM-SIZE

View-invariant object detection can also be addressed ®ctly using single 2D im-
ages, i.e., no 3D contour or surface reconstruction is giednprior to the detection. Re-
cent approaches of this type include [135, 87, 122]. Whilesigle-view object detection
methods can be used to addressed the task by combining fhet®of classifiers trained
for different object views, such approaches are argued tnbeeffective when there are
sufficient single-view detectors to cover all possible \peimts [135]. However, this s-
trategy requires a lot of training samples, and many indépendetectors may lead to a
substantial increase in the number of false-positivesrdiercto obtain a better multi-view
object detector, many methods made an effort to learn a geveimodel by combining
2D appearance and geometric viewpoint information [133,838. While promising re-
sults are obtained by such methods, they suffer from ambig20 local features and lack
of direct modeling of 3D viewpoint geometry.

In general graph matching frameworks [11], while local teas’ similarity (unary po-

tential) and geometric relations between them (binary mi@h are usually considered,
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very coarse qualitative geometric constraints such asedbelow, or left/right do not draw
much attention. We demonstrate in our work that using mutesitaints to enforce these
gualitative geometric constraints makes our method mdrestdo the noise, and therefore,

able to generate higher quality solutions.

Object Detection by Matching 3D Contours

In order to obtain contours of 3D objects form a given RGB-[aga, we first find edge
fragments in the depth map. They are obtained by linking quigels obtained by the
Canny edge detector to 2D curves. Then we lift each 2D edgeteat back to a 3D curve.
Let C be a single edge fragment. We first dilate it with a dilatiotina of 2 pixels. Then
we find the set of 3D point& that project to pixels in dilated'. Finally we iteratively fit
3D line segments to points ih. We run RANSAC to fit a line and identify the inlier points
and outlier points. Then we repeat this process for thearyploints until the number of
outlier points is lower than a threshold. Hence we represaci 3D curve as a set of 3D
line segments, and consequently, we represent 3D contbtamed from a given RGB-D
image as set of line segments in 3D. An example is shown inZ&{d).

Object detection in the proposed approach is formulatednaefy configurations of
line segments recovered from a given RGB-D image that arédasito the line segment
configuration of the exemplar modeling a given shape classis,Twe need to identify a
subset of 3D line segments that best matches the exemplarcdinputation is formulated
here as finding maximum weight subgraphs (MWS) in a weightetespondence graph.

We begin with definitions of pairwise similarities of lineggeents.

Similarity of 3D Vectors

We use a set of straight line segmetts= {B,E,,-- -, B, F,} to approximate object
contours in 3D, where3; is the beginning point and; is the endpoint of segme; ;.

An example is shown in Fig 2.8 (b). Since the line segmentsaeated, they are vectors
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in 3D, and from now on we treat them as vectors. For the modebcw each line segment
is represented with just one vector. In contrast, each coritee segment in 3D image is
represented by two vectors that differ by their orientation

Although we know the exact size of objects in 3D, the size gécts in the shape
shape class may still vary significantly. To obtain a siaeiiant vector representation, we

characterize eacB; E; by its angle with a reference vectodefined as

BiEi T

4<BZE17 T) = arccos(m

) € [0, 7] (2.23)

We take vector = [0, 0, 1] representing the z-axis as the reference vector. Since gidtsb
are supported by the floor, which is represented as xy-ptheregepresentation in (2.23) is
invariant to the rotation around the z-axis. This meansiivariant to object location on
the floor, under the assumption that the object is standintherfloor. To simplify the
notation, we omit the direction below when possible, and uséB; F; to represent the
angle of vectomB; E; with z-axis.

Given the above angle-based segment representation, atévie vectors as similar if
they have similar angles with the z-axis. We compute thiglanty value as

({/B;E; — /B, E;)’

o2

¢(BiEi, B]E]) = eXp(—

) (2.24)

whereo represents the tolerance of angle differences (it is sgtitoall our experiments).

Similarity of Vector Configurations

LetE = {B{E<, -, B¢ E¢ } be 3D vectors that represent an exemplar (model) of a given
shape class, and I8t= { B E;, - - -, B: E%} be 3D vectors representing the vectors of the

recovered 3D scene.
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We construct a weighted association graph- (V, A) with V' = £ x S. Hence each
node represents a correspondence (B E;, B;E?) between a model vectarand an
image vectorj. Consequently, there aré = m x n nodes in the graph.

We define now the entries of the adjacency mattixf u = v = (B{ Ef, BjEY), then
A(u,u) = Y(BfES, BSE?), which simply the similarity of the angle with z-axis of both
vectors. Given a pair of different correspondenceg v, whereu = (BfEf, B;E;) and
v = (B{E;, B/ E}), the weightA(u, v) between nodes andv represents the consistency
of the their assignments. We measure it by computing thelagiityi of the spatial con-
figuration of exemplar vectorB¢ Ef, Bi E to the configuration of the 3D scene vectors
B;E?, By E}. For this we consider new vectors that join their start goifor example, in
Fig. 2.10 vectorsB{ EY, B Ey. are the cyan lines in the model, and the new veé&tpB;
is marked with the black dashed line while the new ve@pE; is marked with the red
dashed line. The same colors are used for the corresponeatgrs in the 3D scene. The
similarity of this configuration is determined by the simita of the angles between the

corresponding dashed vectors:

A(u,v) :w(BzeBlivB]sBls) w(EzeElivE]SElS) (225)

Mutex Constraints between Contour Vectors

Compared to other graph matching frameworks, the key anguenproperty of our for-
mulation is usage of qualitative spatial constraints, sashabove/below or left/right or
front/back. For example, if for a given pair= (Bf Ef, Bj E¢) andv = (B E}, B} E}), the
model vectorB; Ey. is above vectoBy E¢, then we require the same for the corresponding
vectors in the 3D scene, i.€53; £} should be abovés? E7. By enforcing the qualitative

geometric relations in the correspondence computatiorcamesignificantly improve the
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solution quality. In particular, the matching becomes siha significant variance in shape
and size of objects form a given class.

We define a symmetric mutex relatiod C V' x V between vertices of the graph
defined in Section 2.11. It is represented with a binary matfi € {0, 1}V, If
M(u,v) = 1 then the two vertices, v cannot belong to the same maximum clique. In
other words, mutex represents incompatible vertices tratat be selected together. Since
a vertex cannot exclude itself, we seft(u, u) = 0 for all verticesu € V.

Given a pair of two vertices representing the corresporetene= (B Ef, B; E¢) and
v = (B{E;, BJE?), whereu # v, M(u,v) represents the compatibility of the the spatial
relations between vectors; £ and B £y in the model, and3; E; and B} E} in the 3D
scene. For example, 7 £ is aboveB; £} in the model and5; ¢ is below B} £ in the
scene, thel/ (u, v) = 1. One the other hand, 1 E5 is also aboveB; E}, thenM (u, v) =
0. Similarly, M (u,v) = 1 if front/back or left/right spatial relations are violated

In order to defineM without checking different cases, we project the 4 points
Bf, Ef, B, £y to vectorsBy £ and By E}; in the model and the 4 points?, E%, By, E} to
vectorsB; E and B; E} in the scene. Then we check whether the two 1D orders on the
projection lines are compatible. If yes, we 8étu, v) = 0, and if not, we seb/ (u, v) = 1.

We skip the technical details, since they only require elgamy 3D geometry and the

limited space.

Experiments

Chair is an icon object class that has gained much attention foerb#ginning of Al.
Although humans have no problem in identifying chairs, luloiilay no artificial system
is able to cope with chair detection. Chair detection is dlehging problem for most
computer vision, detection algorithms [55], consideringttthe chair shape in 2D images
varies significantly due to different viewpoints and duedsulting perspective distortion.

Moreover, chairs come in different shapes and sizes. Towerefve focus our performance
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evaluation on chair detection. We selected a stand as tlomdembject class, since it is
visually very similar to the chair in that it usually has 4 $egupporting a flat rectangular
surface on top. The main difference is that the stand doebawa any back support and
its legs are longer, e.g., see the left image in Fig. 2.11.

We collected a dataset containing 109 RGB-D images captuitbdhe Kinect sensor.
It contains a total of 213 chairs shown from many differemtwpoints and 40 stands. Our
dataset also contains other objects that may be confusbdthatirs and stands like tables
and trash cans as can be seen in Fig. 2.11. Moreover, mayt®bjecoccluded and are
shown in many different views.

In order to demonstrate that our dataset is very challengihin order to compare
to state-of-the-art object detectors, we compare the pagnce of our approach to DPM
by Felzenszwalb et al. [43] and to DPM-SIZE recently proplaseJanoch et al. in [64].
DPM-SIZE augments DPM with depth information. It utilizésetexpected object sizes
in 3D scenes to boost DPM performance. We also compare toojlgr contour based
detection method PAS by Ferrari et al. [47]. For a quantigagivaluation, we use recall-
precision curves and average precision (AP) computed asided in [40].

The detection results of chairs are summarized in Fig. 3He fgroposed approach
achieves a significantly better AP value compared to DPM arldRM-SIZE. Our AP is
nearly 30% higher than the second best performing method{SEME [64]. Moreover, the
fact that DPM-SIZE, DPM, and PAS have all very low recall clgdemonstrates that these
methods cannot cope with significant view changes and petrgpelistortions. This comes
at no surprise for DPM and PAS, since both methods are bas@® amage analysis. In
contrast, the direct matching of 3D contours in 3D allowsausvtercome the challenges of
view changes and of perspective distortion. We stress tlmaagproach does not require
any training, as opposed to the other three approaches, arahly have one extremely

simplistic chair model. Moreover, our chair model is notragted from the test dataset.
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The significance of the qualitative mutex constraints is destrated by the fact that
the performance of our method drops 1)/% when these constraints are not used. This in
turn illustrates the importance of the utilized inferenamiework.

In Fig. 2.13, we show some detection results. As seen in Fig(B), DPM [43], DPM-
SIZE [64], PAS [47] missed many chairs. Adding 3D informat@bout expected object
sizes in the 3D scenes (DPM-SIZE [64]) is able to improve thgsmance of DPM, but
still some chairs are missed. The main reason is that thalidetection is still performed
in the 2D images (using sliding window processing of DPM).

We use the already trained version of DPM, which is publieigilable on the authors’
webpage. DPM [43] attempts to solve the object detectioblpro by using a multiple
components object model, and each component is aimed toredpe object appearance
under certain view-point. The 2D chair appearance modelR¥ID0s trained using images
from [40] with thousands of chairs. We also tried to train Diletector on half of our
dataset and test on the other half as opposed to using thedrdetector from images in
[40]. This process yields a much worse AP of 0.01. However,DPM detector is able
to get 0.96 AP on training images. This again demonstrateschallenging is significant
view point variance, and perspective distortion to stdtdie-art 2D object detectors. The
expected size of the chair for DPM-SIZE was learned as de=tin [64]. We trained it
on a random half of our dataset and test on the other half. groisess was repeated 10
times. We also used the software of the authors of PAS [47ktéopm experiments on
our chair dataset. A shape is learned automatically usisgtitware, following the same
procedure as for size training of DPM-SIZE.

Since there does not exist any trained version of DPM for ldiescstand and our dataset
exhibits too large view variance for training DPM, we onlyoet the result of our detector

with mutex constraints on the class stand in Fig. 2.14.
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Discussion and Future Work

We only used one simplistic chair model, which differs intbstze and shape from the
various chairs captured in our dataset. This allows us tootstnate the robustness of the
proposed 3D matching framework. Our matching frameworlkse abust to occlusion,
and of course, it is not influenced by view point changes. [&igi we only used one
simplistic stand model.

However, more 3D contour models are needed to capture tlaedlatss variability. In
particular, some chairs may only have one leg like the offi@rcshown in the right image
in Fig. 2.11. Such models can be easily learned by clustéraiging objects using the
proposed similarity measure.

One of the biggest challenges of our 3D contour-based obetetction are objects
without clear 3D contours like humans or sofas. For suchatbji is still possible to
extract occluding contours from the RGB-D data, and thosgoros exhibit significantly
lower variation than contours extracted form 2D RGB imagéso the contour detection
problem in RGB-D images is significantly simpler. Howevée 8D occluding contours
exhibit larger variation than intrinsic 3D contours of atilike chair or stand. Our future

work will focus on matching the occluding 3D contours.

2.12 Random Matrix Tests

We observe that in all the experiments reported above theogex algorithm converged to
a discrete solution. The goal of this test is to examine ueg#eme conditions how often
the proposed algorithm converges to a discrete solutiar afreasonable upper bound
on the number of iterations. We consider a task of matchinggets of 40 points. We
construct a correspondence graph witéih0 nodes representing all pairs of these points.
Then we construct &00 x 1600 affinity matrix A of random entries drawn from a uniform

distribution. The mutex matriX/ represents the one-to-one constraints. The maximum
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possible number of iterations is set to 500 for both IPFP andatyorithm. We repeat this
experiment 10000 times with different random matrices

which is0.22%, while 9940 solutions were non discrete for IPFP, whichoig%.

2.13 Conclusions

As we observed many problems can be solved by finding maximeighvsubgraphs that
satisfy global mutex constraints expressed in quadratialdg form. This formulation en-
joys great modeling flexibility in many applications, besaumutex constraints significant-
ly improve the quality of solutions when unary and binaryguatals are unreliable, which
is rather a rule than exception in real applications. Howawany state-of-the-art gener-
al solvers cannot handle well global mutex constraintgesthey lead to a large number
of non-submodular terms with large values of the energytianc Because global mutex
constraints are essential for adequately modeling mamypreblems, the non-submodular
terms cannot be ignored. Therefore, we propose a novelitigofor computing max-
imum weight subgraphs that satisfy global mutex constsaifAs demonstrated by the
experimental results it significantly outperforms the estaf-the-art general solvers IPFP,
LBP, QPBO, QPBOP, QPBOI, and QPBOP+I as well as applicapewific algorithms. In
addition, we demonstrate the effectiveness of MWSs framle¥as solving a video object

segmentation problem, in which a state-of-the-art segatiemtaccuracy is achieved.
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Figure 2.2: Some image reconstruction results for puzzlds4® patches: first row: LBP,
second row: QPBOP + [, third row: IPFP. Fourth row: our altfon. The fifth row shows
the original images. The anchor patches are marked in red.
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Figure 2.3: Our object segmentation results on two viddedNa KimandWaterskifrom
[56].

(a)

Figure 2.4: Object proposals produced by [39]. (a) A videmrTe (b) Proposals ranked in
order of "objectness”.

(d)

Figure 2.5: (a) A single frame and the probabilities of thee¢pound object; = 1. (b)
Color prob. P¢(;). (c) Location prob.P!(+;). (d) The joint foreground prob?¢(~;)- P} (+;)
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(e) girl

Figure 2.6: Segmentation results. Best viewed in color.
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(b)

Figure 2.7: The trajectories of centroids of selected megjigreen dots connected with red
lines, overlaid over the first frame. (a) when inter-frameximity mutex constraints are
used and (b) when inter-frame proximity mutex constrainthat used.

Figure 2.8: An RGB image in (a) and the corresponding depth im&b). The 3D points
recovered from (a) are shown in (c). We recover 3D contognirants, shown in different
colors in (d) from edge fragments in (b). The line segmenta/ofdetected chairs in (d) are
shown in green and red in (e). They are detected by matchgmesss of a single model
shown in (f) to the segments in (d).
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Figure 2.9: A recovered 3D scene from a single RGB-D imagent@os of 3D objects
are represented with 3D line segments. Object detectiorri®qned by finding MWSs
in the correspondence graph composed of pairs (model ség@iziscene segment). We
mark with the same colors the corresponding segments fee ttetected chairs shown in
red, green, and blue in the 3D scene.
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Figure 2.10: Similarity of the two configurations of cyandmis defined as similarity of
the angles between two black dashed vectors and betweerdashed vectors.

90



Figure 2.11: Example images in our chair-stand dataset.
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Figure 2.12: Recall-Precision and AP comparison for thesctdnair.
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Figure 2.13: Some chair detection results. (a) ground t(b(hDPM [43], (c) DPM-SIZE
[64]. (d) PAS [47] with transformed model shown with dotsgddr) The proposed method
with results shown on depth map to stress that they are @uat&mn3D.
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Figure 2.14: Recall-Precision and AP of our detector withi@rgonstraints on class stand.
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Chapter 3

Graph Transduction Learning with
Connectivity Constraints with
Application to Multiple Foreground

Cosegmentation
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3.1 Introduction

Given multiple images sharing overlapping contents, thal @b image cosegmentation
is to simultaneously divide these images into non-oveitagppegions of foreground and
background. In an unsupervised setting, foreground is el@fas the common regions that
repeatedly occur across the input images [119]. In an iotieeaor supervised setting [7],
some foreground objects are explicitly assigned by an ustrearegions of interest.

Kim and Xing [69] has recently proposed a multiple foregrdwosegmentation (M-
FC) task, in whichK different foreground objects need to be jointly segmentedhfa
group of M input images. This scenario is very realistic, since nobhjécts need to ap-
pear in each image, i.e., each of images contains a diffemhtinknownsubset of the
K objects. Three example images from the same group are shothie first column of
Fig. 3.1. This task contrasts the classical cosegmentptigimlem dealt with by most ex-
isting algorithms [60, 7, 119, 67, 70, 146, 148], where a msiahpler and less realistic
setting is usually assumed by requiring that the same sdijetts occurs in every image.
While this assumption provides a relatively strong prioichrhas been utilized by most of
cosegmentation algorithms, it severely limits the appilocescope of these cosegmentation
algorithms, since it is not valid for most real photo collens.

The fact that the MFC problem does not assume that each skaegears in every
image, brings serious challenges to the cosegementagonithims, which is addressed
[69]. There are two iterative steps, foreground modelingyr@gion assignment. The region
assignment subproblem is solved by assuming foregrounehmdiven. The authors of
[69] consider two settings: supervised and unsupervisedhd supervised setting, it is
straight forward that foreground model can be built throodlects labeled by users in
the training images. In the unsupervised setting, foragrdanodel can be initialized by
running unsupervised cosegmentation method [70, 66]. éarlyl demonstrated in [69],
the segmentation results in the supervised setting ardisagrtly better. Their supervised

setting is still very realistic from the point of view of reapplications, since only a very
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Figure 3.1: Multiple Foreground Cosegmentation resultthoee images of the sceAg-
ple+picking First Columns: original images. Second Columns: the tegilan excellent
graph transduction SSL method RLGC [151]. Third Columnuitssof the proposed GTC.
Compared to RLGC, GTC improves the consistency of labeyjagsent by enforcing con-
nectivity of regions with the same label.

small number of objects of interest must be marked by the WBaly 20% of images is
used from groups of images containing 10 to 20 images. Fanpba this means that the
user only needs to mark the objects in 2 out of 10 images. Shisesupervised setting
contains a very small number of training data, which is verglienging for supervised
learning methods.

Our contribution is based on the observation that this isdmali setting for semi-
supervised learning (SSL). In particular, we formulate fhrioblem as graph transduction
SSL, which has demonstrated impressive results on mang,tasgecially when there ex-

ists only a small amount of labeled data samples. Comparedgervised methods, its
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main advantage relies on using both labeled and unlabetadidang the training process,
which yields considerable improvement in labeling accyreq., [158, 160, 151].

However, the label propagation accuracy in graph trangalu&SL highly depends on
how reliable the similarity of graph nodes is. Since in the ®A&pplication, the nodes
represent image regions (segments or superpixels), thalagty is neither very discrim-
inative nor particularly stable. In particular, due to ku@ppearance variations of the same
objects in different images, segments belonging to diffeobjects may accidently have
higher similarity than segments belonging to the same tbjec

To address this problem, we propose to constrain graphduatisn SSL framework
by integrating global connectivity constraints. In othesrds, we enforce that segments
assigned the same label form connected regions in each in@geectivity is naturally
motivated by the human visual perception, and connectsdses very intuitive and ef-
fective criterium for object segmentation, as has been dstnated in [144, 100] in the
context of supervised image segmentation.

As in [69], for a given set of images containing common olgeete first perform
over-segmentation to obtain several segments for eacheimgggarately. While [69] uses
a spatial pyramid as the objects model, we only utilize 6T and use bag-of-word
(BoW) model to represent segments. Although using BoW engiyme robustness to
the object variations, such as changes in shape and orntaitalso makes the similarity
between segments not very discriminative, which in turnisicantly degrades the labeling
results of SSL methods. To demonstrate this, we examineeggition results by labeling
in Fig. 3.1. The second column shows the results of an SSUlertenethod introduced
in [151]. We call it regularized local and global consistefBRLGC). We can see that
many disconnected regions are wrongly assigned the sareks labcause of their similar
color and texture, for example, the face of baby and applkdiad his happens because
in standard graph transduction SSL framework, each segiségiten out-of-context and

labeled independently. While this is suitable for gene&il $iference problem, itis clearly

97



suboptimal in our application. In particular, while the semnt graph encodes the visual
similarity between pairs of segments, the spatial inforamabetween segments in the same
image is totally neglected. This information is expresseda@nnectivity in the proposed
framework.

In our graph-based formulation, if nodes representing segsnfrom the same image
share the same class label, they must form a connected phib§®]. This is a glob-
al property and it introduces high-order constraints. Aswshin [100], although it is
an exponential problem (with respect to the number of nottegxamine if two nodes
are connected, finding the most violated connectivity qaivst can be done efficiently in
polynomial time. Moreover, each such constraint can beesspited as a linear inequality.

To solve a SSL problem formulated with connectivity constisain graph transduction
formulation, we design a cutting-plane algorithm, in whigh iterate between solving a
convex problem of label propagation with linear inequatiystraints, and finding the most
violated constraint. We investigate two versions of ourhrodt

The output of most graph transduction SSL methods, e.g., [158], represents the
confidence of assigning data points to all labels. The digat#on step is then performed
on each unlabeled data point independently, by simply asgighe label with the largest
confidence. The first version of our method enforce the cdivigcconstraints at the
final discretization step of label confidences obtainedughoSSL learning. This can be
considered as a postprocessing method, and could be apipheg SSL method. It can be
solved as linear programming with linear inequality coaists.

More importantly, in the second version, we integrate thegpgrtransduction formu-
lation with connectivity constraints, and solve it as a aaguadratic programming with
linear inequality constraints. We call this method grapingduction with connectivity con-
straints (GTC). Its segmentation examples are shown inhihg ¢olumn of Fig. 3.1. As
can be seen it significantly improves on label assignmentlé@3® (second column). In

particular, the baby face belongs to the baby not to the baskenore. It even can correct
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wrong labels as can be seen in the first row, where the baskebiggly labeled as baby
by RLGC, which is corrected by GTC. We have a similar caselferttasket in the second
row. This examples as well as our experimental results ini@e8.6 clearly demonstrate
that the connectivity information can be used to increasedbustness of SSL methods.

We evaluate the proposed approach on real world MFC apiglicain FlickriMFC
dataset. It significantly outperforms the MFC method in [68[ other state-of-the-art
cosegmentation methods.

The remainder of this paper is organized as follow: The eelatork is introduced in
Section 3.2. In Section 3.3, we revisit the standard gragisttuction SSL framework. In
Sections 3.4 and 3.5, we introduce the proposed integrafioonnectivity constraints into

the graph transduction framework, and derive a method teesbefficiently.

3.2 Related Work

Many approaches have been proposed to solve the image ocestgion problem
[60, 7, 119, 67, 70, 146, 148]. All these approaches only idenstwo class (for-
ground/background) cosegmentation problem. The initialdeh presented in [119]
provides a framework to enforce consistency among two foregd histograms in ad-
dition to the Marov Random Field (MRF) segmentation termsefach image. In [67],
a discriminative clustering formulation is adopted, in @hithe goal is to assign fore-
ground/background labels jointly to all images so that aesuiped classifier trained
with these labels leads to maximal separation of the twoseks Recently, a Random
Walker based method is proposed in [30], and is shown to bdfectige framework for
cosegmentation problem complementary to MRF formulatdfile our method shares
similar properties as [67] and [30], in the sense that we hBkee a graph formulation
and utilize the normalized graph Laplacian, we have a vdfgrént goal for constructing

the graph, consequently, the definitions of nodes and edgései graph are also very
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different. In particular, for both [67] and [30], image pigare taken as nodes, and edges
only exist locally between pairs of nearby pixels. Thisdalk the standard framework of
spectral clustering for image segmentation [124]. In outhoe, the graph is constructed
using segments as nodes, and the edges exist between everfygggments, because the
graph is used for the purpose of propagating the labels fatn@léd segments to unlabeled
segments following the graph transduction SSL framework.

Semi-supervised learning is the intermediate range offieetsum between supervised
methods and unsupervised methods. It has been widely ussdvi® many kinds of ma-
chine learning and computer vision problems. In [157], Zeisal. combined SSL with
multiple instance learning to solve the object trackingbpea. Fergus et al. [44] intro-
duced a linear SSL method to label tiny images among a gigantge collections. In
[57], SSL method is used to associate keywords (side infoomgof labeled and unla-
beled images, so that a stronger classifier can be obtainéldefamage classification task.
A SSL based hashing method is proposed in [152] for imageevedt Recently, SSL is
used in [129] for solving scene categorization task, wherestraints based on mutual ex-
clusion and comparative attributes are imposed. In [158l, gas been applied to improve
the affinity metric for single image segmentation. Our apptois very different from these
SSL applications to computer vision problems. To our bestadge, this is for the first

time that connectivity constraints are considered in thie f&&8nework.

3.3 Semi-supervised Learning (SSL)

In this section, we will first introduce how do we construat gegment graph in Sec 3.3.1
And in Sec 3.3.2, we will review how to use the graph transdactmethod to solve a
standard semi-supervised learning problem. Finally, m38, we focus on how to impose
the connectivity constraints under semi-supervised legrinamework and how to solve it

efficiently.
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3.3.1 Segment Graph Construction

Given a set of images which contain multiple common objegésfirst divide each image

I,, into segments (or superpixelS), = {s!,...,sX}. SetV be the set of the segments
in all images. Any segmentation algorithm can be used heeeu¥gd submodular image
segmentation method introduced in [70]. We assume that setgnm a small number of

images are labeled with object categories. We are given # setaf labeled segments,

and a large majority of unlabeled segments. Our goal is &riafabel for each unlabeled
segment.

We define a weighted graght = (V, W), where is a nonnegative matrix representing
the pairwise similarity of image segments, which is defingdfolows. For each segment
s;, we compute its ColorSIFT descriptor [142] and quantizertlaecording to a codebook.
Then a bag-of-words histogran) is used to represent segment For two nodes and
J representing two different segmentsands;, the weightw;; is computed using a RBF

kernel:
d(Xi, X])
202

(3.1)

Wi; = €Xp —

whered(x;, x;) computes the’? distance betweex; andx;, ands is the kernel bandwidth
parameter. We follow [23] to compute. In particular,c = dist; /3, wheredist, is
the average distance between each sample ardhitsearest neighbor. Since sparsity is
important to remove noise and it has been proved that separgised learning algorithms
are more robust when run on a sparse graphs [65], we;set 0, if i ¢ kNN(j), where

ENN denotes the set éf nearest neighborg (s the same as used in computing

3.3.2 Graph Transduction for SSL

We assign the class labels to unlabeled image segments am@astl graph-based semi-

supervised learning framework, which we review here. Letribde degree matri® =

N
diag([dy,--- ,dy]) be defined ad; = Zwij, whereN = |V|. The binary label matrix
j=1
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Y € {0,1}¥*C is defined ag); = 1 if node s; has label € L andy; = 0 otherwise,
where(' is the number of labels if.. We also assume that, y; < 1 for every nodei
meaning that each node can have at most one class label. fhalim@d graph Laplacian
is defined ad, = D~Y/?(D — W)D~ /2,

Graph-based semi-supervised learning methods propagageihformation from la-
beled nodes to unlabeled nodes [160]. Most methods defin@tinaous variabld® €
RY*C that is estimated on the graph to minimize a cost functiom ddst function typical-
ly used has two tradeoff terms. One term is used to measussrtbethness of the function
on the graph of both labeled and unlabeled data, with thensktssm used to measure the
fitness betweetl and the label information for the labeled nodes. In paréiculve fol-
low the formulation introduced in [151]. We call the meth@djularized local and global
consistency (RLGC), since it modifies the cost function fritva classic local and global

consistency (LGC) method [158] by adding a node regulaiiRzer
Q(F) = tr{FTLF + u(F — RY")(F — RY")}, (3.2)

wherey is a constant. The matriR is used to balance the influence of labels from different
classes. It works as node regularizer that normalizesdatighin each class based on node
degrees. This is very important for the problems with higinhpalanced labeled nodes,
which is the case for our applicatioR = diag(r) in whichr = [ry, ..., ry] iS computed

as
1 d;

T Sy if Jjer v =1

(3.3)

T, =
0 otherwise

Due to the convexity of the cost function in (3.2), we obtaiti@ed form solution by

zeroing the partial derivativ%% = 0. With simple algebra, we can derive

L
F* = (ﬁ +I)'RY = PRY (3.4)
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whereP = (% +I)~! as the propagation matrix [158].

After obtaining the continuous solutidit € RV, we need to binarize it int * €
{0,1}¥*¢, As is usually the case in graph transduction SSL, this iswpl& argmax step:
for every node determind* = arg max; F;, and thenseY, = 1if [ = [* andY}, = 0 if

14 0*,
3.4 Constrained SSL

According to the cost function defined in (3.2), to solve ti&$roblem, we need to solve
a QP problem defined on continuous variablec RV*“. In this section we extend this
problem by adding linear constraints to enforce connegtivi

Let C denotes a set of matricdd € {—1,0, 1} representing linear constraints. We

consider the following constrained formulation of Eq. {3.2

O(F) = tr{F'LF + u(F —RY")(F —RY")}

st. r(MF) <1, VM eC. (3.5)

With an empty constraints sét minimizing (3.5) is equivalent to minimizing (3.2). Hence
it is a convex QP problem and it has a closed form solulas shown (3.4). With a non-
empty set of linear constraints, convexity still holds. Rdtigh the closed form solution
cannot be derived, problem (3.5) can be solved efficientlgnbyy existing solvers. In this

work, we use IBM CPLEX (v12.4) to get the optimal solution.

3.5 Enforcing Connectivity Constraints in SSL

Before we give the formal definition of the connectivity ctramts, we first introduce a
binary adjacency grapty = (V, A) to represent the spatial adjacency of segments, i.e.,

A(i, 5) = 1if two segments;, s; belong to the same image and are adjacentfafidj) =
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Figure 3.2: (a) Original image (b) Segments and adjacemnghg(e) A simple adjacency
graph. For a pair of nodes (i, j), there are three vertexssgépasets(a, b}, {a, ¢} and{a,
b, c}. Only {a, b} and{a, ¢} are essential vertex-separator sets.

0 otherwise. Letonn(G) denotes the set of all connected subgraphs.oOf course, the
nodes of each connected subgraph must represent segmienigibg to the same image.

Each subgraph af can be expressed with an indicator veator {0, 1}". Hence we
can identifyconn(G) with the set of indicator vectons € {0, 1} representing connected
subgraphs of7, i.e., conn(G) C P({0,1}"). By taking the convex hull ofonn(G) we
obtain a polytopeZ = conv(conn(G)) c [0,1]~, where[0, 1}V is the N-dimensional
hypercube. We call aconnected subgraph polytopéG.

The most well-known problem defined dnis finding maximum-weight connected
subgraph. As proved in [68], even with a linear target fumctn this problem, itis NP-hard
to optimize. Therefore, to make an optimization problemrafionZ to be polynomially
solvable, we have to relaX. To do this, we follow the method introduced in [100]. It
is proved that each facet &f can be defined by a linear inequality equation. For a better
characterization of the facet, we need to defiegex-separator se{00], as follows:

Given an undirected gragh = (V, A), for any pair of vertices, j € Vi # j, A(i,j) =
0, the setS C V' \ {i,j} is said to be avertex-separator sewith respect to{i, j } if the
removal ofS from G disconnects andj, which means that there exists no path betwieen

andj in the subgraph with the vertex sét\ S.
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In addition, we define5 as anessential vertex-separator séit is a vertex-separator
set with respect tdi, j} and any strict subséf C S is not. We denote witl$ (i, j) the
set of all essential vertex-separator sets with respeéi,tp}. An example of essential
vertex-separator sets is shown in Fig 3.2(c).

The proposed SSL algorithm with connectivity constraistan iterative cutting-plane
method. It alternates between solving a convex quadratigramming (QP) with linear
inequality constraints (3.5) according to gra@i, W), and adding a new connectivity
constraint (facet) according to grapfi, A).

Let F be a solution of (3.5) obtained at iteration\We need to examine whethkf
violates the connectivity constraints. In order to do this,need to define the connectivity
constraints as linear constraints. Since our goal is toreafoonnectivity of image seg-
ments belonging to the same object, i.e., having the sane, fimy a pair of segments
ands; we only check the connectivity constraints if they are in $hene image and have
the same label We denote with{ a set of all tripleg3, j, /) such thats; ands; are in the
same image, are not adjacent, i4(;, j) = 0, and the probability for both segments have
labell € L is positive, i.e. F};, F, > 0. We callH acheck condition sesince only for
triples in? the connectivity condition needs to be checked.

As proved in [100], each facet of the polytope containihig defined by the following

linear inequality for a label € L and for all pairg, j) such that(i, j, 1) € H:

Fi+Fj =) Fiy—1<0,Y5€8(i.j) (3.6)
kesS

For a triple(s, j, 1) € H, proving that no violated inequality exists or finding thesho

violated inequality in (3.6), which is given by

S*(i,7,1) = arg max ZF}ZZ, (3.7)
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can be solved efficiently by computing max-fldvon an auxiliary directed graph. More
details on how to construct the auxiliary directed graphlmafound in [100].

Then find(:*, j*, I*) € H with the largest violation as

(@0 = arg max > F (3.8)
TS e s+ (4,4,)

Let S*(i*, j*,1*) be the vertex-separator set that yields the maximum val(@&). If

F,+F, - Y F,-1<0, (3.9)
ke S*(i* % ,1%)

the iterative process stops, since no constraints aretgal®therwise, there is constraint
violated, and it can be represented by tt@ column inM, with M;«-, M;«- = 1, and
My = —1if k € S*(i*, j*,1*), andM,,~ = 0 otherwise. TheiM is added to the constraint
setC, and in next iteration, we solve Eq. (3.5) with the updatedrhis iterative process
stops when no constraints are violated, or the change betiVeandF!*! is smaller than
a threshold.

Finally, the outpuF* is binarized to the label indictdf * the same way as at the end of
Section 3.3.2: for every nodedeterming* = argmax; F},, and thenseY, = 1if [ = [*
andY}, = 0if [ # [*.

We call the proposed methogkaph transduction with connectivity constraints
(GTC), since it integrates RLGC graph transduction formulatiod global connectivity
constraints. The entire algorithm is described in Alg. 1.

In Fig. 3.3, we visualize some examples of the most violatathectivity constraints
discovered by our algorithm. For each leftimage, we use twemgdots to show the pair of
segments with the same label that are not connected. Eslsasrtiex-separator set, which
corresponds to the violated constraints, is shown usingdhts. We do not show the actual

segments for better visualization. The edges are showreak bhes. In the right image,

http://pub.ist.ac.at/ ~vnk/software/  [17]
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Algorithm 1 Graph Transduction with Connectivity Constraints (GTC)

Input: L=D"3(D—-W)D"2,A, u,0
Output: F* = F?
1: Initial C! as an empty set, t=1

2: repeat

3:  obtainF? by solving Eq (3.5).

4. find the most violated constraintg (:*, j*, I*) using Eq (3.8)
5. if EqQ (3.9) holds fors* (%, j*,[*) then

6: break

7. endif

8:  derive linear equality constraitMl from S*(i*, j*, *)

9 CHl«CluM

10: until |[F* —F" ! <o

we show the result of resolved constraints after the nepdtiten. In particular, it should

be noticed that there are two ways to resolve the constrddmts is to change the label for

either of the two green dots so that two segments are no lamigiethe same label. The

other one is to change the labels of some of the separatimges#g marked in blue dots

to the label of the segments with green dots, which makeswbhegteen dots segments

connected. As the examples illustrate, our algorithmsraatally determines which of

the two kinds of solutions is better.

For any semi-supervised learning method that yields awcoatis label confidence ma-

trix F*, it is only possible to impose the connectivity constramitshe final binarization

step of F*. For this we formulate the binarization step as solving admMRF problem

with the connectivity constraints:

N C
Y* = argmax » Y Y,F; (3.10)

Y€[0,1]VxC i=1 =1

C
st r(MY) <1, VMecC, > Yy=1.
=1

This constrained problem can be solved using our GTC framewesented above (by

only replacing the target function in (3.5) with the linearget function in (3.10)). This
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Figure 3.3: Visualization of the most violated connecyivdbnstraints. Green dots: pair of
segments with the same label that are not connected. Blse egential vertex-separator
set. Adjacency connection between segments is displayed bkck lines.

can be considered as a postprocessing step, and it can bedajgpany semi-supervised
learning method. We name this method&BCP, whereP stands for postprocessing.

If the constraint se€ is empty, the solution of (3.10) is simply the argmax rule, as
described at the end of Section 3.3.2, which is a standastibation procedure for graph
transduction SSL algorithms. Hence the proposed GTCP caretxed as binarization of
SSL solutions with connectivity constraints.

To summarize, RLGC solves the problem under a standard $8iefvork, where only
affinity graph(G, W) is utilized, and the connectivity between nodes is not aersd.

In GTCP, the constraints are considered, but only at the bivarization step of label
confidences. For GTC, we integrate connectivity with RLGGumiterative framework.

By utilizing the additional information from adjacent gralz, A), GTC can improve the
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label propagation process by increasing its robustnes$gtoristable affinity measurement
in (G, W). This is demonstrated by the experimental results in thésention.

Time Complexity: For the proposed GTC algorithm, in each iteration, solvioigvex
QP with inequality constraints is very efficient. The maimgutation comes from finding
the most violated connectivity constraints. However, thisarried out for each image and
for each label independently. Therefore, if there &famages each decomposed into at
most K segments, we only need to solve max-flow problem for at mMéétik? times,
where we recall that C is the number of object classes. In athaod, K is usually a
very small number (we follow [69], and obtain K = 18 segmergmg [70]). Also, this

computation can be easily parallelized, which would furtieeluce the computation time.

3.6 Experimental Evaluation

We evaluate the proposed approach on a realistic and veltgieilng dataset called Flick-
rMFC dataset [69] It consists 14 groups of images. Each group has 10 to 20 ispage
which are sampled from a Flickr photo stream. A finite numkerepeating objects is
contained in the same group, but the objects are not prasemery image.

We follow the protocol of the interactive multiple foregraicosegmentation in [69],
in which for each image group0% of images are randomly selected as training images,
and the objects label in those images are provided. Thedabptesent a manual input of
an user who marks the regions with main objects. The rest af@s is used for testing.
For each image set, 10 random splits is used, and the segioaratecuracy is averaged.

To evaluate the segmentation accuracy, the standard noétFi8SCAL challenges is
adopted, in which the intersection-over-union metric isaswed. In particular, we fol-

low the evaluation metric used in [69], where the segmetadiccuracy is computed as

GT;NR;
(Grom)-

2http://www.cs.cmu.edu/ ~gunhee/r\_mfc.html
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Figure 3.4: Comparison of the segmentation accuracy of RLGUCP and GTC on 14
image groups in FlickrMFC dataset.

We compare our methods GTCP and GTC to the state-of-thevetisods that have
been evaluated on this dataset. The results are reportethia 3.1 as the average accuracy
over all 14 image sets. MFC-S [69] and our method can be viasagpical SSL methods,
since both require a small number of labeled data (labelezijfound objects in training
images). The algorithm CoSand (COS) [70] and the discritiviealustering method (DC)
[67], are not designed to handle irregularly appearing iplelforeground objects. Hence
they require that all images are first manually divided irdgesal subgroups so that the
images of each subgroup share the same foreground objecteHieey also require user
input, although no label information need to be explicittgyided as in a semi-supervised
scenario. Only LDA-based unsupervised localization metfhdA) [120] is truly unsu-
pervised. The results of LDA, DC, COS, MFC-S are copied fr681.

As can be seen in Table 3.1, the performance of RLGC [151]chvbelongs to classic
graph transduction SSL methods, is comparable to MFC-& démonstrates the effec-
tiveness of solving MFC problem in SSL framework, and in jgatar, the benefits of
utilizing unlabeled data in addition to labeled data fordkibference. Our postprocessing
method GTCP applied directly to the label confidence scoféd . &GC is able to signifi-
cantly increase the segmentation accuracy, which denatestthe benefits of the global
connectivity constraints. Finally, our main proposed mdtiGTC significantly outper-
forms all other methods. In particular, it increased tharsagtation accuracy of MFC-S
by 14%. Moreover, the fact that GTC outperforms our postprocessiethod GTCP by

over 7% shows the importance of enforcing the global connectivitystraints directly in
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Figure 3.5: Examples of segmentation results on FlickrM@sket. First row: original
images. Second row: segmentation results by RLGC. Third smgmentation results by
the proposed GTC. Fourth row: figure-ground segmentatisulteby GTC.

the graph transduction SSL framework. Some example segn@mtresults of GTC are

shown in Fig. 3.5.

LDA | DC | COS| MFC-S| RLGC | GTCP| GTC
[120] | [67] | [70] [69] [151] | our | our
25.2 131.3| 321| 48.2 | 476 | 55.0 | 62.6

Table 3.1: Average segmentation accuracy (PASCAL intéseover-union metric) on
FlickerMFC dataset from [69].

We also give a detailed comparison of the segmentation acgwf RLGC, GTCP and GTC on
the 14 image groups in FlickerMFC dataset in Fig. 3.4. GT@edorms RLGC and GTCP on all

14 groups of images excefshing
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3.7 Conclusion

In this work, we integrate the global connectivity consitaiwith graph transduction learning
framework to address a very challenging task: multipledovand cosegmentation. Connectivity
constraints are naturally motivated by human visual pei@epn that we prefer to identify object-

s as connected image regions. They play a similar role in pproach by enforcing consistent
class label assignment to connected image regions, wigdifisantly improves the segmentation
results. State-of-the art results are achieved on the besréhdataset FlickrMFC, which clearly

demonstrates the effectiveness of the proposed approach.
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