
Sequence Matching as Subsequence Bijection and Densification of
Distance Spaces

A Dissertation
Submitted to

the Temple University Graduate Board

in Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by
Suzan Köknar-Tezel
SEPTEMBER, 2010

iii

c©
by

Suzan Köknar-Tezel

SEPTEMBER, 2010

All Rights Reserved

iv

ABSTRACT

Sequence Matching as Subsequence Bijection and Densification of Distance

Spaces

Suzan Köknar-Tezel

DOCTOR OF PHILOSOPHY

Temple University, SEPTEMBER, 2010

Dr. Longin Jan Latecki, Chair

Time series are common in many research fields. Since both a query and

a target sequence may be noisy, i.e., contain some outlier elements, it is desir-

able to exclude the outlier elements from matching in order to obtain a robust

matching performance. Moreover, in many applications like shape alignment

or stereo correspondence it is also desirable to have a one-to-one and onto

correspondence (a bijection) between the remaining elements. To address the

problem of noisy time series data we propose using an algorithm that de-

termines the optimal subsequence bijection (OSB) of a query and target time

series. The OSB is efficiently computed since the problem’s solution is mapped

to a cheapest path in a DAG (directed acyclic graph). We make several sig-

nificant improvements to the original OSB algorithm and show that these im-

provements are theoretically and experimentally justified. We compare OSB

to standard and state of the art distance measures such as Euclidean distance,

Dynamic Time Warping with and without warping window, Longest Common

Subsequence, Edit Distance with Real Penalty, and Time Warp Edit Distance.

Moreover, we show that OSB is particularly suitable for partial matching.

In addition to noisy data, imbalanced time series data sets present a par-

ticular challenge to the data mining community. Often, it is the rare event

that is of interest and the cost of misclassifying the rare event is higher than

misclassifying the usual event. When the data is highly skewed toward the

v

usual, it can be very difficult for a learning system to accurately detect the

rare event. There have been many approaches in recent years for handling

imbalanced data sets, from under-sampling the majority class to adding syn-

thetic points to the minority class in feature space. To address the problem of

imbalanced data sets, we present an innovative approach to adding synthetic

points (ghost points) to the minority class in distance space and theoretically

show that these points preserve the distances. All current methods that add

synthetic points to minority classes do so in feature space. However, distances

between time series are known to be non-Euclidean and non-metric, since com-

paring time series requires warping in time. In addition, in some fields data is

not available as feature vectors, but instead as pairwise distances between ob-

jects in the data set. Therefore the only recourse to augmenting the minority

class is to add synthetic points in distance space. Our experimental results on

standard time series using standard distance measures show that our synthetic

points significantly improve the classification rate of the rare events, and in

most cases also improves the overall accuracy of support vector machines. We

also show how adding our synthetic points can aid in the visualization of time

series data sets.

For time series classification, a large number of similarity approaches have

been developed, with the main focus being the comparison or matching of

pairs of time series. In these approaches, other time series do not influence

the similarity measure of a given pair of time series. By using the locally con-

strained diffusion process (LCDP), other time series do influence the similarity

measure of each pair of time series, and we show that this influence is bene-

ficial. The influence of other time series is propagated as a diffusion process

on a graph formed by a given set of time series. We use LCDP when densi-

fying the minority class data space by adding ghost points. Our experimental

results demonstrate that using LCDP when densifying the minority class also

improves the classification rate of the minority class.

vi

ACKNOWLEDGEMENTS

If a person is lucky, there will be many people who profoundly influence

her on her journey through life. I am just such a person. I also now get to

formally acknowledge them.

First I would like to thank my advisor, Longin Jan Latecki. I have learned

so much from him over the past few years, and he has been a very patient

and supportive advisor. He is a wonderful mentor. I am also in awe of his

dedication to scholarship. Other professors at Temple that I have had the good

fortune to learn from and interact with: Alexander P. Yates and Haibin Ling

(my committee members), Richard Beigel, Eugene Kwatny, Rolf Lakaemper,

John T. Nosek, Zoran Obradovic, Arthur T. Poe, Yuan Shi, Robert L. Stafford,

and Daniel B. Szyld. I also want to thank my sometime collaborator and

cubicle mate, Xingwei Yang - you’re next! And two very special people I met

many years ago at Temple and who will, I hope, be life-long friends - Vladimir

Vacic and Nagesh Adluru. Both of them have enriched my life, and are just

fun to be around.

My deepest gratitude to many people at Saint Joseph’s University who

have given me so much support in so many ways. I thank Father Timothy

R. Lannon, President, Dr. Brice Wachterhauser, Provost, and Dr. William

Madges, Dean of the College of Arts and Sciences, for the resources to be

able to complete this - I am honored to be a faculty member of SJU. To Dr.

Agnes Rash, former chair of the Mathematics Department for starting me on

this odyssey. To Dr. Gary Laison, who will always be my role model of a

great teacher. And to the members of the Department of Computer Science:

Dr. Jonathan Hodgson, Chair, for being on my committee and all the other

myriad ways you have helped me; Dr. Susanna Wei and Dr. F. Betul Ataly for

patiently listening to me grumble and giving me such good advice; Dr. Babak

Forouraghi, for the wonderful job scheduling my classes for these oh so many

years to give me time for research; Dr. George Grevera, for always making me

laugh; and Terry Fasy, our administrative assistant extraordinaire, who is also

vii

a great “break buddy”. My sincerest thanks to all of you.

My family has done so much for me, it is impossible to list everything.

My love and thanks to my mother, Jeannine Köknar, for easing my guilt by

providing my family with many home-cooked meals; to my father H. Sezer

Köknar, who is the most honest, principled, and good man I know; to my

brother Kemal Köknar, who asked my husband, “So what are you doing to

support my sister?” and helped him see the light; to my sister Semra Köknar,

for helping me write my application essay at the very beginning; and to my

youngest brother Kevin Köknar, who makes life nicer just by being himself.

Though I am dedicating this dissertation to my children, I also have to

thank them. They sacrificed so much for me to do this, and learned to be very

self-sufficient and independent people in the process. So often they had to

arrange their life around my schedule, and usually with no complaining. I’m

really grateful to them for how much easier they made things for me. They

are wonderful kids!

And finally, my husband Ahmet Tezel, who, without any choice in the

matter, has traveled this entire long, hard, and bumpy road with me. And

threatened divorce if I EVER decide to go back to school again.

viii

To my children,

E. Hale Can, S. Erin Can, and D. Kerem Can.

I am so proud of the people you have become, some of it

because of me, some in spite of me.

I love you so very much.

ix

TABLE OF CONTENTS

ABSTRACT iv

ACKNOWLEDGEMENT vi

DEDICATION viii

LIST OF FIGURES xi

LIST OF TABLES xiv

1 Introduction 1
1.1 Time Series . 1

1.1.1 Related Work . 2
1.2 Imbalanced Data Sets . 9

1.2.1 Synthetic Data Points 10
1.3 Diffusion Process . 15

1.3.1 Relation to Other Approaches 16

2 Optimal Subsequence Bijection 19
2.1 Introduction . 19
2.2 The Algorithm . 20
2.3 OSB and Existing Distance Functions 23
2.4 OSB Parameters and Time Complexity 29
2.5 Implementation Details and Comparison to OSB-07 31
2.6 Experimental Results . 35

2.6.1 The UCR Time Series Data Sets Results 36
2.6.2 The MPEG7 Data Set Results 38

3 Ghost Points 47
3.1 Introduction . 47
3.2 Definition of Ghost Points . 50
3.3 Visualizing Data . 57

x

3.4 Experimental Evaluation . 61
3.4.1 Evaluating Performance 65
3.4.2 Methodology . 67
3.4.3 Results . 71

4 Locally Constrained Diffusion Process on Imbalanced Data
Sets 81
4.1 Introduction . 81
4.2 Diffusion Process . 82
4.3 Locally Constrained Diffusion Process 85
4.4 Methodology . 88
4.5 Experimental Results on UCR Time Series 90

5 Conclusions 96

REFERENCES 99

xi

LIST OF FIGURES

1.1 Out of phase sine waves and the corresponding Euclidean distance. 3
1.2 The top and bottom sequences represent parts of contours of

two different but very similar bone shapes from the MPEG-7
data set. 3

1.3 The stability of OSB to different values of its parameter com-
pared to LCSS. 6

1.4 The mean horse computed by averaging corresponding sample
contour points of two aligned shapes. 12

1.5 The retrieval results of the mean horse and the ghost horse. . 12

2.1 Time series alignment example 24
2.2 The directed acyclic graph (DAG) that is created from the dis-

tance space of two sequences. 24
2.3 An example of training the jump cost C and the resulting error

rates for the data set Lightning-2. 30
2.4 The L1 distance versus Euclidean distance. 33
2.5 OSB results on the MPEG-7 data set for 10 partial query se-

quences on full-length targets. 43

3.1 An example of a 4-point metric space that cannot be embedded
into a Euclidean space. 48

3.2 The construction of ghost points in metric and non-metric spaces. 52
3.3 Example of a unit sphere where ρ(h(e), h(x)) = 0. 56
3.4 Visualizing the minority class in a time series data set.) 58
3.5 Visualizing the minority class in the MPEG-7 data set. 59

4.1 An example comparing the standard diffusion process (DM) to
LCDP. 86

xii

LIST OF TABLES

2.1 The 1NN classification results for various time series distance
measures on the UCR data sets. 37

2.2 The retrieval results on the MPEG-7 data set for various dis-
tance measures. 40

2.3 The retrieval results on the MPEG-7 data set for ten partial
query sequences. 41

3.1 The characteristics of the 17 UCR data sets used in our exper-
iments. 63

3.2 Confusion Matrix. 64
3.3 The results of adding ghost points to the OSB distance scores

on the imbalanced UCR time series data sets. 72
3.4 The results of adding ghost points to the DTW distance scores

on the imbalanced UCR time series data sets. 73
3.5 The results of adding ghost points to the OSB and DTW dis-

tance scores on the MPEG-7 data set. 74
3.6 For OSB, the number of each type of distance calculations when

adding ghost points. 77
3.7 For DTW, the number of each type of distance calculations

when adding ghost points. 78

4.1 The results of adding ghost points using LCDP to the OSB
distance scores on the imbalanced UCR time series data sets. . 94

4.2 The results of adding ghost points using LCDP to the DTW
distance scores on the imbalanced UCR time series data sets. . 95

1

CHAPTER 1

Introduction

1.1 Time Series

Sequences of real numbers are commonly used in all research fields. When

the sequences of real numbers have a natural ordering, they are historically

called time series even though the order imposed on the sequence may be

from some dimension other than time, e.g., curvature at successive points of

a contour. Time series are a ubiquitous and prevalent type of data that arise

in all scientific disciplines, economics, financial forecasting, and many other

domains. One of the earliest known time series plot is of planetary orbits

from a tenth century monastery [47]. Because of the prevalence of time series

data, there has been much research effort devoted to time series data mining

in recent years. Many data mining algorithms have similarity measurements

of sequences at their core. Examples include motif discovery [14], anomaly

2

detection [27, 44], rule discovery [24], classification [40], and clustering [1].

1.1.1 Related Work

There have been many sequence similarity measures proposed in the liter-

ature. If two sequences of real numbers of equal length n are to be compared,

the simplest way is to treat them as vectors in Rn, and compute their Euclidean

distance (ED). This approach is based on the assumption that both sequences

are well aligned, i.e., that corresponding vector coordinates represent corre-

sponding sequence elements. In many applications, e.g., speech recognition,

this assumption is not satisfied. For example, in both graphs of Fig. 1.1, the

top and bottom time series are identical except for a phase shift. It is ob-

vious that the alignment in Fig. 1.1a, induced by the Euclidean distance, is

not correct. In Fig. 1.1b, the optimal alignment is shown. Many researchers

have mentioned in their work [24, 37, 40] that the Euclidean distance is not

always the optimal distance measure for similarity searches of sequences. To

overcome the limitations of ED, elastic measures were introduced that allow

the stretching and compressing of the time series to find the best alignment.

The most well-known elastic measure is Dynamic Time Warping (DTW) [50,

42] that was first used for aligning spoken words. Identical words may be spo-

ken at different rates, for example no and nooo, so a non-linear alignment of

the speech patterns was needed. DTW allows two sequences to be stretched

3

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)
0 1 2 3 4 5 6 7

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

Figure 1.1: The graph in (a) shows two out of phase sine waves and the corre-
sponding Euclidean distance. The graph in (b) shows the optimal alignment,
which the Euclidean distance cannot find.

(a) ED (b) DTW

(c) LCSS (ε = 0.05) (d) OSB (C = 0.1)

Figure 1.2: For each graph, the top and bottom sequences represent parts of
contours of two different but very similar bone shapes from the MPEG-7 data
set. The top sequence has one outlier manually added (the blue dot) and the
bottom sequence has two outliers added (the red dots).

4

or compressed to optimize local alignments. The DTW distance is then com-

puted as the sum of the distances of the corresponding elements, and dynamic

programming is used to find corresponding elements so that this distance is

minimal. The DTW distance has been shown to be superior to the Euclidean

distance in many cases [1, 15, 52, 61], however, DTW is particularly sensitive

to outliers, since it is not able to skip any elements of the sequences. In DTW,

each element of the query sequence must correspond to some element of the

target sequence and vice versa. Thus the optimal correspondence computed by

DTW is a relation on the set of indices of both sequences, i.e., a one-to-many

and many-to-one mapping. The fact that outlier elements must participate

in the correspondence optimized by DTW often leads to an incorrect corre-

spondence of other sequence elements. This fact is illustrated in Fig. 1.2b,

where the query sequence on top has one outlier element (spike), and the tar-

get sequence at the bottom has two outlier elements. The correspondence of

the elements is illustrated with straight lines. Observe that the outliers cor-

rupt the correspondence computed by DTW. In particular, this is reflected in

the fact that single elements of one sequence correspond to a large number of

elements of the other sequence.

The main difference between DTW and the proposed algorithm, Opti-

mal Subsequence Bijection (OSB), is that OSB can skip outlier elements of

the query and target sequences when computing the correspondence while

5

DTW requires that each element of the query sequence is matched to each

element of the target sequence. This makes the performance of OSB robust in

the presence of outliers. Moreover, OSB defines a bijection on the remaining

subsequences, which means that we have a one-to-one correspondence of the

remaining elements.

The Longest Common Subsequence (LCSS) measure has been used in time

series [18, 51] to deal with the alignment and outlier problems. Given a query

and a target series, LCSS determines their longest common subsequence, i.e.,

LCSS finds subsequences of the query and target that best correspond to each

other. The distance is based on the ratio between the length of longest com-

mon subsequence and the length of the whole sequence. The subsequence does

not need to consist of consecutive points, the order of points is not rearranged,

and some points can remain unmatched. However, when LCSS is applied to

sequences of numeric values, one needs to set a threshold ε that determines

when values of corresponding points are treated as equal [51]. The perfor-

mance of LCSS depends heavily on the correct setting of ε, which may be

a particularly difficult problem for many applications. For example, we run

LCSS on the sequences shown in Fig. 1.2, with ε ranging from 0.01 to 0.10.

The best correspondence found is shown in Figs. 1.2c and 1.3a where ε = 0.05.

Figs. 1.3c and 1.3d show how easily the correspondence can degenerate with

very small changes in ε. In addition, no known algorithm exists to optimally

6

(a) LCSS (ε = 0.05) (b) LCSS (ε = 0.03)

(c) LCSS (ε = 0.02) (d) LCSS (ε = 0.01)

(e) OSB (C = 0.1) (f) OSB (C = 0.02)

(g) OSB (C = 0.002) (h) OSB (C = 0.00002)

Figure 1.3: LCSS is very sensitve to the value of the threshold parameter.
The correspondence obtained by OSB is much more stable in spite of huge
differences in the value of the jump cost.

7

set ε, though in the literature ε is often set to one-quarter the standard devia-

tion of the normalized time series [13, 39]. We observe that the threshold ε is

static, i.e., it is used for all pairs of elements of two sequences.

One of the key features of the proposed OSB is the fact that the equality

of two elements is dynamic and it depends on other elements in their neigh-

borhoods in both sequences. The main difference between LCSS and OSB

is that LCSS optimizes over the length of the longest common subsequence,

while OSB directly optimizes the sum of distances of corresponding elements.

Moreover, the OSB penalty for skipping consecutive elements of the query se-

quence is proportional to the number of elements skipped, thus skipping one

outlier costs less than skipping a consecutive subsequence of several elements.

There is no direct penalty for skipping elements in LCSS, which often leads to

accidental matches.

OSB has a parameter called the jump cost, or C, which is the penalty for

skipping elements in the sequences. Unlike ε, C is not a threshold for pair-

wise equality of sequence elements, which makes the sequence matching results

significantly less sensitive to changes in its value. As an example, Figs. 1.2d

and 1.3e show the best correspondence found by OSB for the two sequences.

When C is changed from 0.1 to 0.02 (a change of 80%), still the correspon-

dences are identical (Fig. 1.3f). Contrast that with the correspondences from

LCSS after a change of 80% in ε in Figs. 1.3a and 1.3d. When C is decreased

8

98% from 0.1 to 0.002 (Fig. 1.3g), again the correspondences are identical ex-

cept for the extreme right tail of the sequences. In order to get the degenerate

correspondence equivalent of that shown for LCSS in Fig. 1.3d, C must be set

to 0.00002 (Fig. 1.3h).

The edit distance, originally used as a distance measure between strings,

has been adapted to work with sequences of real numbers. The edit distance

between two strings is the smallest number of primitive operations (inser-

tions, deletions, and substitutions) needed to transform one string into the

other. Two recent edit distance algorithms for sequences of real numbers,

Edit Distance with Real Penalty (ERP) [12] and Time Warp Edit Distance

(TWED) [35] have been proposed. In ERP, a deletion from one sequence is

treated as an insertion into the other sequence, and this inserted element is

called a gap element. When calculating the distance between two elements,

a constant value is used for gap elements and the L1 distance is used if both

elements are non-gap elements. Note that ERP can be viewed as a variant of

L1-norm except that it handles local time shifting, and as a variant of DTW

except that it is a metric. TWED also combines Lp-norms with edit distance

but uses the time stamps of the sequences when calculating the distance be-

tween elements. Using the time stamps of the elements controls the elasticity

of the measure.

DTW [42] and LCSS [23] can control the elasticity by setting a threshold

9

that determines if two elements may be matched or not; if the difference be-

tween the time stamps (indices) is less than this threshold, the elements may

be matched, otherwise the elements can not be matched. Though this con-

straint increases the efficiency of the algorithms, if the optimal solution lies

outside this window, it will not be found. TWED instead uses the difference in

the time stamps to linearly penalize the matching elements. This then favors

matching elements that have close time stamps.

Both ERP and TWED induce distances that satisfy the triangle inequality,

and are therefore metrics. Though OSB is not a metric, as discussed in [26, 32]

there are clear arguments from human perception that the distances induced

by human judgments are frequently nonmetric. Many well-established ma-

chine learning methods require the data to be metric, so non-metric distance

spaces are forced to be metric by embedding them into Euclidean spaces. The

distortion of the data that occurs with this embedding is assumed to be noise,

but little is known about the real information loss. So working directly with

non-metric distance spaces may better represent the real distances between

objects and not suffer from loss of information.

1.2 Imbalanced Data Sets

Most traditional learning systems assume that the class distribution in

data sets is balanced, an assumption that is often violated. There are many

10

real-world applications where the data sets are highly imbalanced, such as

oil spill detection from satellite images [29], credit card fraud detection [9],

medical diagnostics [38], and predicting telecommunication equipment fail-

ure [56]. In these data sets, there are many examples of the “normal” (the

majority/negative class), and very few examples of the “abnormal” (the mi-

nority/positive class). But often it is the rare occurrence, the “abnormal”,

which is the interesting or important occurrence, e.g. an oil spill. In data

mining, the rare occurrence is usually much more difficult to identify since

there are so few examples and most traditional learning systems are designed

to work on balanced data. These learning systems are biased towards the

majority class, focus on improving overall performance, and usually perform

poorly on the minority class. If a data set has say 999 examples of the normal

event and only one example of the abnormal event, a learning system that

predicts all examples as “normal” will be 99.9% accurate, but misclassify the

very important abnormal example.

1.2.1 Synthetic Data Points

Mining imbalanced data sets has been the focus of much research re-

cently [6, 16, 55], and one important direction is sampling strategies. Sampling

methods may include removing majority class data points (under-sampling) or

inserting minority class data points (over-sampling) in order to improve accu-

11

racy. Two well-known techniques for increasing the number of minority exam-

ples are random resampling and SMOTE (Synthetic Minority Over-sampling

TEchnique) [10]. In random resampling, minority class examples are randomly

replicated, but this can lead to overfitting. The SMOTE algorithm inserts syn-

thetic data into the original data set to increase the number of minority class

examples. The synthetic points are generated from existing minority class ex-

amples by taking the difference between the corresponding feature values of

a minority class example x and one of its nearest neighbors in the minority

class, multiplying each feature difference by a random number between 0 and

1, and then adding these amounts to the feature vector of x.

SMOTE and its variations, for example [11, 3, 21], have shown that they

can improve overall classification accuracy and also improve the learning of

the rare event. But SMOTE and its variations work only in feature space,

i.e., each example is represented as a point in n-dimensional space where n is

the number of features of each example. In these methods, synthetic points

are added as a weighted average of the Euclidean coordinates of two existing

points. However, the Euclidean distance is known to be unsuitable as a shape

dissimilarity measure even if shapes are represented as vectors of their contour

sample points. For example, the horse in Fig. 1.4c is computed as the average

of the Euclidean coordinates of the two horses in Fig. 1.4a and Fig. 1.4b. The

Euclidean coordinates were obtained as sequences of 2D coordinates of 100

12

(a) (b) (c)

Figure 1.4: (c) The mean horse computed by averaging corresponding sample
contour points of the aligned shapes in (a) and (b).

Figure 1.5: First row: the retrieval results of the mean horse from Fig. 1.4c.
Second row: the retrieval results of the ghost horse created by the averaging
in distance space of the two shapes in Figs. 1.4a and 1.4b.

aligned contour sample points. Although the feature points of both horses

correspond, it is difficult to recognize the shape in Fig. 1.4c as a horse. To

demonstrate the problem, we submitted the mean horse as a query to the

MPEG-7 CE-Shape-1 part B data set [30]. The top ten retrieval results are

shown in the first row of Fig. 1.5, ordered from left to right. Obviously none

of the retrieval results is correct, but they are similar to the mean horse. For

example, the tines of the forks are similar to the ’legs’ of the average horse.

The second row of Fig. 1.5 shows the retrieval results of the ’synthetic horse’

generated by the proposed approach, which are all correct. We used the Inner

Distance Shape Context (IDSC) [33] as the shape distance in both cases.

In addition, for some fields such as bioinformatics, image analysis, and

13

cognitive psychology, often the feature vectors are not available. Instead, in

these domains the data may be represented as a matrix of pairwise compar-

isons where typically each element of the matrix is the distance (similarity

or dissimilarity) between the corresponding original data points. This ma-

trix represents the distance space of the data. Often, this distance space is

non-metric because the distance function used to calculate the similarities or

dissimilarities between the pairs of data points does not satisfy the mathemat-

ical requirements of a metric function. For example, the distances between

time series are often non-metric due to warping. When only pairwise scores

are available, the feature space based approaches to adding synthetic points

cannot be used. In our experiments, we do not compare our synthetic points

with SMOTE or random resampling because SMOTE and random resampling

do not work in distance spaces, while the distinct advantage of the proposed

approach is that it can be used in distance spaces. Our approach to balancing

the data sets is to use supervised learning to increase the size of the minor-

ity class by inserting synthetic points directly into the distance space. Our

synthetic points do not have any coordinates, i.e., they are not points in any

vector space, which is why we call our synthetic points ghost points. But our

ghost points are points in distance space.

To show the flexibility of our approach for unbalanced data sets, we in-

sert ghost points into the distance spaces induced by two different distance

14

measures, Dynamic Time Warping (DTW) [7, 43] and Optimal Subsequence

Bijection (OSB) [31]. We choose support vector machines (SVMs) to perform

the classification because they are a fundamental machine learning tool and

they have a strong theoretical foundation [49], though ghost points can also be

uses with newer methods like LotkaVolterra derived models [25]. SVMs have

been very successful in pattern recognition and data mining applications on

balanced data sets. But when data sets are unbalanced, the SVM’s accuracy

on the minority/positive examples is poor. This is because the class-boundary

learned by the SVM is skewed towards the majority/negative class [59]. This

may lead to many positive examples being classified as negative (false nega-

tives), which in some situations can be very costly (e.g. missing an oil spill,

missing a cancer diagnosis). There are cost-sensitive SVMs that assign differ-

ent costs to different classification errors and the SVM attempts to minimize

misclassification costs instead of maximizing accuracy. Often though, in many

real-world situations, the misclassification costs are unknown. Also, how to

assign the costs is still an active research area and has not been solved. For

example, [63] discusses two major approaches to converting traditional clas-

sifiers into cost-sensitive classifiers, and [53] combines modifying the classifier

with changing the data distribution. Using ghost points eliminates the need

for cost-sensitive classifiers and our experimental results show that inserting

ghost points in both DTW distance spaces and OSB distance spaces can sig-

15

nificantly increase the SVM’s ability to learn the rare events. Furthermore, in

most cases, the addition of ghost points increases the SVM’s overall classifica-

tion accuracy.

1.3 Diffusion Process

Suppose there is a space describing some data set. Since differences be-

tween data in the same class can be very large and differences between data

in different classes can be very small, pairwise data comparison sometimes

has difficulty describing the dissimilarity correctly. Therefore, the distance

between two data point can be correctly described only if it is considered in

the context of other data points similar to them, which is the motivating idea

of using the diffusion process in time series classification.

In our approach, the influence of other data points is propagated as a

diffusion process on a graph formed by a given set of data points. However, as

the data space is sparse, in some cases the diffusion process can not propagate

properly. It is obvious that adding more data points to the data space would

make the estimation of the data manifold more accurate. In other words,

if the data space is properly densified, a diffusion process is able to better

reveal its underlying manifold structure. To the best of our knowledge, this is

the first time researchers try to solve the problem of densifying non Euclidean

data manifolds, and as our experimental results illustrate, the diffusion process

16

performs significantly better on the densified manifolds.

1.3.1 Relation to Other Approaches

In [60], a graph transduction learning approach based on label propagation

is introduced. It is the first approach in which the shape similarity of a pair of

shapes is computed in the context of other shapes as opposed to considering

only pairwise relations between two shapes. There are two key differences

in the proposed approach. First, our diffusion process framework does not

require label clamping as is the case in label propagation. Consequently, we

need less than 10 iterations while label propagation requires on the order

of 10,000 iterations. Second, they key step to improve the performance of a

diffusion process is the introduction of ghost points, which densify the manifold

structure allowing the diffusion process to better propagate.

In order to find relevant structures in complex geometries for classification

and clustering, Markov chain techniques have been combined with graph-based

methods. In [45], the L1 distance between probabilities of transition is used

as a metric between data points, and this metric is then employed to induce

class labels. Zhou et al [64] assume a metric to arbitrarily convey a probabil-

ity transition metric (proportional to weights) over the data to cluster it; [65]

also assumes a metric from the beginning to arbitrarily claim a probability

transition metric based on the original metric which is then used to propagate

17

labels using accumulated correlations; In [4], Azran assumes a metric over the

data to induce a probability transition metric over an M -NN graph (where

labeled points are absorbing), which is used to produce a probability distri-

bution over the labels of each unlabeled point. While our setting is similar to

these approaches, we treat the Markov random walks in a unsupervised set-

ting. In order to make it more suitable for shape space, the transition matrix

is focused on k nearest neighbors and point set correspondence is constructed

for robustness.

For metric embedding, one of the most popular dimensionality reduction

algorithms is Principal Component Analysis (PCA) [34]. PCA performs di-

mensionality reduction by projecting the original n-dimensional data onto the

d(¿ n)-dimensional linear subspace spanned by the leading eigenvectors of the

data’s covariance matrix. However, in many real world problems, there is no

evidence that the data is sampled from a linear subspace. Various researchers

have considered the case then the data lives on or close to a low dimensional

sub-manifold from random points lying on this unknown sub-manifold. Along

this direction, many subspace learning algorithms have been proposed, such

as Locality Preserving Projection [22], Locally Linear Embedding [41], and

ISOMAP [46]. The proposed synthetic points directly densify the data mani-

fold in the original distance space instead of the metric embedding. In other

words, we use metric embedding to add new synthetic data points in the orig-

18

inal distance space. A key feature of our approach is that we can do this

without distorting the original distances.

19

CHAPTER 2

Optimal Subsequence Bijection

2.1 Introduction

The Optimal Subsequence Bijection (OSB) works for the elastic matching

of two sequences of different lengths m and n:

a = (a1, . . . , am) and b = (b1, . . . , bn).

The goal of OSB is to find subsequences a′ of a and b′ of b such that a′ best

matches b′. Skipping (not matching) some elements of a and b is necessary

because both sequences may contain some outlier elements. However, skip-

ping too many elements of either sequence increases the chance of accidental

matches. To prevent this from happening, we introduce a penalty for skipping

which we call jump cost and denote it with C.

To formally define OSB, we need to first augment the sequences a and b

20

by first and last elements. To differentiate the original sequences a and b from

the augmented sequences, we will use the notation

ā = (a0, a1, . . . , am, am+1) and b̄ = (b0, b1, . . . , bn, bn+1).

The subsequences found with OSB using ā and b̄ will be denoted ā′ and b̄′;

ā′ will always contain the elements a0 and am+1 and b̄′ will always contain b0

and bn+1. As explained below, these added elements do not contribute to the

computed distance between the optimal subsequences a′ and b′.

2.2 The Algorithm

We assume that the distance function d used to compute the dissimilarity

value between elements of sequences a and b is given for (i, j) ∈ {1 . . .m} ×

{1 . . . n}. We do not have any restrictions on the distance function d other

than non-negativity, i.e., d(ai, bj) ≥ 0, and therefore any distance function is

possible. Usually, for sequences of real numbers we simply have the distance

d(ai, bj) = (ai−bj)
2, which is also the case for our experimental results reported

in Section 2.6. For the elements added to a and b, namely a0, am+1, b0, and

bn+1, we set d(a0, b0) = 0 and d(am+1, bn+1) = 0. In particular, we define

dosb(ai, bj) =

(ai − bj)
2 if 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n

0 if (i = 0 ∧ j = 0)∨
(i = m + 1 ∧ j = n + 1)

∞ otherwise

(2.1)

21

We want to select a subsequence a′ of the query sequence a by skipping

some outlier elements of a, so that each element of a′ matches to some element

of b in an order preserving manner with possibly skipping some outliers in b

as well. The optimal correspondence is obtained by optimizing the balance

between the dissimilarity of a′ to its image subsequence of b and the penalties

of skipping elements of a and of b.

The optimal correspondence can be found with a shortest path algorithm

on a DAG (directed acyclic graph), e.g., see Fig. 2.2. The nodes of the DAG

are all index pairs (i, j) ∈ {0 . . . m + 1} × {0 . . . n + 1} and the edge cost w is

defined as

w((i, j)(k, l)) =

((k − i− 1) + (l − j − 1)) · C + d(ak, bl)

if i < k ∧ j < l

∞ otherwise

(2.2)

Thus, the cost of an edge from node (i, j) to node (k, l) is the L1 distance of

vertices (i, j) and (k, l) in the matrix {0 . . .m+1}×{0 . . . n+1} times the jump

cost C plus the dissimilarity measure of elements ak and bl. In the example

DAG in Fig. 2.2, the purpose of the added nodes (0, 0) and (m+1, n+1) is to

have distinct source and destination vertices for the shortest path algorithm

and to allow the skipping of elements at the beginning and the end of a and b.

The output of OSB yields a correspondence defined as a monotonic injec-

22

tion

f : {i0, . . . im′} → {0, 1 . . . n + 1}

such that (i0, . . . im′) ⊆ (0, 1 . . .m + 1) is a subsequence, with i0 = 0, im′ =

m + 1, f(i0) = f(0) = 0, and f(im′) = f(m + 1) = n + 1. Thus we require

that the first and the last elements of ā and b̄ correspond. The sets of indices

{i0, . . . im′} and {f(i0), . . . f(im′)} define subsequences ā′ of ā and b̄′ of b̄, such

that f restricted to these sequences is a bijection, which explains the phrase

“subsequence bijection” in Optimal Subsequence Bijection (OSB). Our goal is

to find a subsequence bijection f that minimizes the function

1

m′

m′∑

k=0

w((ik, f(ik)), (ik+1, f(ik+1))). (2.3)

This means, we need to find subsequences ā′ = (ai0 , . . . aim′) of ā and b̄′ =

(bf(i0), . . . bf(im′)) of b̄ with a minimal total weight for the w defined in Eq. (2.2),

which explains the word “optimal” in Optimal Subsequence Bijection. Note

that we normalize the score by 1
m′ to get the average matching score per

matching pair of elements.

The OSB distance between two time series ā and b̄, obtained as the mini-

mum of (2.3), is denoted as OSB(ā, b̄). As stated above, we minimize Eq. (2.3)

by computing a shortest-path algorithm on the DAG. Pseudo code of our dy-

namic programming algorithm is given in Algorithm 1.

We illustrate the proposed method on a simple example. Fig. 2.1a demon-

strates the optimal correspondence found with OSB for two sequences a =

23

(20, 1, 2, 8, 6, 6, 8) and b = (5, 1, 2, 9, 15, 3, 5, 6, 20) with the jump cost C = 1.

The corresponding sequence indices computed by OSB (not the values) are

(2, 2), (3, 3), (4, 4), (5, 7), and (6, 8) as seen in Fig. 2.1b. The shortest path on

the DAG for these sequences is shown in Fig. 2.2. Observe that the outliers

a1 = 20, b4 = 15, b5 = 3, and b8 = 20 are skipped, which results in a small

distance between a and b, specifically, the OSB distance between a and b is 8.

Moreover, we also find an optimal one-to-one correspondence of the remain-

ing elements. For comparison, all the outliers are forced to participate in the

matching if DTW is used as illustrated in Figs. 2.1c and 2.1d, which leads to

a large distance between the two sequences; in this case the DTW distance

between a and b is 14.28.

2.3 OSB and Existing Distance Functions

A recursive definition of OSB that is suitable for dynamic programming

computation is given in Eq. (2.6). Eq. (2.6) optimizes the target function in

Eq. (2.3) by recursively finding the distance between the optimal subsequences

for (a0, . . . , am+1) and (b0, . . . , bn) or (a0, . . . , am) and (b0, . . . , bn+1) while in-

cluding the penalty for the skipped elements of ā and b̄ when matching am+1

and bn+1, then adding in the distance between elements am+1 and bn+1. For-

mulas (2.4) - (2.9) compare the recursive definition of OSB to definitions of

well-known sequence similarity measures. All definitions except that of the

24

(a) OSB

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

Sequence b

S
eq

u
en

ce
 a

(b) OSB

(c) DTW

1 2 3 4 5 6 7 8
1

2

3

4

5

6

Sequence b

S
eq

u
en

ce
 a

(d) DTW

Figure 2.1: Time series alignment example

Figure 2.2: The directed acyclic graph (DAG) that is created from the se-
quences shown in Fig. 2.1. The numbers in the nodes are the corresponding
row-column indices of the elements in the distance matrix.

25

squared Euclidean Distance (ED) in Eq. (2.4) are recursive. ED is a rigid

measure since it does not allow local shifting on the time axis and both time

series must be the same length.

OSB can be viewed as extension of DTW (though OSB also computes a

bijection of matched sequences). To see this, observe that the edge weight dtw

for DTW is defined as

dtw((i, j)(k, l)) = {
d(ak, bl) if i < k ∧ j < l ∧ ((k − i) + (l − j) = 1 ∨ 2)

∞ otherwise

This means that if i maps to j, then either k = i maps to l = j + 1

or k = i + 1 maps to l = j + 1 or k = i + 1 maps to l = j in the DTW

correspondence. Thus, in comparison to DTW, OSB allows penalized jumps.

The jump penalty is included in the edge cost w, which is a distinctive feature

of OSB. Analogous to DTW, the edge cost w of OSB can be easily extended to

impose a warping window constraint, i.e., we can limit the number of elements

that can be jumped over in one step by setting a maximal value for the index

differences k − i− 1 and l − j − 1.

For DTW, some nonnegative, local dissimilarity function d must be defined

for every pair of elements ai and bj, but that is the only restriction on the

distance space. Thus DTW is suitable to use on many types of sequences:

univariate, multivariate, continuous, nominal, etc., as long as an appropriate

d is defined. In practice though, for univariate time series, the L1-norm is

26

used, i.e. d(ai, bj) = |ai − bj|. The DTW distance between two time series,

denoted DTW (a, b), is defined in Eq. (2.5) (where d(ai, bj) is assumed to be the

L1-norm). Like DTW, OSB may use any pairwise, nonnegative dissimilarity

function d to define the distance space between elements, though in all of

our experiments we use the squared L2-norm between the original elements,

which is known to strengthen the influence of outliers. This allows us to better

identify the outliers and to jump over them.

LCSS does not optimize directly on the distance between the sequences but

instead on the length of the optimal subsequence, thus there is no “distance”

between two elements. Instead, if two elements match (according to some

threshold ε), then the subsequence length is increased by 1. Thus, the length

of the optimal subsequence between a and b, denoted LCSS(a, b) is computed

as in Eq. (2.7). To compute the distance between the two sequences, use

1− LCSS(a, b)/min(m, n).

For the two edit distance measures defined in (2.8) and (2.9), the only edit

operation supported is deletion of an element from a sequence, but it is treated

as an insertion of a null element into the other sequence. This null element is

indicated by Λ. For Edit Distance with Real Penalty (ERP) [12], the distance

between two elements is defined as

27

ED(a, b) =
m∑

i

|ai − bi|2 (2.4)

DTW (a, b) =

0 if m = n = 0
∞ if m = 0 ∨ n = 0
|am − bn|+ min{DTW (a1:i, b1:j) otherwise

|i = m− 1 ∨m, j = n− 1 ∨ n,

i + j < m + n}
(2.5)

OSB(ā, b̄) =

0 if m = n = 0
∞ if m = 0 ∨ n = 0
dosb(am+1, bn+1) + min{OSB(a0:i, b0:j) otherwise

+ (|m− i|+ |n− j|) · C
|i = 0 : m + 1, j = 0 : n + 1,

i + j < m + n + 2}
(2.6)

LCSS(a, b) = min

0 if m = 0 ∨ n = 0
1 + LCSS(a1:m−1, b1:n−1) if |am − bn| < ε

max{LCSS(a1:m−1, b), LCSS(a, b1:n−1) otherwise
(2.7)

ERP (a, b) =

∑n
1 |bi − g| if m = 0∑m
1 |ai − g| if n = 0

min{ERP (a1:m−1, b1:n−1) + derp(am, bn), otherwise
ERP (a1:m−1, b) + derp(am, Λ),
ERP (a, b1:n−1) + derp(Λ, bn)}

(2.8)

TWED(a, b) =

0 if m = n = 0
∞ if m = 0 ∨ n = 0
min{TWED(a1:m−1, b1:n−1) + dtwed(am, bn), otherwise

TWED(a1:m−1, b) + dtwed(am,Λ),
TWED(a, b1:n−1) + dtwed(Λ, bn)}

(2.9)

Comparing the Distance Functions

28

derp(ai, bj) =

|ai − bj| if ai, bj match

|ai − g| if bj = Λ

|bj − g| if ai = Λ

(2.10)

where g is a constant gap penalty. The authors of ERP use g = 0 and give

two justifications: firstly, when g = 0, the distance between sequences a and

b corresponds to the difference between the area under the curve of a and the

area under the curve of b; and secondly, then
∑

i ai =
∑

j a′j where a is the

original sequence and a′ is the transformed sequence.

Unlike DTW, LCSS, and ERP, Time Warp Edit Distance (TWED) uses

the time stamps of the elements, along with the values of the elements, when

computing the distance between two elements. For TWED, the distance be-

tween two elements is defined as

dtwed(ai, bj) =

dmatch if ai, bj match

ddela if bj = Λ

ddelb if ai = Λ

(2.11)

with

dmatch = dist(ai, bj) + dist(ai−1, bj−1)+

ν · (|tai
− tbj

|+ |tai−1
− tbj−1

|)
ddela = dist(ai, ai−1) + ν · (tai

− tai−1
) + λ

ddelb = dist(bj, bj−1) + ν · (tbj
− tbj−1

) + λ

where dist(ai, bj) is any Lp-norm, λ ≥ 0 is a constant penalty for deletion,

ν ≥ 0 is a constant that characterizes the stiffness of the elasticity, and |tai
−

29

tbj
| is the time-stamp difference of elements ai and bj respectively. Using

Eq. (2.11), the formal definition of the TWED distance, denoted TWED(a, b),

is given in Eq. (2.9).

Of the six time series distance measures shown here, only ED, ERP, and

TWED are metrics, but as discussed in Section 1.1.1 and in [26, 32], distances

induced by human judgement are often non-metric, so non-metric distance

spaces may better represent the actual space.

2.4 OSB Parameters and Time Complexity

There are up to four parameters for OSB. The first is the warping win-

dow which is similar to the warping window for DTW. The warping window

constant r restricts the distance between matching elements. In other words,

element ai from the query sequence can only match to an element bj from the

target sequence if |i−j| < r. The next two OSB parameters we call query skip

q and target skip t, which bound the number of elements that can be skipped

in the query and target, respectively. In the experimental results in Section

2.6 we set r = 5, q = 5, and t = 5 for all data sets. We do not train these three

parameters for any of our experiments, since OSB seems to be insensitive to

setting of these parameters. In contrast, the performance of DTW is evaluated

with respect to the best possible warping window r restriction.

The last parameter for OSB is the jump cost, the penalty for skipping

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165
Training Jumpcost for Lightning 2

Jumpcost

E
rr

or
 R

at
e

Fig. 2.3: An example of training the jump cost C and the resulting error rates
for the data set Lightning-2.

elements, and is the only parameter that we train. Because all the sequences

are normalized before matching, we can train in discrete steps from 0 to 4

using multiscale steps of 1.0, then 0.2, then 0.01, then 0.001. Fig. 2.3 shows

an example of training the jump cost for the data set Lightning-2. As discussed

in Section 1.1.1 and as seen in the figure, the resulting error rates are not very

very sensitive to changes in the value of C. Though the strategy for finding

the jump cost is very simple and the results are very good, the best jump cost

is found empirically. How to choose the optimal jump cost is an open question

that we will be addressing in the future.

It is well known that the time complexity of DTW is O(mn) for two se-

quences with m and n elements respectively. Since OSB considers all possible

jumps, its time complexity is O(m2n2). It is also well known that in practice

DTW is run with a warping window restriction r. Because the value of r can

31

be quite significant (up to 10% of m), the time complexity of DTW with this

warping window restriction is O(mr). We also impose the warping window

restriction r on OSB. In addition, we can limit the number of elements that

can be jumped over in one step by setting maximal values for the index differ-

ences q and t. With these restrictions, the time complexity of OSB is O(mrqt).

Since we set r = 5, q = 5, and t = 5 in all our experiments, our practical time

complexity of OSB is O(125m).

2.5 Implementation Details and Comparison

to OSB-07

This paper is an extension of work that was published in [31] (which we

will call OSB-07). Though OSB-07 performed quite well, there were some

weaknesses. The first improvement we make is that in Eq. (2.2) we now use

a weighted L1 distance between the vertices in the distance matrix instead

of a weighted Euclidean distance. There are two reasons for this. The first

is that the L1 distance has a natural interpretation: it is the number of el-

ements skipped in the query sequence plus the number of elements skipped

in the target sequence. The Euclidean distance has no such natural inter-

pretation. The second reason is that when compared to the L1 distance, the

Euclidean distance gives too much weight to large differences in the values of

32

the indices [19]. This favors moving along the diagonal, which in our case cor-

responds to skipping elements in both sequences. Having simultaneous outliers

in both sequences is much less likely than having outliers in only one sequence,

and the Euclidean distance is more apt to skip elements in both the query and

target sequences, instead of just skipping the outlier elements in one sequence.

Therefore, L1 distance is preferred.

A simple example is given in Fig. 2.4 where the numbers in the squares

are the indices in the distance matrix. Assume that the value in (4, 4) equals

the value in (2, 5), so that the choice of matching an element in the query

sequence with one in the target sequence lies solely on the distance between

the indices of the matrix. The Euclidean distance between (1, 1) and (4, 4) is

2.83, and between (1, 1) and (2, 5) is 3.0, thus query element 4 would match

with target element 4, skipping elements 2 and 3 in both sequences. On the

other hand, the L1 distance between (1, 1) and (4, 4) is 4.0, and between (1, 1)

and (2, 5) is 3.0, thus query element 2 would match with target element 5,

skipping elements only in the target sequence.

The second improvement of OSB over OSB-07 is that OSB-07 required

that either the first element of the query or the first element of the target be

matched, and also that the last element of the query be matched with a target

element. We have removed this restriction in OSB; now the first few and last

few elements of both the query and target may be skipped. This ability to

33

Fig. 2.4: The L1 distance (in red) versus Euclidean distance (in blue).

skip the first and last elements of the sequences of course makes OSB more

robust to outliers.

There is one exception to allowing the beginning and ending elements of the

sequences to be skipped. When one sequence is significantly shorter than the

other sequence, then the first and last elements of the query must participate

in the matching, otherwise there is too much flexibility and the likelihood of

accidental matches increases. As stated in Section 2.4, we put an upper bound

on the number of adjacent elements to search for a matching element (warping

window r) and an upper bound on the number of elements in the target that

can be skipped (target skip t). Let m be the length of the query sequence

and n be the length of the target sequence. Then if m + r + t < n, i.e., the

query is a partial sequence and significantly shorter than the target, we force

the first and last elements of the query to match with an element in the target

34

Input : Sequences a and b, warpWin, querySkip, targetSkip, jumpCost
Output: optDist - the distance between the optimal subsequences

m ← Length(a);1

n ← Length(b);2

// Create original distance matrix
for i ← 1 to m do3

for j ← 1 to n do4

d(i, j) ← Distance(ai, bj);5

end6

end7

// Create augmented distance matrix by adding an extra row to
beginning and end

// and an extra column to beginning and end. Then set very first and
very last

// element to zero
dist(1 : m + 2, 1 : n + 2) ← Inf;8

dist(2 : m + 1, 2 : n + 1) ← d(1 : m, 1 : n);9

dist(0, 0) ← 0;10

dist(m + 2, n + 2) ← 0;11

// Initialize weight matrix
weight(1 : m + 2, 1 : n + 2) ← Inf;12

weight(1, 1 : n + 2) ← dist(1, 1 : n + 2);13

weight(1 : m + 2, 1) ← dist(1 : m + 2, 1);14

for i ← 1 to m + 1 do // Index over rows15

// Find index of last query element that may be skipped
stopRowJump = Min(i + querySkip, m + 2);16

for j ← 1 to n + 1 do // Index over cols17

// Find index of last target element that may be skipped
stopColJump = Min(j + targetSkip, n + 2);18

// Difference between i and j must be smaller than warpWin
if Abs(i-j)≤ warpWin then19

for rowJump ← i + 1 to stopRowJump do // Second index over20

rows
for colJump ← j + 1 to stopColJump do // Second index over21

cols
// We favor shorter jumps by multiplying by jumpCost
newWeight = weight(i, j) + dist(rowJump, colJump) +22

[(rowjump− i− 1) + (k − j − 1)] ∗ jumpCost;
if newWeight < weight(rowJump, colJump) then23

weight(rowJump, colJump) = newWeight;24

end25

end26

end27

end28

end29

end30

optDist = weight(m + 2, n + 2);31

Algorithm 1: Calculating the OSB for Two Sequences a and b

35

sequence. In this case, to find the distance between the optimal subsequences,

two changes need to be made to Algorithm 1. To force the first element of the

query to participate in the matching, change line 17 to for j ← i to n+1 do .

To force the last element of the query to participate in the matching, change

line 31 to optDist = Min(weight(m, 2 : n)).

In [31], we reported the performance of OSB-07 on nineteen of the UCR

data sets [28]. OSB improves the results of OSB-07 on sixteen of the data sets

by as much as 17.7 percentage points, with a mean improvement of 4.0 per-

centage points. On one data set (Two Patterns) the performance is identical,

and on two data sets (Face All and Coffee) OSB does worse than OSB-07 (by

3.4 and 3.6 percentage points respectively). On partial sequences from the

MPEG-7 data set [30], the performance of OSB-07 and OSB is similar.

2.6 Experimental Results

To demonstrate the effectiveness of OSB compared to other similarity mea-

sures (both metric and non-metric), we test OSB on the benchmark time se-

ries data sets published on the UCR Time Series Classification/Clustering

Page [28] and on the MPEG-7 Core Experiment CE-Shape-1 data set [30].

These data sets are online to serve the data mining/machine learning commu-

nity as an effort to encourage reproducible research for time series classification

and clustering, and for shape matching.

36

2.6.1 The UCR Time Series Data Sets Results

The UCR Time Series data repository has available twenty data sets from

various domains. The time series lengths range from 60 to 637 and the number

of classes in a data set ranges from 2 to 50. Each data set is divided into a fixed

training set and testing set. The number of examples in a training set ranges

from 24 to 1000, and the number of testing examples ranges from 28 to 6174.

See Table 2.1 for the characteristics of the data sets. For these twenty data

sets, we perform classification based on the distance-wise 1-nearest-neighbor

(1NN). For each time-series in the test set, we calculate its distance to every

time series in the training set. The label of the training sequence that is closest

to the test sequence is assigned to the test sequence. To calculate the error rate

of the classifier, let c be the number of test time series correctly labeled, and t

be the total number of test time series. Then errorrate = 1− c/t; hence the

smaller the value, the better the result. The table published on [28] reports

the 1NN classification results for three methods: Euclidean distance (ED),

Dynamic Time Warping (DTW), and DTW with best scoring warping window

(DTW-WW). The table published in [35] also reports the 1NN classification

results for Longest Common Subsequence (LCSS), Edit Distance with Real

Penalty (ERP), and optimized Time Warp Edit Distance (OTWED). The

results comparing these six classifiers to OSB is shown in Table 2.1.

The table shows that OSB outperforms the other six distance measures on

37

N
u
m

b
e
r

S
iz

e
o
f

S
iz

e
o
f

T
im

e

o
f

T
r
a
in

in
g

T
e
st

in
g

S
e
r
ie

s
D

T
W

D
A
T
A

S
E

T
C

la
ss

e
s

S
e
t

S
e
t

L
e
n
g
th

E
D

W
W

D
T

W
L
C

S
S

E
R

P
O

T
W

E
D

O
S
B

S
y
n
th

et
ic

C
o
n
tr

o
l

6
3
0
0

3
0
0

6
0

0
.1

2
0

0
.0

1
7

0
.0

0
7
X

*
0
.0

4
7

0
.0

3
6

0
.0

2
3

0
.0

2
0

G
u
n
-P

o
in

t
2

5
0

1
5
0

1
5
0

0
.0

8
7

0
.0

8
7

0
.0

9
3

0
.0

1
3
X

0
.0

4
0

0
.0

1
3
X

0
.0

2
0

C
B

F
3

3
0

9
0
0

1
2
8

0
.1

4
8

0
.0

0
4

0
.0

0
3
X

0
.0

0
9

0
.0

0
3
X

0
.0

0
7

0
.0

0
4

F
a
ce

(a
ll
)

1
4

5
6
0

1
6
9
0

1
3
1

0
.2

8
6

0
.1

9
2

0
.1

9
2

0
.2

0
1

0
.2

0
2

0
.1

8
9
X

*
0
.1

9
0

O
S
U

L
ea

f
6

2
0
0

2
4
2

4
2
7

0
.4

8
3

0
.3

8
4

0
.4

0
9

0
.2

0
2
X

*
0
.3

9
7

0
.2

4
8

0
.4

0
9

S
w

ed
is

h
L
ea

f
1
5

5
0
0

6
2
5

1
2
8

0
.2

1
3

0
.1

5
7

0
.2

1
0

0
.1

1
7

0
.1

2
0

0
.1

0
2

0
.0

8
5
X

*

5
0

W
o
rd

s
5
0

4
5
0

4
5
5

2
7
0

0
.3

6
9

0
.2

4
2

0
.3

1
0

0
.2

1
3

0
.2

8
1

0
.1

8
7
X

*
0
.2

5
7

T
ra

ce
4

1
0
0

1
0
0

2
7
5

0
.2

4
0

0
.0

1
0

0
.0

0
0
X

*
0
.0

2
0

0
.1

7
0

0
.0

5
0

0
.0

3
0

T
w

o
P
a
tt

er
n
s

4
1
0
0
0

4
0
0
0

1
2
8

0
.0

9
0

0
.0

0
2

0
.0

0
0
X

0
.0

0
0
X

0
.0

0
0
X

0
.0

0
1

0
.0

0
0
X

W
a
fe

r
2

1
0
0
0

6
1
7
4

1
5
2

0
.0

0
5

0
.0

0
5

0
.0

2
0

0
.0

0
0
X

*
0
.0

0
9

0
.0

0
4

0
.0

0
1

F
a
ce

(f
o
u
r)

4
2
4

8
8

3
5
0

0
.2

1
6

0
.1

1
4

0
.1

7
0

0
.0

6
8

0
.1

0
2

0
.0

3
4
X

*
0
.0

4
5

L
ig

h
tn

in
g
2

2
6
0

6
1

6
3
7

0
.2

4
6

0
.1

3
1
X

0
.1

3
1
X

0
.1

8
0

0
.1

4
8

0
.2

1
3

0
.1

3
1
X

L
ig

h
tn

in
g
7

7
7
0

7
3

3
1
9

0
.4

2
5

0
.2

8
8

0
.2

7
4

0
.4

5
2

0
.3

0
1

0
.2

4
7

0
.1

9
2
X

*

E
C

G
2

1
0
0

1
0
0

9
6

0
.1

2
0

0
.1

2
0

0
.2

3
0

0
.1

0
0
X

0
.1

3
0

0
.1

0
0
X

0
.1

0
0
X

A
d
ia

c
3
7

3
9
0

3
9
1

1
7
6

0
.3

8
9

0
.3

9
1

0
.3

9
6

0
.4

2
5

0
.3

7
8

0
.3

7
6

0
.3

5
8
X

*

Y
o
g
a

2
3
0
0

3
0
0
0

4
2
6

0
.1

7
0

0
.1

5
5

0
.1

6
4

0
.1

3
7

0
.1

4
7

0
.1

3
0
X

*
0
.1

4
2

F
is

h
7

1
7
5

1
7
5

4
6
3

0
.2

6
7

0
.2

3
3

0
.2

6
7

0
.0

9
1

0
.1

2
0

0
.0

5
1
X

*
0
.1

0
3

B
ee

f
5

3
0

3
0

4
7
0

0
.4

6
7

0
.4

6
7

0
.5

0
0

0
.5

3
3

0
.5

0
0

0
.5

3
3

0
.4

3
3
X

*

C
o
ff
ee

2
2
8

2
8

2
8
6

0
.2

5
0

0
.1

7
9
X

0
.1

7
9
X

0
.2

1
4

0
.2

5
0

0
.2

1
4

0
.2

8
6

O
li
v
eO

il
4

3
0

3
0

5
7
0

0
.1

3
3

0
.1

6
7

0
.1

3
3

0
.8

0
0

0
.1

6
7

0
.1

6
7

0
.1

0
0
X

*

T
o
ta

l
N

u
m

b
e
r

o
f
B

e
st

S
c
o
r
e
s

p
e
r

M
e
th

o
d

0
2

6
5

2
7

8

T
o
ta

l
N

u
m

b
e
r

o
f
U

N
IQ

U
E
L
Y

B
e
st

S
c
o
r
e
s

p
e
r

M
e
th

o
d

0
0

2
2

0
5

5

T
ab

le
2.

1:
T

h
e

1N
N

cl
as

si
fi
ca

ti
on

re
su

lt
s

fo
r

va
ri

ou
s

ti
m

e
se

ri
es

d
is

ta
n
ce

m
ea

su
re

s
on

th
e

U
C

R
d
at

a
se

ts
.

B
ol

d
ed

,
ch

ec
ke

d
re

su
lt

s
in

d
ic

at
e

b
es

t
sc

or
es

.
A

st
er

is
k
s

in
d
ic

at
e

u
n
iq

u
el

y
b
es

t
sc

or
es

.

38

eight of the twenty data sets, and is uniquely the best on five. The next best

performer is OTWED, which is best on seven of the data sets and uniquely

best on five. DTW is best on six of the data sets and uniquely best on two.

LCSS achieves the lowest error rate on five data sets and is uniquely the lowest

on two. ERP and DTW-WW are the best on two data sets each, though

neither have uniquely best scores. Of the five data sets where OSB has the

uniquely best performance, OSB improves the error rate on Lightning 7 by

5.5 percentage points with an error rate of 0.192, OSB improves the error rate

of Beef and Olive oil by more than 3 percentage points with error rates of

0.433 and 0.100 respectively, and it improves the error rate of Swedish Leaf

and Adiac by more than 1.5 percentage points with error rates of 0.085 and

0.358 respectively.

As these experimental results clearly demonstrate, OSB has the best over-

all performance, although it is not always superior to DTW, LCSS, ERP, or

OTWED. Consequently, skipping outlier elements as done by OSB can signif-

icantly improve matching results for many real data sets.

2.6.2 The MPEG7 Data Set Results

MPEG-7 is widely used to test shape classification and retrieval methods.

It contains 1400 binary images consisting of 70 object classes (e.g. ”Bird”)

and within each class there are 20 shapes, for a total of 1400 shapes. For our

39

experiments, each shape is represented with 100 equidistant sample points on

the contour, and these points are converted into sequences by calculating the

curvature of each point with respect to its five neighbors on each side. This

yields 1400 sequences of real numbers, each of length 100. This particular

transformation makes the sequence representation invariant to rotation and

scale changes. In other words, the shape of a cell phone with its antenna

pointing up can still match with the same cell phone shape scaled and rotated

so that is now smaller and the antenna is pointing down. To obtain our results,

we compute the distance between every shape in the data set and all other

shapes. Because in the shape domain both classification and retrieval are

important, we report the number of shapes from the same class (based on

the computed distance) among the 1, 5, 10, and 20 most similar shapes. In

addition, we report the bull’s-eye retrieval rate. Among the 40 most similar

shapes for each query, the bulls-eye retrieval rate is the ratio of the total

number of shapes from the same class to the highest number possible (which

is 1400× 20), thus the best possible score is 1.0.

Because the starting point of the shape contour is not known when calcu-

lating the representative sequence, one sequence representing say a horse may

begin on the nose, while another horse sequence may begin on the tail. For this

reason, for all experiments reported in this section, we use a sliding window

of size 5 when calculating the distance between two shapes. To use the sliding

40

OSB LCSS DTW

C = 0.03 ε = 0.45 r = 3

1NN 0.963X 0.955 0.912

5NN 0.872X 0.847 0.780

10NN 0.779X 0.752 0.678

20NN 0.651X 0.627 0.557

Bulls-eye 0.724X 0.719 0.624

Table 2.2: The retrieval results on the MPEG-7 data set for various distance

measures. Bolded, checked results indicate best scores.

window, we first calculate the distance between the query and the elements

1 - 100 of the target shape. Then we circularly shift the target sequence by

5 points to the left and again calculate the distance between the query and

target, and so on until the target has been circularly shifted 20 times. Of

these 20 distances between a query and target pair, we choose the minimum

distance.

Full Sequences

In Table 2.2 we report the results of OSB, LCSS, and DTW when both the

query sequence and the target sequence are of length 100. Each method has one

parameter to train: the jump cost C for OSB, the threshold ε for LCSS, and

the warping window r for DTW. The best value for each parameter is shown in

the table. As can be seen from the table, OSB outperforms LCSS and DTW

41

Full-length Targets Targets using Corresp. Window

OSB LCSS DTW OSB LCSS DTW ED

1NN 1.00X 0.40 0.10 1.00X 0.80 0.50 0.70

5NN 0.86X 0.26 0.06 0.86X 0.70 0.38 0.66

10NN 0.82X 0.28 0.05 0.82X 0.59 0.33 0.46

20NN 0.69X 0.23 0.04 0.69X 0.47 0.28 0.31

Bulls-eye 0.79X 0.33 0.09 0.79X 0.57 0.37 0.40

Table 2.3: The retrieval results on the MPEG-7 data set for ten partial query

sequences. Bolded, checked results indicate best scores.

in all classification and retrieval results. OSB attains a 1NN classification

rate of 96.3% while the next best, LCSS, attains a 1NN classification rate of

95.5%, and DTW attains 91.2%. For the bull’s-eye score, OSB has a 72.4%

retrieval rate, while LCSS and DTW have a retrieval rate of 71.9% and 62.4%

respectively.

Partial Sequences

The goal of this section is to test OSB’s ability as a measure for partial

sequence similarity. Our query sequences represent significant contour parts

of shapes in the MPEG-7 data set. We manually select ten query sequences

as contour segments representing shapes from ten different classes. They are

represented as the black parts of the contours in the first column in Fig. 2.5.

The number of points used for each partial sequence ranges from 30 to 57. We

then convert the query segments into sequences by calculating the curvature of

42

each point with respect to its 5 neighbors on each side, giving query sequences

of length 10 less than the original number of points for each segment.

We compare each partial query sequence against all 1400 targets of the

data set. We also use the same query and target sequences with three other

algorithms: LCSS, DTW, and ED. We compute the distances between the

queries and targets in two ways. First, we compare each query against targets

of length 100 (full-length), using the sliding window described above. The first

three columns of results in Table 2.3 report the retrieval rates using these full-

length targets. As seen in the results, this evaluation puts DTW at a severe

disadvantage since it cannot skip any elements in the target, and therefore all

100 elements of the target must participate in the matching of the 20 to 47

elements of the query. In order to eliminate this problem, we also compute the

distances using a correspondence window. If the length of the partial query

sequence is m, we use only the first m + 10 elements of the target sequence

in the correspondence window. Because we also use the sliding window, the

query does get compared to the entire target, and again we choose the min-

imum distance among the 20 distances computed for the query/target pair.

The results using the correspondence window are reported in the next three

columns of results in Table 2.3. The last column reports the results for ED

on the partial query sequences. Since ED requires that the query and target

sequence be the same length, the size of the correspondence window matches

43

bird:17

bone:01

cell:15

crown:16

glas:13

bird:17 bird:19 ray:03 bird:16 dog:08 dog:04

bone:01 bone:07 bone:11 bone:10 bone:04 bone:13

cell:15 cell:16 cell:19 cell:12 cell:10 cell:08

crown:16 crown:01 dev1:05 crown:11 dev1:13 dev1:18

glas:13 glas:01 glas:02 glas:05 glas:03 glas:12

fish:09

rat:16

fount:17

watch:16

stef:01

fish:09 fish:05 fish:19 fish:02 fish:11 horse:05

rat:16 rat:01 rat:10 rat:06 rat:11 rat:18

fount:17 fount:16 fount:06 fount:15 fount:19 fount:03

watch:16 watch:17 watch:15 watch:02 watch:14 watch:20

stef:01 stef:07 stef:13 stef:03 stef:02 stef:12

Fig. 2.5: OSB results on the MPEG-7 data set for 10 partial query sequences
on full-length targets. Each contour is identified by label:id. The first col-
umn shows the query part (in black) in its original contour (red). Columns 2
through 7 are the top six matches out of the 1400 target shapes. The black
points on the targets indicate the corresponding points as computed by OSB.

44

the length of the query.

To avoid bias in the classification results, we exclude from the 1NN to

10NN results any self-matching (see Fig. 2.5 for the top six matches). Because

OSB always matches a partial sequence to its original sequence, the 1NN

result that we report in Table 2.3 is actually the second best match; the

5NN result is actually the number of correct classifications from the second

to sixth best match; and the 10NN results come from the second to eleventh

best matches. We use this reporting method for DTW, LCSS, and ED also.

From the table, it is clear that OSB performs significantly better than any

of the other algorithms. OSB is the only algorithm to achieve 100% retrieval

rate, with or without correspondence window, in the 1NN classification (refer

to third column in Fig. 2.5); using a correspondence window, LCSS’s best

result is 80%, DTW’s is 50%, and ED’s is 70%. OSB has an 86% retrieval

rate for 5NN, which is 16 percentage points better than LCSS, 48 percentage

points better than DTW, and 20 percentage points better than ED. What is

extremely interesting is that OSB has the exact same results whether using

the full-length targets or the correspondence window. For both LCSS and

DTW, their performance is significantly improved by using the correspondence

window. LCSS’s 1NN rate goes from 40% to 80% after using the window,

and DTW goes from 10% to 50%, but neither can compare with the results

obtained by OSB.

45

Fig. 2.5 shows, for each of the partial sequence queries, the 6 most similar

shapes after running OSB. It can be observed that the performance of OSB is

actually better than is reflected by the classification based on class labels. For

example, the query contour segment representing a bird head in the first row

matches to two dog heads, which actually does have a very similar shape in

these contours. The best match for each segment (shown in the second column)

is the same shape from which we take the query segment. This holds for all the

queries and is not a trivial result. Because of the sliding window of size 5 we

use to position the starting point of the target sequence, the query and target

sequences are not identical. In fact, DTW without the correspondence window

can find only 1 of the 10 queries’ original shapes, DTW with the window is

able to find only 5 of the queries’ original shapes, and ED can find only 6 of

the 10. LCSS, like OSB, is able to find all 10 original query shapes.

We highlight that the performance of OSB for 5NN retrieval is 80 percent-

age points higher than the performance of DTW without a correspondence

window, and using a correspondence window, OSB is 48 percentage points

higher than that of DTW, 16 percentage points higher than that of LCSS,

and 20 percentage points higher than ED. It may be possible to further im-

prove the performance of LCSS, DTW, and ED, by varying the size of the

correspondence window, but this would add one more parameter to train and

increase the time complexity of the algorithms. The excellent performance

46

of OSB illustrates that such a window size parameter is not needed, since

OSB computes a bijective embedding of the query sequence. This fact clearly

demonstrates that OSB is more suitable for partial sequence similarity.

47

CHAPTER 3

Ghost Points

3.1 Introduction

In many applications, only distance (or equivalently similarity) information

is available, in which case operations in vector space cannot generate synthetic

points. This is the case when the data points do not have any coordinates, or

the data points have coordinates but the Euclidean distance does not reflect

their structure. Consequently, a distance measure is used that is not equivalent

to the Euclidean distance, e.g., [31, 7]. For this type of data, researchers usually

utilize embeddings to low dimensional Euclidean spaces. However, embedding

implies distance distortion. It is known that not every four point metric space

can be isometrically embedded into an Euclidean space Rk, e.g., see [36].

Definition 3.1. A metric on a set X is a distance function ρ : X ×X → R,

48

Fig. 3.1: (a) is an example of a 4-point metric space that cannot be embedded
into a Euclidean space. (b) shows that the points b, a, and d are collinear
after embedding, and so are the points c, a, and d. Thus points b and c are
the same point after embedding as shown in (c).

such that the following axioms hold:

1. ρ(x, y) ≥ 0 (non-negativity)

2. ρ(x, y) = ρ(y, x) (symmetry)

3. ρ(x, y) = 0 ⇔ x = y (positive definiteness)

4. ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (triangle inequality)

for any x, y, z ∈ X.

Definition 3.2. A metric space is an ordered pair (X, ρ), where X is a set of

points, and ρ is metric on X, that is, a distance function ρ : X ×X → R.

Definition 3.3. Let Y and Z be two metric spaces. We say that a mapping

f of the space Y into Z is an isometric embedding if distZ(f(y1), f(y2)) =

distY (y1, y2).

49

A simple example where distances are not preserved when mapping a four

point metric space to Rk is presented in [20]. Given the metric space (X, ρ)

defined in Figure 3.1a, assume there exists a mapping f : X = {a, b, c, d} → Rk

for some k where f preserves the distances. The triangle inequality holds

for the elements a, b, and d; in fact ρ(b, d) = ρ(b, a) + ρ(a, d) and because

of the equality, the mapped points f(b), f(a), and f(d) are collinear in the

space Rk. This also holds for points a, c, and d, i.e., they are collinear in

Rk (Figure 3.1b). Since both lines have two points in common, they must be

the same line (Figure 3.1c). But then f(b) = f(c) contradicting the fact that

the original distance between b and c is 2. Therefore the assumption that f

preserves the distances is false.

Definition 3.4. In this paper, a distance space is an ordered pair (X, ρ), where

X is a set of points and ρ : X × X → R is a distance function that satisfies

the first two axioms and the ⇐ direction of axiom 3 from Definition 3.1.

Clearly, we would like ρ to be as close as possible to a metric, but this is not

always possible, e.g., there are clear arguments from human visual perception

that the distances induced by human judgments are often non-metric [32].

50

3.2 Definition of Ghost Points

The key observation of the proposed approach is that although not every

four point metric space can be embedded into a Euclidean space, every three

point metric space can be isometrically embedded into the plane R2. Let

(∆, ρ), where ∆ = {x, a, b} ⊆ X, be a metric space with three distinct points.

Then it is easy to map ∆ to the vertices of a triangle on the plane. For

example, we can construct an isometric embedding h : ∆ → R2 by setting

h(a) = (0, 0) and h(b) = (ρ(a, b), 0). Then h(x) is uniquely defined as a

point with nonnegative coordinates such that its Euclidean distance to h(a) is

ρ(x, a) and its Euclidean distance to h(b) is ρ(x, b). h : ∆ → R2 is an isometric

embedding, since for any two points y, z ∈ ∆, ρ(y, z)2 = ||y − z||2, where || · ||

is the standard L2 norm that induces the Euclidean distance on the plane. We

stress that this construction does not require that (X, ρ) be a metric space,

but it does require that the three point space (∆, ρ) be a metric space. Below

we will generalize this construction to the case when ∆ is not a metric space.

Definition 3.5. Given any two points a, b in a distance space X, we define

a ghost point e induced by a and b using the construction e = µ(a, b) =

h−1(1
2
(h(a) + h(b)). For every x ∈ X, the distance from x to e, ρ(x, µ(a, b)), is

computed as follows:

1. If the three point subspace ∆ = {x, a, b} is a metric, then use Equa-

51

tion 3.1 below.

2. If ρ(a, b) > ρ(x, a) + ρ(x, b), then use Equation 3.2 below.

3. (a) If ρ(x, a) > ρ(x, b) + ρ(a, b), then use Equation 3.3 below or

(b) If ρ(x, b) > ρ(x, a) + ρ(a, b), then use Equation 3.4 below.

Cases 2 and 3 in this definition apply when ∆ is not a metric space.

Let µ(a, b) denote the mean of two points a, b. If a, b ∈ R, then we have

the usual formula µ(a, b) = 1
2
(a + b) (see Figure 3.2a, where red points are

original data, the green point e is the ghost point and e = µ(a, b)).

Our first key contribution is the definition of µ(a, b) for any two points a, b

in a distance space X. To define µ(a, b), we need to specify ρ(x, µ(a, b)) for

every x ∈ X. There are three cases depending on whether the three point

subspace ∆ = {x, a, b} ⊆ X is a metric or not.

Case 3.1. Type1: ∆ = {x, a, b} ⊆ X is a metric subspace

We first isometrically embed ∆ into the plane R2 by h. We define

µ(a, b) = h−1(1
2
(h(a) + h(b)). Since h(∆) defines vertices of a triangle on the

plane, we can easily derive that

||h(x)− h(a) + h(b)

2
||2 =

||h(x)− h(a)||2
2

+
||h(x)− h(b)||2

2
− ||h(a)− h(b)||2

4

52

(a) Type 1 ghost points.

(b) Type 2 ghost points (c) Type 2 ghost points

(d) Type 3 ghost points (e) Type 3 ghost points

Fig. 3.2: (a) shows the construction of ρ(x, e) for e = µ(a, b) for a triple of
points that satisfy the triangle inequality. (b) shows a triple of points that
cannot construct a triangle. The way to calculate ρ(x, e) for (b) is shown
in (c). Another way in which the triangle inequality is violated is shown in
(d) and the approach to calculating ρ(x, e) is shown in (e).

53

Since h is an isometry and µ(a, b) = h−1(1
2
(h(a) + h(b)), we obtain (see

Figure 3.2a)

ρ(x, µ(a, b))2 =
1

2
ρ(x, a)2 +

1

2
ρ(x, b)2 − 1

4
ρ(a, b)2 (3.1)

Consequently, Equation 3.1 defines the distance of every point x ∈ X to

the new point µ(a, b), which we call the mean of a and b. By computing the

distances of µ(a, b) to all points in X, we define a new point µ(a, b), and the

augmented set X ′ = X ∪ {µ(a, b)} is also a distance space. We stress that

to add a new point µ(a, b) to X we do not need to compute the embedding

h. We use h only to derive Equation 3.1. Moreover, since the embedding h is

an isometry, Equation 3.1 defines locally correct distances from µ(a, b) to all

points in X. Since we can compute the correct distances without explicitly

computing the mapping h, this is similar to the kernel trick [2].

Case 3.2. Type 2: ∆ = {x, a, b} ⊆ X is not a metric subspace and ρ(a, b) >

ρ(x, a) + ρ(x, b)

In Equation 3.1 we assume that the three point space (∆, ρ) is a metric

space. Thus, we assume that the local structure of any distance space X can

be locally approximated by the metric space, which is also the assumption

for embedding approaches [41, 46]. However, for some point triples ∆ =

{x, a, b} ⊆ X, (∆, ρ) is not a metric space, which may lead to a negative

distance in Equation 3.1. This is the case if ρ(a, b) > ρ(x, a) + ρ(x, b). Then a

54

triangle with vertices h(a), h(b), and h(x) cannot be constructed on the plane,

as illustrated in Figure 3.2b. Since a single point h(x) on the plane does

not exist, we map h(x) to two different points denoted xa and xb such that

ρ(x, a) = ||h(a) − xa|| and ρ(x, b) = ||h(b) − xb||. Without loss of generality

we assume that ρ(x, a) > ρ(x, b). Then it is possible to position points xa and

xb on the plane such that (see Figure 3.2c): ρ(x, a) = ||h(a) − xa||, ρ(x, b) =

||h(b)− xb||, and ||h(µ(a, b))− xa|| = ||h(µ(a, b))− xb||.

Thus, both points xa and xb are the same distance away from h(µ(a, b)),

and this distance is equal to 1
2
||h(a)− h(b)|| − ||xb − b||. Therefore, we define

h(x) = {xa, xb} and

ρ(x, µ(a, b)) =
1

2
ρ(a, b)− ρ(x, b) (3.2)

Formally, h maps x to a single point in a quotient space R2/{xa, xb}, and

h remains an isometric embedding but to the quotient space.

Case 3.3. Type 3: ∆ = {x, a, b} ⊆ X is not a metric subspace and either

ρ(x, a) > ρ(x, b) + ρ(a, b) or ρ(x, b) > ρ(x, a) + ρ(a, b)

In this case, as in Case 3.2, (∆, ρ) is not a metric space and again may

lead to a negative distance in Equation 3.1. This occurs if either ρ(x, a) >

ρ(x, b) + ρ(a, b) or ρ(x, b) > ρ(x, a) + ρ(a, b). Then a triangle with vertices

h(a), h(b), h(x) cannot be constructed on the plane, as illustrated in Fig-

ure 3.2d. Since a single point h(x) on the plane does not exist, we again map

55

h(x) to two different points denoted xa and xb such that ρ(x, a) = ||h(a)−xa||

and ρ(x, b) = ||h(b)− xb||.

Without loss of generality we assume that ρ(x, a) > ρ(x, b) + ρ(a, b). In

this case, we first position point xb on the plane so that the angle h(a)h(b)xb is

straight without changing the distance from h(b) to xb (see Figure 3.2e). Then

we use the triangle h(a)h(b)xb to define the ghost point. When doing so we

ignore the distance ρ(x, a) in this construction or equivalently, only consider

the assignment h(x) = xb. Unlike Case 3.2, it is impossible to make the

assignments h(x) = xa and h(x) = xb consistent, hence we need to ignore one

of them. Since ρ(x, b) is significantly smaller than ρ(x, a), and small distances

are less likely to be the result of noise, we rely only on h(x) = xb. We can

then use the right triangle h(a)h(b)xb to define

ρ(x, µ(a, b))2 = ρ(x, b)2 +
1

4
ρ(a, b)2. (3.3)

Similarly, if ρ(x, b) > ρ(x, a) + ρ(a, b), we define

ρ(x, µ(a, b))2 = ρ(x, a)2 +
1

4
ρ(a, b)2. (3.4)

The so defined distances to ghost points are guaranteed to be nonnegative

and symmetric by their construction. Hence the space augmented by ghost

points remains a distance space. However, it may happen that two different

points have distance zero, and this is possible even if X is a metric space.

For example, assume that X is a sphere of radius 1 and that points a and b

56

Fig. 3.3: Example of a unit sphere where ρ(h(e), h(x)) = 0.

are on the north and south poles (see Figure 3.3). For any point x ∈ X on

the equatorial line the distance between µ(a, b) and x becomes ρ(x, µ(a, b))2 =

0.5(π/2)2 + 0.5(π/2)2 − 0.25π2 = 0. Therefore, every point on the equatorial

line has a distance of 0 to the ghost point µ(a, b). This example also shows

that adding ghost points to a metric space may lead to a non-metric space.

We stress however that the intended application of the proposed method is to

densify distance spaces that are non-metric, since such spaces are common in

many cognitively motivated tasks such as distances between images, shapes,

text documents, and so on. We also stress that though global metricity is not

necessary, local metricity is preferred. If the triple of points a, b, and x is close

to a metric, then the embedding of the three points is uniquely defined and

Equation 3.1 can be used to calculate the distance between x and the ghost

point.

If the space X is finite, i.e., X = {x1, . . . , xn}, then the distance function

57

ρ : X ×X → R≥0 is represented by a square matrix Mρ(X). Each row of the

square distance matrix Mρ(X) is the distance of one data point x to all data

points in the data set, i.e., for all y ∈ X, Mρ(x, y) = ρ(x, y). The matrix for

X∪{µ(a, b)} is obtained by simply adding one row and one column to Mρ(X),

with each entry computed using Equations 3.1, 3.2, 3.3, or 3.4.

Thus, the proposed approach can be applied to metric and non-metric

distance spaces, and our construction guarantees that the distances to all

ghost points are nonnegative and symmetric. In Section 3.4.3, we show the

results of experiments that count the number of Type 1, Type 2, and Type3

computations performed on eighteen data sets using distance spaces induced

by two different distance functions, OSB and DTW.

3.3 Visualizing Data

High-dimensional data, such as time series, are often hard to visualize,

though visualization can help in the analysis of trends, periodicity, motifs,

and the like. When the actual time series sequences are available, line graphs

can be a very effective tool to visualize and analyze time series. One of the

earliest known time series plot is of planetary orbits from a tenth century

monastery [47]. There have been some advances in the visualization of time

series (for example, [54]), but the line graph is still the most prevalent. But

if instead of sequences, the data is represented as a distance space (pair-wise

58

−30 −20 −10 0 10 20 30 40 50 60
−15

−10

−5

0

5

10

15
Wafer: No Ghost Points Added

Student Version of MATLAB

(a)
−40 −20 0 20 40 60 80

−25

−20

−15

−10

−5

0

5

10

15

20

25
Wafer: With 9 Ghost Points Added to Each Example of Minority Class

Student Version of MATLAB

(b)

Fig. 3.4: After using PCA on the distance matrix to reduce the dimensionality
from 1000 to 2, (a) the 1000 examples are plotted (the majority class as gray
circles and the minority class as black squares). (b) is the same data set
with 9 ghost points (green squares) added per minority example. In (a), it
is impossible to distinguish the minority class from the majority class as the
minority class has no structure. However, in (b) there are 5 distinct clusters,
2 of which belong to the minority class. (Best viewed in color.)

distances between each time series), then the visualization becomes much more

difficult as line graphs are not sufficient. In addition, even when plotted in a

graph, if the data set is imbalanced, the minority class is often undiscernible

among all the points of the majority class.

Adding ghost points to the minority class before plotting can change the

structure of the underlying points so that minority class clusters become vis-

ible. For example, Figure 3.4 shows the Wafer training set before and after

adding ghost points to the distance matrix induced by Optimal Subsequence

Bijection (OSB). The training set has 903 samples of the majority class and

97 samples of the minority class for a total of 1000 samples. To create Fig-

ure 3.4a, we first take the original 1000×1000 distance matrix and use principal

component analysis (PCA) to reduce the dimensionality to two dimensions.

59

−5 0 5 10 15 20
−2

−1

0

1

2

3

4

5

6
MPEG7 Minority Class 59 using OSB: No Ghost Points Added

Student Version of MATLAB

(a)
−5 0 5 10 15 20

−8

−6

−4

−2

0

2

4
MPEG7 Minority Class 59 using OSB: 10 Ghost Points Added

Student Version of MATLAB

(b)

−5 0 5 10 15 20
−2

−1

0

1

2

3

4

5

6
MPEG7 Minority Class 66 using OSB: No Ghost Points Added

Student Version of MATLAB

(c)
−5 0 5 10 15 20 25

−3

−2

−1

0

1

2

3

4
MPEG7 Minority Class 66 using OSB: 10 Ghost Points Added

Student Version of MATLAB

(d)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
MPEG7 Minority Class 59 using DTW: No Ghost Points Added

Student Version of MATLAB

(e)
−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
MPEG7 Minority Class 59 using DTW: 10 Ghost Points Added

Student Version of MATLAB

(f)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
MPEG7 Minority Class 66 using DTW: No Ghost Points Added

Student Version of MATLAB

(g)
−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
MPEG7 Minority Class 66 using DTW: 10 Ghost Points Added

Student Version of MATLAB

(h)

Fig. 3.5: The MPEG-7 data set. Rows 1 and 2 use the distance matrix induced
by OSB, rows 3 and 4 by DTW; rows 1 and 3 show the minority class rat and
rows 2 and 4 show the minority class teddy. Column 1 shows the data set
without ghost points; column 2 after adding ghost points. The 1400 examples
of the data set are plotted (majority class as gray circles, minority class as blue
squares, and ghost points as green squares). In the first row, without ghost
points, it is impossible to distinguish the minority class from the majority class
as the minority class completely overlaps the majority class. However, in the
second row the minority class now forms a distinct cluster.

60

For Figure 3.4b we add 9 ghost points per minority sample to the distance

matrix (to create a 1873 × 1873 matrix) and again run PCA. The majority

class is plotted as light blue circles, the minority class as black squares, and

the ghost points as green squares. In Figure 3.4a, without ghost points, it is

impossible to distinguish the minority class from the majority class since the

minority class forms no cluster and many of the minority class points overlap

the majority class clusters. In Figure 3.4b, after ghost points are added to the

training set, the underlying shape of the data changes to form five discernable

clusters. It is clear that two of the clusters belong to the minority class (the

upper-left cluster and the lower-right cluster).

The next four examples are from the MPEG-7 image data set (see Sec-

tion 3.4.3 for a description of the data set). In Figure 3.5, the first two rows

show the MPEG-7 data set before and after adding ghost points to the dis-

tance matrix induced by OSB for two different minority classes, rat and teddy ;

the second two rows show the MPEG-7 data set before and after adding ghost

points to the distance matrix induced by Dynamic Time Warping (DTW) for

the same two minority classes, rat and teddy. We divide the data set into

1380 samples of a majority class (69 classes of 20 images each, collapsed into a

single class) and 20 samples of a minority class for a total of 1400 samples. As

before, for Figures 3.5a, 3.5c, 3.5e, and 3.5g we take the original 1400× 1400

distance matrix and use PCA to reduce the dimensionality to two and then

61

plot the 1400 points. For Figures 3.5b, 3.5d, 3.5f, and 3.5h we add 10 ghost

points for each of the 20 minority class samples to the distance matrix (cre-

ating a 1600 × 1600 matrix) and again run PCA. Again, a majority class is

plotted as light blue circles, a minority class as black squares, and the ghost

points as green squares. In Figures 3.5a, 3.5c, 3.5e, and 3.5g, without ghost

points, the minority class points overlap the majority class points and cannot

be differentiated from the majority class points. In Figures 3.5b, 3.5d, 3.5f,

and 3.5h, after ghost points are added to the data set, the underlying shape

of the minority class changes to form distinct and visible clusters, with very

few points, if any, overlapping the majority class points.

3.4 Experimental Evaluation

In many real-world situations, the minority class, the class with the fewest

examples, is by far the most important class. Take for example the Mammog-

raphy data set [58], which consists of non-calcification (non-cancerous) and

calcification (cancerous) examples. The data set has 11183 examples of which

only 260 (2.32%) are examples of cancer. A trivial classifier that classifies

all examples as non-cancerous will achieve an accuracy of 97.68%, though its

error rate for the minority class is 100%. For this data set, there are also un-

even costs associated with misclassifying a normal example and misclassifying

a cancerous example. If a healthy patient is incorrectly diagnosed with hav-

62

ing breast cancer, there is a cost associated with this error (fear, unnecessary

tests) but eventually the misdiagnosis will be found. On the other hand, if a

patient who does have breast cancer is incorrectly diagnosed as being healthy,

then the cost could be her life since she will not get appropriate treatment.

When the performance on the minority class is as important or more important

than overall accuracy, other performance measures must be used. A common

measure is Fβ-measure [48] which is defined below in Section 3.4.1.

Unlike other techniques that add synthetic points, ghost points have the

advantage that they can be added in distance space. To show that they will

work with different distance measures, we use both Dynamic Time Warping

(DTW) and Optimal Subsequence Bijection (OSB) as distance measures on

the UCR Time Series data sets [28] and on the MPEG-7 Core Experiment

CE-Shape-1 data set [30] for our experiments.

The UCR Time Series data repository has available 20 data sets from

various domains. The time series lengths range from 60 (Synthetic Control) to

637 (Lightning-2) and the number of classes in a data set ranges from 2 to 50.

Each data set is divided into a fixed training set and testing set. The number

of examples in a training set ranges from 24 (FaceFour) to 1000 (Wafer), and

the number of testing examples ranges from 28 (Coffee) to 6174 (Wafer). In

our experiments, we use seventeen of the data sets and their characteristics

are described in Table 3.1.

63

N
u
m

b
e
r

o
f

T
r
a
in

in
g

S
e
t

T
e
st

in
g

S
e
t

C
la

ss
e
s

U
se

d
a
s

T
o
ta

l
N

u
m

b
e
r

o
f

N
u
m

b
e
r

o
f

T
o
ta

l
N

u
m

b
e
r

o
f

N
u
m

b
e
r

o
f

N
u
m

b
e
r

o
f

M
in

o
r
it
y

N
u
m

b
e
r

o
f

M
in

o
r
it
y

M
a
jo

r
it
y

N
u
m

b
e
r

o
f

M
in

o
r
it
y

M
a
jo

r
it
y

D
a
ta

S
e
t

C
la

ss
e
s

C
la

ss
E
x
a
m

p
le

s
E
x
a
m

p
le

s
E
x
a
m

p
le

s
E
x
a
m

p
le

s
E
x
a
m

p
le

s
E
x
a
m

p
le

s

S
y
n
th

et
ic

C
o
n
tr

o
l

6
6

3
0
0

5
0

2
5
0

3
0
0

5
0

2
5
0

C
B

F
3

2
3
0

8
-

1
0

2
0

-
2
2

9
0
0

3
0
0

-
3
0
2

5
9
8

-
6
0
0

F
a
ce

A
ll

1
4

1
4

5
6
0

4
0

5
2
0

1
6
9
0

8
-

2
8
7

1
4
0
3

-
1
6
8
2

O
S
U

L
ea

f
6

6
2
0
0

1
5

-
5
3

1
4
7

-
1
8
5

2
4
2

2
3

-
5
5

1
8
7

-
2
1
9

S
w

ed
is

h
L
ea

f
1
5

1
5

5
0
0

2
6

-
4
2

4
5
8

-
4
7
4

6
2
5

3
3

-
4
9

5
7
6

-
5
9
2

5
0
W

o
rd

s
5
0

4
9

4
5
0

2
-

5
2

3
9
8

-
4
4
8

4
5
5

1
-

5
7

3
9
8

-
4
5
4

T
ra

ce
4

4
1
0
0

2
1

-
3
1

6
9

-
7
9

1
0
0

1
9

-
2
9

7
1

-
8
1

T
w

o
P
a
tt

er
n
s

4
4

1
0
0
0

2
3
7

-
2
7
1

7
2
9

-
7
6
3

4
0
0
0

9
5
9

-
1
0
3
5

2
9
6
5

-
3
0
4
1

W
a
fe

r
2

1
1
0
0
0

9
7

9
0
3

6
1
7
4

6
6
5

5
5
0
9

F
a
ce

F
o
u
r

4
4

2
4

3
-

8
1
6

-
2
1

8
8

1
4

-
2
6

6
2

-
7
4

L
ig

h
tn

in
g
2

2
1

6
0

2
0

4
0

6
1

2
8

3
3

L
ig

h
tn

in
g
7

7
7

7
0

5
-

1
9

5
1

-
6
5

7
3

6
-

1
9

5
4

-
6
7

E
C

G
2

1
1
0
0

3
1

6
9

1
0
0

3
6

6
4

A
d
ia

c
3
7

3
7

3
9
0

4
-

1
5

3
7
5

-
3
8
6

3
9
1

6
-

1
6

3
7
5

-
3
8
5

F
is

h
7

7
1
7
5

2
1

1
4
7

-
1
5
4

1
7
5

2
2

-
2
9

1
4
6

-
1
5
3

B
ee

f
5

5
3
0

6
2
4

3
0

6
2
4

O
li
v
eO

il
4

3
3
0

4
-

8
2
2

-
2
6

3
0

4
-

9
2
1

-
2
6

T
ab

le
3.

1:
T

h
e

ch
ar

ac
te

ri
st

ic
s

of
th

e
17

U
C

R
d
at

a
se

ts
u
se

d
in

ou
r

ex
p
er

im
en

ts
.

64

Predicted Predicted
Positive Negative

Actual Positive TP FN

Actual Negative FP TN

Table 3.2: Confusion Matrix.

MPEG-7 is a standard data set and is widely used to test shape classifi-

cation and retrieval methods. It contains 1400 binary images consisting of 70

object classes (e.g. ”Rats”) and within each class there are 20 shapes, for a

total of 1400 shapes. For our experiments, each shape is represented with 100

equidistant sample points on the contour, and these points are converted into

sequences by calculating the curvature of each point with respect to its five

neighbors on each side. This yields 1400 sequences of real numbers, each of

length 100. This particular transformation makes the sequence representation

invariant to rotation and scale changes. In other words, the shape of a cell

phone with its antenna pointing up can still match with the same cell phone

shape scaled and rotated so that the phone is now smaller and its antenna is

pointing down.

65

3.4.1 Evaluating Performance

Most studies on the class imbalance problem concentrate on two-class prob-

lems since multi-class data sets can easily be reduced to two classes (see

Sec. 3.4.2). In an imbalanced data set, one class, the majority class or the

negative class, has many examples, while the other class, the minority class

or positive class, has few examples. These imbalances in real world data sets

can be 2:1, 1000:1, or even 10000:1. When a data set is imbalanced, the usual

forms of evaluating performance do not work. For classification, generally the

overall accuracy (the fraction of examples that are correctly classified) or the

error rate (1− accuracy) is reported, but this does not have much value if the

interest lies in the minority class. It has been empirically shown that accuracy

can lead to poor performance for the minority class [57]. Another problem

with using accuracy as the performance metric is that different classification

errors are given the same importance, whereas in actuality their costs might

differ significantly. One solution commonly used is to have a weighted loss

function with higher loss for the minority class [8], but it requires knowing the

loss weights, which is often impossible in real applications.

For imbalanced data sets when the minority class is the important class,

performance metrics borrowed from the information retrieval community [48]

are often used. They are based on a confusion matrix (see Table 3.2), that

reports the number of true positives (TP), true negatives (TN), false positives

66

(FP), and false negatives (FN). These are then used to define metrics that

evaluate the performance of a learner on the minority class, such as recall,

precision, and Fβ-measure. The formulas for these metrics are given below.

The precision of a class (Equation 3.6) is the number of TPs divided by the

total number of examples predicted as positive. A precision score of 1.0 means

that every example predicted as a positive example is a positive example,

though there may be some positive examples that were labeled as negative.

The recall of a class (Equation 3.5) is the number of TPs divided by the number

of examples that are actually positive. A recall score of 1.0 means that every

positive example is labeled correctly, though some negative examples may have

also been labeled as positive. There is always a trade-off between precision

and recall, but for data sets where the cost of false negatives is high, a high

recall value is preferable. The Fβ-measure [48] (Equation 3.8) is the weighted

harmonic mean of precision and recall and merges recall and precision into

a single value. The best Fβ score is 1 and the worst is 0. The β parameter

controls the relative weight given to recall and precision. Fβ “measures the

effectiveness of retrieval with respect to a user who attaches β times as much

importance to recall as precision” [48]. If correct classification of the minority

class is important, when false negatives have similar costs to false positives,

then the F1-measure (β = 1) is used because precision and recall are weighted

equally. When the cost of false negatives is more than that of false positives,

67

then the F2-measure (β = 2) is better because it weights recall twice as heavily

as precision.

Recall =
TP

TP + FN
(3.5)

Precision =
TP

TP + FP
(3.6)

Accuracy =
TP + TN

TP + FP + TN + FN
(3.7)

Fβ = (1 + β2)
Recall × Precision

β2 × Precision + Recall
(3.8)

3.4.2 Methodology

Of the twenty-one data sets we have available (twenty UCR data sets and

the MPEG-7 data set), only three have training sets that contain a true minor-

ity class (a two-class data set with one class comprising less than 35% of the

total number of examples). These data sets are Wafer, Lightning-2, and ECG.

In order to evaluate ghost points further, we also create artificially imbalanced

data sets. To create artificial minority classes for the fourteen data sets from

the UCR repository that have more than two classes, we take each class that

comprises less than 35% of the total number of examples as a minority class,

and then collapse the remaining classes into one. If in a data set there is

more than one class that meets our criteria as a minority class, we treat each

class as minority class in turn and average the results. For the MPEG-7 data

set, to create a training and testing set, we randomly choose ten shapes from

68

each class (for a total of 700 shapes) for the training set, and the remaining

ten shapes from each class (again 700 shapes total) become the testing set.

Then we take each class as a minority class in turn, collapse the remaining 69

classes into one class, and average the results over the 70 minority classes. See

Tables 3.3, 3.4, and 3.5 for a summary of the results.

Once we create a minority class in the training set, we add ghost points to

the minority class of the training and testing sets and perform classification

in the following manner:

1. The training set

(a) Given a training set consisting of m time series examples with se-

quence length s, create the m ×m distance matrix by calculating

the OSB or DTW distance between each pair of examples.

(b) For each minority class example x, add k-many ghost points by

inserting one ghost point between x and each of its knn. This gives

us a total of p new points.

(c) Calculate the distance from the p ghost points to every other point

in the training set using Equation 3.1, 3.2, 3.3, or 3.4; we now have

an (m + p)× (m + p) matrix.

(d) Convert both the original and augmented OSB or DTW score ma-

trix to affinity matrices using the approach in [60] and Equation 3.9.

69

(e) Use these affinity matrices as the user-defined or precomputed ker-

nels for the SVM to get two models: one that includes ghost points

and one that does not.

(f) Run SVM to train.

2. The testing set

(a) Given a testing set consisting of n time series examples with se-

quence length s, and a training set consisting of m time series of

length s, create the n×m OSB or DTW distance score matrix.

(b) Calculate the distance from each test data point to each of the p

ghost points using Equation 3.1, 3.2, 3.3, or 3.4; we now have an

n× (m + p) distance matrix.

(c) Convert both the original and augmented OSB or DTW score ma-

trix to an affinity matrix as in step 1d above.

(d) Use these affinity matrices as the user-defined or precomputed ker-

nels for the SVM as in step 1e above.

(e) Run SVM to test.

There are two critical parameters to set when we convert the distance

matrices to kernels that modify the σ for the Gaussian Kernel function, A

and K. As stated in [62], the scaling parameter σ is some measure of when

two points are considered similar. We use the method in [60] to calculate the

70

local scaling parameter σij for each pair of data points xi and xj. The affinity

between a pair of points can be written as:

k(xi, xj) = exp(
−d(xi, xj)

2

σij

) (3.9)

where σij = A ·mean{knn d(xi), knn d(xj)}, mean{knn d(xi), knn d(xj)}

is the the mean distance of the K-nearest neighbors of points xi, xj, and A is

an extra scaling parameter. For the SVM, there is a third parameter to set,

which is the cost parameter C. For all UCR experiments we used A = 0.5,

K = 5, and C = 0.5 and for all MPEG-7 experiments we used A = 0.36,

K = 25, and C = 0.5. For each of the eighteen data sets, we run SVM on the

four matrices (after converting them to kernels): OSB score matrix without

ghost points; OSB score matrix with ghost points; DTW score matrix without

ghost points; and DTW score matrix with ghost points.

The final parameter to set is the number of ghost points to add per minority

example, as the final results can be sensitive to the number of ghost points

added. Two good heuristics are: 1. to balance the the classes and 2. add

one ghost point per minority example, but neither of these always give the

best results. The strategy we use in our experiments is a modified version

of balancing the classes. Let m be the number of minority examples in the

training set, n be the number of majority examples, and k be the maximum

number of ghost points to add per minority example such that k · m = n.

71

We then choose the number of ghost points per example g ∈ {1, . . . , k} that

gives the best results. Though the strategy for finding g is very simple and

the results are very good, g is found empirically. How to choose the optimal

number of ghost points is an open question that we will be addressing in the

future.

3.4.3 Results

Of the eighteen data sets we test, only three of the training sets had natural

minority classes. For the other fifteen, we created artificial minority classes,

and if necessary, averaged the results. See Section 3.4.2 for the methodology

we used to create the imbalanced data sets. We compare the results of SVM

on OSB with and without ghost points on the UCR data sets in Table 3.3,

the results of SVM on DTW with and without ghost points on the UCR data

sets in Table 3.4, and finally, the results of SVM on OSB and DTW on the

MPEG-7 data set in Table 3.5. Because we are interested in the performance

on minority classes, specifically minimizing the number of false negatives, we

measure the overall accuracy (Equation 3.7), the F1-measure (Equation 3.8

with β = 1) which weights precision and recall equally, and the F2-measure

(Equation 3.8 with β = 2) which weights recall twice as heavily as precision.

As the results show in Table 3.3, for the OSB score matrix on the UCR

data sets, adding ghost points improve SVM’s overall accuracy rate on sixteen

72

N
u
m

G
P

A
d
d
ed

O
ve

ra
ll

F
1
-M

ea
su

re
F

2
-M

ea
su

re

p
er

M
in

or
it
y

A
cc

u
ra

cy
M

in
or

it
y

C
la

ss
M

in
or

it
y

C
la

ss

D
at

a
S
et

E
x
am

p
le

S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P

Sy
nt

he
ti

cC
on

tr
ol

2
98

.8
3%

99
.7

8%
X

0.
96

68
0.

99
33

X
0.

98
43

0.
99

13
X

C
B

F
1

96
.8

9%
98

.5
6%

X
0.

94
98

0.
97

79
X

0.
92

83
0.

96
61

X
Fa

ce
A

ll
1

98
.8

3%
99

.2
6%

X
0.

90
63

0.
93

96
X

0.
93

07
0.

93
91

X
O

SU
L
ea

f
2

86
.1

6%
87

.0
5%

X
0.

36
89

0.
53

15
X

*
0.

32
94

0.
49

23
X

*

Sw
ed

is
hL

ea
f

8
98

.2
7%

99
.1

1%
X

0.
85

52
0.

93
84

X
0.

81
45

0.
94

00
X

*

50
W

or
ds

1
98

.7
8%

98
.9

5%
X

0.
32

36
0.

46
62

X
*

0.
27

85
0.

41
62

X
*

T
ra

ce
2

91
.5

0%
96

.7
5%

X
*

0.
79

21
0.

93
36

X
*

0.
74

84
0.

93
01

X
*

T
w

oP
at

te
rn

s
2

99
.7

8%
99

.9
6%

X
0.

99
54

0.
99

91
X

0.
99

27
0.

99
86

X
W

af
er

5
96

.2
5%

99
.8

1%
X

*
0.

79
13

0.
99

10
X

*
0.

70
60

0.
99

37
X

*

Fa
ce

Fo
ur

1
91

.1
9%

96
.8

8%
X

*
0.

79
02

0.
93

94
X

*
0.

73
56

0.
92

35
X

*

L
ig

ht
ni

ng
2

1
73

.7
7%

83
.6

1%
X

*
0.

61
90

0.
80

00
X

*
0.

51
59

0.
74

63
X

*

L
ig

ht
ni

ng
7

1
89

.6
3%

93
.5

4%
X

*
0.

45
22

0.
72

34
X

*
0.

39
70

0.
69

20
X

*

E
C

G
1

87
.0

0%
93

.0
0%

X
*

0.
78

69
0.

89
55

X
*

0.
71

01
0.

85
71

X
*

A
di

ac
3

98
.0

7%
98

.2
9%

X
0.

44
16

0.
62

46
X

*
0.

37
65

0.
57

58
X

*

F
is

h
3

94
.8

6%
97

.3
9%

X
0.

75
50

0.
90

65
X

*
0.

68
57

0.
88

88
X

*

B
ee

f
1

82
.6

7%
X

81
.3

3%
0.

16
67

0.
34

18
X

*
0.

16
67

0.
31

05
X

*

O
liv

eO
il

1
91

.1
1%

94
.4

4%
X

*
0.

57
08

0.
74

54
X

*
0.

54
29

0.
70

19
X

*

T
ab

le
3.

3:
T

h
e

re
su

lt
s

of
ad

d
in

g
gh

os
t

p
oi

n
ts

to
th

e
O

S
B

d
is

ta
n
ce

sc
or

es
on

th
e

im
b
al

an
ce

d
U

C
R

ti
m

e
se

ri
es

d
at

a
se

ts
.

B
ol

d
ed

,
ch

ec
ke

d
re

su
lt

s
in

d
ic

at
e

b
es

t
sc

or
es

.
A

n
as

te
ri

sk
fo

r
ac

cu
ra

cy
in

d
ic

at
es

at
le

as
t

3
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
;

fo
r

F
β
-m

ea
su

re
it

in
d
ic

at
es

at
le

as
t

10
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
.

73

N
u
m

G
P

A
d
d
ed

O
ve

ra
ll

F
1
-M

ea
su

re
F

2
-M

ea
su

re

p
er

M
in

or
it
y

A
cc

u
ra

cy
M

in
or

it
y

C
la

ss
M

in
or

it
y

C
la

ss

D
at

a
S
et

E
x
am

p
le

S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P

Sy
nt

he
ti

cC
on

tr
ol

2
97

.4
4%

99
.2

8%
X

0.
92

92
0.

97
88

X
0.

96
83

0.
98

14
X

C
B

F
1

95
.8

3%
97

.7
2%

X
0.

93
37

0.
96

44
X

0.
91

71
0.

94
45

X
Fa

ce
A

ll
1

96
.0

8%
97

.5
6%

X
0.

73
06

0.
84

44
X

*
0.

79
16

0.
83

72
X

O
SU

L
ea

f
2

85
.1

2%
86

.9
8%

X
0.

34
50

0.
47

75
X

*
0.

30
85

0.
43

17
X

*

Sw
ed

is
hL

ea
f

8
97

.9
4%

98
.7

1%
X

0.
82

94
0.

90
71

X
0.

79
13

0.
91

05
X

*

50
W

or
ds

1
98

.7
6%

98
.9

7%
X

0.
31

09
0.

47
19

X
*

0.
27

17
0.

41
73

X
*

T
ra

ce
2

90
.2

5%
95

.5
0%

X
*

0.
76

90
0.

90
90

X
*

0.
71

71
0.

89
95

X
*

T
w

oP
at

te
rn

s
2

98
.4

5%
99

.0
8%

X
0.

96
80

0.
98

12
X

0.
95

28
0.

97
04

X
W

af
er

5
96

.8
2%

99
.6

9%
X

0.
82

99
0.

98
58

X
*

0.
75

95
0.

98
80

X
*

Fa
ce

Fo
ur

1
83

.5
2%

92
.3

3%
X

*
0.

51
52

0.
83

51
X

*
0.

46
38

0.
79

00
X

*

L
ig

ht
ni

ng
2

1
77

.0
5%

83
.6

1%
X

*
0.

68
18

0.
79

17
X

*
0.

58
59

0.
71

97
X

*

L
ig

ht
ni

ng
7

1
90

.0
2%

90
.8

0%
X

0.
44

11
0.

58
77

X
*

0.
42

13
0.

58
07

X
*

E
C

G
1

82
.0

0%
84

.0
0%

X
0.

70
97

0.
74

19
X

0.
64

71
0.

67
65

X
A

di
ac

3
97

.7
4%

98
.0

5%
X

0.
41

88
0.

62
64

X
*

0.
38

87
0.

62
21

X
*

F
is

h
3

93
.5

5%
95

.7
6%

X
0.

70
77

0.
84

50
X

*
0.

65
02

0.
82

43
X

*

B
ee

f
1

82
.0

0%
X

81
.3

3%
0.

16
67

0.
30

84
X

*
0.

16
67

0.
30

02
X

*

O
liv

eO
il

1
85

.5
6%

91
.1

1%
X

*
0.

40
00

0.
72

64
X

*
0.

37
14

0.
72

54
X

*

T
ab

le
3.

4:
T

h
e

re
su

lt
s

of
ad

d
in

g
gh

os
t

p
oi

n
ts

to
th

e
D

T
W

d
is

ta
n
ce

sc
or

es
on

th
e

im
b
al

an
ce

d
U

C
R

ti
m

e
se

ri
es

d
at

a
se

ts
.

B
ol

d
ed

,
ch

ec
ke

d
re

su
lt

s
in

d
ic

at
e

b
es

t
sc

or
es

.
A

n
as

te
ri

sk
fo

r
ac

cu
ra

cy
in

d
ic

at
es

at
le

as
t

3
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
;

fo
r

F
β
-m

ea
su

re
it

in
d
ic

at
es

at
le

as
t

10
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
.

74

C
h
a
r
a
c
te

r
is

ti
c
s

O
v
e
r
a
ll

F
1
-M

e
a
su

r
e

F
2
-M

e
a
su

r
e

A
c
c
u
r
a
c
y

M
in

o
r
it
y

C
la

ss
M

in
o
r
it
y

C
la

ss

N
u
m

G
P

A
d
d
e
d

N
u
m

b
e
r

o
f

N
u
m

b
e
r

o
f

D
is

ta
n
c
e

p
e
r

M
in

o
r
it
y

M
in

o
r
it
y

M
a
jo

r
it
y

M
e
a
su

r
e

E
x
a
m

p
le

E
x
a
m

p
le

s
E
x
a
m

p
le

s
S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P

O
S
B

4
1
0

1
3
9
0

9
9
.4

3
%

9
9
.7

4
%

X
0
.7

0
9
7

0
.8

9
7
4

X
*

0
.6

6
1
6

0
.8

6
8
1

X
*

D
T

W
5

1
0

1
3
9
0

9
9
.1

1
%

9
9
.2

0
%

X
0
.6

0
2
7

0
.7

6
7
3

X
*

0
.5

8
0
5

0
.7

9
4
0

X
*

T
ab

le
3.

5:
T

h
e

re
su

lt
s

of
ad

d
in

g
gh

os
t

p
oi

n
ts

to
th

e
O

S
B

an
d

D
T

W
d
is

ta
n
ce

sc
or

es
on

th
e

M
P

E
G

-7
d
at

a
se

t.
B

ol
d
ed

,
ch

ec
ke

d
re

su
lt

s
in

d
ic

at
e

b
es

t
sc

or
es

.
A

n
as

te
ri

sk
fo

r
ac

cu
ra

cy
in

d
ic

at
es

at
le

as
t

3
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
;

fo
r

F
β
-m

ea
su

re
it

in
d
ic

at
es

at
le

as
t

10
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
.

75

of the seventeen data sets. In fact, four of the data sets, Trace, FaceFour,

Lightning-2, and ECG, have increases in overall accuracy of over 5 percentage

points. On all seventeen of the data sets data sets, the F1-measure and the

F2-measure improve with ghost points by as much as 29.5 percentage points;

twelve data sets see an increase of at least 10 percentage points in the F1-

measure and thirteen data sets in the F2-measure. For the Lightning-7 data

set, adding ghost points increases the accuracy by 3.9 percentage points, the

F1-measure by 27.1 percentage points, and the F2-measure by 29.5 percentage

points. The overall accuracy of Lightning-2 has the largest increase when ghost

points are added, an increase of 9.8 percentage points, while the F1-measure

and F2-measure increase by 18.1 and 23 percentage points, respectively. The

Beef data set, which is the only data set in Table 3.3 that decreases in overall

accuracy when ghost points are added (by 1.3 percentage points), still gains

in the F1-measure, which increases by 17.5 percentage points, and the F2-

measure, which increases by 14.4 percentage points.

When using the DTW score matrix of the UCR data sets (Table 3.4),

adding ghost points increases the overall accuracy again on sixteen of the

seventeen data sets; on the Beef data set, the accuracy decreased by 0.7 per-

centage points. For four of the data sets (Trace, FaceFour, Lightning-2, and

OliveOil), ghost points increase the accuracy by over 5 percentage points. The

F1-measure and the F2-measure increase for all seventeen data sets when ghost

76

points are added. Twelve data sets see an increase of at least 10 percentage

points in both the F1-measure and the F2-measure. Two data sets (Face-

Four and OliveOil) see an increase of over 30 percentage points in both their

F1-measure and the F2-measure. The data set with the largest gain in its

F1-measure F2-measure is OliveOil; it gains 32.6 and 35.4 percentage points

respectively. The accuracy rate for OliveOil also increases by 5.6 percentage

points with ghost points. The data set FaceFour, which has the greatest accu-

racy gain (8.8 percentage points) also has an increase in its F1-measure of 32

percentage points and in its F2-measure of 32.6 percentage points. The only

data set, Beef, where ghost points actually decrease the overall accuracy (by

0.7 percentage points), still has an impressive gain in the F1-measure and the

F2-measure; 14.2 and 13.4 respectively.

For the MPEG-7 data set (Table 3.5), the results are similar to those

discussed above. With both OSB and DTW, all measures increase. With

OSB on the MPEG-7 data set and ghost points, the overall accuracy increases

0.3 percentage points, the F1-measure by 18.8 percentage points, and the F2-

measure by 20.6 percentage points. The increases of the results for DTW on

the MPEG-7 data set are similar; overall accuracy increases by 0.1 percentage

points, the F1-measure by 16.5 percentage points, and the F2-measure by 21.3

percentage points.

As discussed in Section 3.2, computing the distance of a ghost point to

77

T
o
ta

l
N

u
m

b
e
r

N
u
m

G
p

N
u
m

b
e
r

o
f

N
u
m

b
e
r

o
f

N
u
m

b
e
r

o
f

o
f
D

is
ta

n
c
e

A
d
d
e
d

p
e
r

T
y
p
e

1
T

y
p
e

2
T

y
p
e

3
C

o
m

p
u
ta

ti
o
n
s

M
in

o
r
it
y

D
is

ta
n
c
e

D
is

ta
n
c
e

D
is

ta
n
c
e

p
e
r

M
in

o
r
it
y

P
e
r
c
e
n
ta

g
e

P
e
r
c
e
n
ta

g
e

P
e
r
c
e
n
ta

g
e

D
a
ta

S
e
t

E
x
a
m

p
le

C
o
m

p
u
ta

ti
o
n
s

C
o
m

p
u
ta

ti
o
n
s

C
o
m

p
u
ta

ti
o
n
s

C
la

ss
o
f
T

y
p
e

1
o
f
T

y
p
e

2
o
f
T

y
p
e

2

S
y
n
th

et
ic

C
o
n
tr

o
l

1
2
9
,3

8
9

1
0

1
,8

2
6

3
1
,2

2
5

9
4
%

0
%

6
%

C
B

F
1

7
,7

9
6

4
6
0
7

8
,4

0
7

9
3
%

0
%

7
%

F
a
ce

A
ll

1
6
7
,8

0
9

4
8

2
2
,9

2
3

9
0
,7

8
0

7
5
%

0
%

2
5
%

O
S
U

L
ea

f
2

2
6
,7

3
8

4
2

5
,1

2
6

3
1
,9

0
5

8
4
%

0
%

1
6
%

S
w

ed
is

h
L
ea

f
7

1
8
2
,5

5
6

2
6
1

1
0
7
,1

7
7

2
8
9
,9

9
3

6
3
%

0
%

3
7
%

5
0
W

o
rd

s
1

5
,0

1
4

7
3
,3

6
0

8
,3

8
1

6
0
%

0
%

4
0
%

T
ra

ce
2

1
,8

7
1

3
4

9
,3

5
2

1
1
,2

5
6

1
7
%

0
%

8
3
%

T
w

o
P
a
tt

er
n
s

2
1
,5

0
0
,3

6
8

2
7
0

1
,1

2
4
,4

5
0

2
,6

2
5
,0

8
7

5
7
%

0
%

4
3
%

W
a
fe

r
6

1
,8

4
0
,3

7
0

2
,5

7
7

2
,4

9
5
,5

7
2

4
,3

3
8
,5

1
9

4
2
%

0
%

5
8
%

F
a
ce

F
o
u
r

1
5
5
1

4
1
3
4

6
8
9

8
0
%

1
%

1
9
%

L
ig

h
tn

in
g
2

1
1
,8

2
8

1
6

7
6
6

2
,6

1
0

7
0
%

1
%

2
9
%

L
ig

h
tn

in
g
7

1
7
4
1

9
7
3
4

1
,4

8
4

5
0
%

1
%

4
9
%

E
C

G
1

4
,2

2
9

7
2
,4

2
9

6
,6

6
5

6
3
%

0
%

3
6
%

A
d
ia

c
3

1
5
,6

1
5

1
2
6

9
,4

6
7

2
5
,2

0
8

6
2
%

1
%

3
8
%

F
is

h
3

1
3
,7

0
6

6
5

1
5
,2

8
2

2
9
,0

5
3

4
7
%

0
%

5
3
%

B
ee

f
1

5
6

1
7

3
0
1

3
7
5

1
5
%

5
%

8
0
%

O
li
v
eO

il
1

2
3
5

2
1
1
8

3
5
5

6
6
%

1
%

3
3
%

M
P

E
G

-7
4

5
1
,1

9
5

2
3

5
,5

6
1

5
6
,7

8
0

9
0
%

0
%

1
0
%

T
ab

le
3.

6:
U

si
n
g

O
S
B

to
in

d
u
ce

th
e

d
is

ta
n
ce

m
at

ri
ce

s
on

th
e

ei
gh

te
en

d
at

a
se

ts
te

st
ed

,
w

e
co

u
n
t

th
e

ty
p
es

of
d
is

ta
n
ce

co
m

p
u
ta

ti
on

s
m

ad
e

fr
om

th
e

gh
os

t
p
oi

n
ts

to
ev

er
y

ot
h
er

p
oi

n
t

in
th

e
d
is

ta
n
ce

sp
ac

e
(s

ee
S
ec

ti
on

3.
2)

.
N

ot
e

th
at

d
u
e

to
av

er
ag

in
g

ov
er

m
u
lt

ip
le

m
in

or
it
y

cl
as

se
s

an
d

ro
u
n
d
in

g,
so

m
e

n
u
m

b
er

s
d
o

n
ot

ad
d

u
p
.

78

T
o
ta

l
N

u
m

b
e
r

N
u
m

G
p

N
u
m

b
e
r

o
f

N
u
m

b
e
r

o
f

N
u
m

b
e
r

o
f

o
f
D

is
ta

n
c
e

A
d
d
e
d

p
e
r

T
y
p
e

1
T

y
p
e

2
T

y
p
e

3
C

o
m

p
u
ta

ti
o
n
s

M
in

o
r
it
y

D
is

ta
n
c
e

D
is

ta
n
c
e

D
is

ta
n
c
e

p
e
r

M
in

o
r
it
y

P
e
r
c
e
n
ta

g
e

P
e
r
c
e
n
ta

g
e

P
e
r
c
e
n
ta

g
e

D
a
ta

S
e
t

E
x
a
m

p
le

C
o
m

p
u
ta

ti
o
n
s

C
o
m

p
u
ta

ti
o
n
s

C
o
m

p
u
ta

ti
o
n
s

C
la

ss
o
f
T

y
p
e

1
o
f
T

y
p
e

2
o
f
T

y
p
e

2

S
y
n
th

et
ic

C
o
n
tr

o
l

1
3
0
,9

8
2

0
2
4
3

3
1
,2

2
5

9
9
%

0
%

1
%

C
B

F
1

8
,3

3
7

0
7
0

8
,4

0
7

9
9
%

0
%

1
%

F
a
ce

A
ll

6
5
4
9
,7

2
1

1
3

1
8
,9

4
6

5
6
8
,6

8
0

9
7
%

0
%

3
%

O
S
U

L
ea

f
2

3
1
,6

0
9

1
2
9
5

3
1
,9

0
5

9
9
%

0
%

1
%

S
w

ed
is

h
L
ea

f
7

2
6
7
,5

3
9

4
3

2
2
,4

1
1

2
8
9
,9

9
3

9
2
%

0
%

8
%

5
0
W

o
rd

s
1

7
,7

8
4

0
5
9
7

8
,3

8
1

9
3
%

0
%

7
%

T
ra

ce
2

7
,5

0
4

1
5

3
,7

3
8

1
1
,2

5
6

6
7
%

0
%

3
3
%

T
w

o
P
a
tt

er
n
s

2
2
,5

4
4
,1

2
9

1
3

8
0
,9

4
6

2
,6

2
5
,0

8
7

9
7
%

0
%

3
%

W
a
fe

r
5

3
,5

6
6
,0

7
2

2
7
4

2
5
,5

6
4

3
,5

9
1
,9

1
0

9
9
%

0
%

1
%

F
a
ce

F
o
u
r

1
6
8
8

0
2

6
8
9

1
0
0
%

0
%

0
%

L
ig

h
tn

in
g
2

1
2
,5

9
1

0
1
9

2
,6

1
0

9
9
%

0
%

1
%

L
ig

h
tn

in
g
7

2
3
,0

5
5

0
2
9

3
,0

8
5

9
9
%

0
%

1
%

E
C

G
2

1
4
,0

0
3

0
2
8
8

1
4
,2

9
1

9
8
%

0
%

2
%

A
d
ia

c
3

2
2
,5

8
1

1
0
1

2
,5

2
6

2
5
,2

0
8

9
0
%

0
%

1
0
%

F
is

h
2

1
5
,3

5
3

3
3
,3

8
1

1
8
,7

3
8

8
2
%

0
%

1
8
%

B
ee

f
1

2
0
9

0
1
6
6

3
7
5

5
6
%

0
%

4
4
%

O
li
v
eO

il
1

3
5
5

0
0

3
5
5

1
0
0
%

0
%

0
%

M
P

E
G

-7
4

7
1
,1

0
1

2
2

1
0
3

7
1
,2

2
5

1
0
0
%

0
%

0
%

T
ab

le
3.

7:
U

si
n
g

D
T

W
to

in
d
u
ce

th
e

d
is

ta
n
ce

m
at

ri
ce

s
on

th
e

ei
gh

te
en

d
at

a
se

ts
te

st
ed

,
w

e
co

u
n
t

th
e

ty
p
es

of
d
is

ta
n
ce

co
m

p
u
ta

ti
on

s
m

ad
e

fr
om

th
e

gh
os

t
p
oi

n
ts

to
ev

er
y

ot
h
er

p
oi

n
t

in
th

e
d
is

ta
n
ce

sp
ac

e
(s

ee
S
ec

ti
on

3.
2)

.
N

ot
e

th
at

d
u
e

to
av

er
ag

in
g

ov
er

m
u
lt

ip
le

m
in

or
it
y

cl
as

se
s

an
d

ro
u
n
d
in

g,
so

m
e

n
u
m

b
er

s
d
o

n
ot

ad
d

u
p
.

79

the other points in the distance matrix can take one of three forms (see

Cases 3.1, 3.2, and 3.3). Tables 3.6 and 3.7 show the number of the dif-

ferent types of computations made for the eighteen data sets using OSB and

DTW respectively. It is interesting to note that most of the distance spaces

induced by DTW contain very few Type 2 and Type 3 computations. Fifteen

of the data sets had less than 8% of non-Type 1 computations, and one of

these (OliveOil) had 0%. This indicates that the distance space induced by

DTW on these fifteen data sets is very close to a metric space. The remaining

three data sets (Trace, Fish, and Beef) had non-Type1 computations of 33%,

18%, and 44% respectively, and thus have distance spaces relatively close to

a metric space. On the other hand, the distance spaces induced by OSB are

much more variable, where the number of non-Type 1 computations ranges

from 6% to 85%. For example, under DTW, the OliveOil data set has 100%

Type 1 computations, while only 66% under OSB; the data set Wafer has 99%

Type 1 computations under DTW, but only 42% under OSB. Thus OSB is

more likely to induce non-metric distance spaces. Though again we state, and

our experimental results show, that the application of the proposed method

can densify distance spaces that are non-metric, and such spaces are common

in many cognitively motivated tasks.

It is clear to see that ghost points increase the overall accuracy for most

data sets, and also the F1-measure and F2-measure, at times very significantly.

80

When a data set is imbalanced, and the cost of false negatives is high (but

can’t be easily quantified), then adding ghost points may significantly reduce

the number of false negatives while at the same time increase overall accuracy.

81

CHAPTER 4

Locally Constrained Diffusion

Process on Imbalanced Data

Sets

4.1 Introduction

Ghost points can be added to data sets using either supervised or unsuper-

vised learning. In order to insert a single ghost point for a given data point

xi, we need to find another, partner point from the data set X = {x1, . . . , xn}

to form a pair of points that determine the ghost point. When we know the

class labels, ghost points are inserted supervised, i.e., only between data points

of the same class. Normally, we would then find the nearest neighbor to xi

82

according to some distance measure and insert the ghost point between them.

We expect each data point and its nearest neighbors to be able to describe the

local structure of the data manifold, which is commonly assumed in manifold

learning [41, 46]. However, sometimes the original distance may not be able

to describe the data relation correctly. Therefore, we propose a novel strategy

to find a partner ci for a given data point xi: we use a modified diffusion pro-

cess to find the nearest neighbor, but insert the ghost point into the original

distance space. As the modified diffusion process can improve the underlying

structure of the data manifold, it can better describe the relation between data

points.

Since the classical diffusion process can be influenced even by moderate

noise and outliers, in order to reduce the effect of noisy data points we re-

place the original diffusion process with a locally constrained diffusion process

(LCDP). As we will demonstrate in Section 4.3, it is significantly more robust

to noise than the original diffusion process.

4.2 Diffusion Process

Given a set of data points X = {x1, . . . , xn}, we consider a fully connected

graph G = (X, E). The vertices of G are the data points and each edge E

is labeled with the strength of the connection E(i, j) = k(xi, xj), where k is

a kernel function that is symmetric and positivity preserving. In this paper,

83

given two shapes xi and xj, k(xi, xj) is defined by applying a Gaussian to the

shape distance ρ(xi, xj).

From the symmetric graph defined by (X, E), one can construct a reversible

Markov chain on X. This is a classic technique in many fields. The degree of

each node is defined as

D(xi) =
n∑

j=1

k(xi, xj)

and the transition probability is defined as

P (xi, xj) =
k(xi, xj)

D(xi)
.

It is obvious that the transition matrix P inherits the positivity-preserving

property, but it is no longer symmetric. However, we have gained a conserva-

tion property:
n∑

j=1

P (xi, xj) = 1

From a data analysis point of view, the reason for studying this diffusion

process is that the matrix P contains geometric information about the data

set X. Indeed, the transitions that it defines directly reflect the local geometry

defined by the immediate neighbors of each node in the graph of the data. In

other words, P (xi, xj) represents the probability of transition in one time step

from node xi to node xj and it is proportional to the edge-weight k(xi, xj).

For t ≥ 0, the probability of transition from xi to xj in t time steps is given by

P t(xi, xj), which is the tth power P t of P . One of the main ideas of the diffusion

84

framework is that the chain running forward in time, or equivalently, taking

larger powers of P , allows us to integrate the local geometry and therefore

reveals relevant geometric structures of X at different scales, where t plays

the role of a scale parameter. In [17], the data points can be embedded into

Euclidean space by diffusion maps (DM), which can then reorganize the data

points according to their geometric relation as revealed by the diffusion process.

Ideally, diffusion coordinates generated by diffusion maps should reveal

the intrinsic geometric structure of the underlying data manifold. However, as

we illustrate by the following example, the diffusion process is still sensitive to

noise. Our example illustrates that the diffusion process may fail to capture the

correct topology if the actual topology of the data manifold is changed because

of noise or outliers. Since noise and outliers can influence the distribution of

data points, low density areas may become high density areas or vice versa,

which will make the transition probability of the diffusion process incorrect.

In Fig. 4.1, the samples are taken from a spiral as a function of arc length

l with added Gaussian noise and a noise ’bridge’ between inner and outer

samples. Since the underlying manifold has a 1D structure, we would expect

the diffusion process to be able to recover it when we use the coordinates of

the second most important eigenvector, as described in [41, 46].

In Figs. 4.1a and (c), we plot the coordinates of the second most important

eigenvector as a function of arc length (measured as point index). As can be

85

clearly observed in Fig. 4.1a, the function from arc length to the second diffu-

sion coordinate is not one-to-one, which means that the intrinsic 1D structure

of the spiral has not been recovered by the standard diffusion process. Corre-

spondingly, in Fig. 4.1b, the order of points according to their second diffusion

coordinate is color coded. Points with similar color have similar second diffu-

sion coordinates. The fact that the 1D structure is not recovered is shown by

the yellow colored points that are present in the bottom left as well as in the

top right parts of the spiral. As shown in Figs. 4.1c and (d), the proposed

locally constrained diffusion process (Sec. 4.3) is able to recover the 1D struc-

ture of the spiral. The graph in (c) does jitter a bit since we approximate the

arc length coordinates of the spiral with the point index.

4.3 Locally Constrained Diffusion Process

In the classical diffusion process setting, all paths between nodes xi and

xj are considered when computing the probability of a walk from xi to xj. If

there are several noisy nodes, the paths passing through these nodes will affect

this probability as we demonstrated in Fig. 4.1.

A solution to this problem is introduced in [45], where a random walk

is restricted to the K nearest neighbors of the data points by replacing the

original graph G with a K nearest neighbor (KNN) graph GK that has the

edge weights defined as follows: EK(i, j) = k(xi, xj) if xj belongs to the KNNs

86

0 50 100 150 200 250 300 350 400 450 500
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

4

6

8

10

12

14

16

18
x 10

−4

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

10

20

30

40

50

60

Fig. 4.1: An example comparing the standard diffusion process (DM) to our
method (LCDP). (a) is the plot of second most important eigenvector as a
function of arc length. (b) shows the points color coded according to their
second diffusion coordinate using DM. (c) and (d) show the same plots as (a)
and (b) but using LCDP.

87

of xi and EK(i, j) = 0 otherwise. Then, the one-step transition probabilities

PK(xi, xj) from xi to xj are defined

PK(xi, xj) =
EK(i, j)∑
j EK(i, j)

.

Through replacing the P in Section 4.2 by PK , the effect of noise is reduced,

but the process is still not robust enough to noise. The reason is that the

relation between the KNN(xi) and KNN(xj) is too hard and too narrow. It

counts a data point xk only if xk is a KNN of both xi and xj. This causes

problems if both points xi and xj belong to the same dense cluster, in which

case they may have no common KNNs although they are very similar. In other

words, although xi and xj are very similar to each other and there are many

short paths connecting them in graph G, they may have no common neighbor

in GK .

In order to solve this problem, we consider the paths between KNNs of

xi and KNNs of xj, which can be viewed as a soft measure of their KNNs’

compatibility. The probability of transition from node xi to xj is high if all

the the paths between points in KNN(xi) and in KNN(xj) are short. We

define

P t+1
KK(xi, xj) =

∑

k∈KNN(xi),l∈KNN(xj)

P (xi, xk)P
t
KK(xk, xl)P (xl, xj) (4.1)

Eq. 4.1 can be viewed as a symmetric version of the approach in [45], and can

88

be expressed as matrix multiplication

P t+1
KK = PK P t

KK (PK)T .

The embedding results of our proposed approach on the noisy spiral data

are shown in Figs. 4.1c and (d). These figures demonstrate that the proposed

locally constrained diffusion process (LCDP) is able to recover the intrinsic

geometric structure of the spiral.

4.4 Methodology

We add ghost points to the minority class of the training and testing sets

and perform classification in the following method:

1. The training set

(a) Given a training set consisting of m time series examples with se-
quence length s, create the m ×m distance matrix by calculating
the OSB or DTW distance between each pair of examples.

(b) The distance matrix is converted to an affinity matrix using the
approach in [5]

(c) Calculate LCDP on the affinity matrix as discussed in Section 4.3

(d) For each minority class example x, find its Knn in the LCDP ma-
trix. Then using the original distance matrix, add one ghost point
between x and each of the Knn found using LCDP. This gives us a
total of p new points.

(e) Calculate the distance from the p ghost points to every other point
in the training set using Eq. 3.1. We now have an (m+p)× (m+p)
matrix.

(f) Convert both the original and augmented OSB or DTW score ma-
trix to affinity matrices using the approach in [5].

89

(g) Use these affinity matrices as the user-defined or precomputed kernel
for the SVM to get two models: one that includes ghost points and
one that does not.

(h) Run SVM to train.

2. The testing set

(a) Given a testing set consisting of n time series examples with se-
quence length s and the training set consisting of m time series
examples with sequence length s, create the n ×m OSB or DTW
distance score matrix.

(b) Calculate the distance from each test data point to each of the p
ghost points using Eq. 3.1; we now have an n × (m + p) distance
matrix.

(c) Convert both the original and augmented OSB or DTW score ma-
trix to an affinity matrix as in step 1f above.

(d) Use these affinity matrices as the user-defined or precomputed kernel
for the SVM as in step 1g above.

(e) Run SVM to test.

In our experiments, when we convert a distance matrix to an affinity ma-

trix, there are two critical parameters to set, a and K, that modify the σ for

the Gaussian Kernel function. As stated in [62], the scaling parameter σ is

some measure of when two points are considered similar. It is common for σ

to be chosen manually, but sometimes a single value of σ does not work well

for an entire data set. Therefore, we use the method in [5] to calculate the

local scaling parameter σij for each pair of data points xi and xj. The affinity

between a pair of points can be written as:

k(xi, xj) = exp(
−d(xi, xj)

2

σij

) (4.2)

90

where σij = a · mean{Knn d(xi), Knn d(xj)}, mean{Knn d(xi), Knn d(xj)}

is the the mean distance of the Kd nearest neighbors of points xi, xj, and a is

a scaling parameter. For SVM, there is the additional cost parameter C. For

all experiments we used a = 0.5, K = 5, and C = 0.5. The final parameter

to set is the number of ghost points to add per minority example, as the final

results can be sensitive to the number of ghost points added. If the data set

is highly imbalanced, a good heuristic is to balance the the classes, but this

does not always give the best results. We then run SVM on the four matrices

(after converting them to kernels): OSB score matrix without ghost points;

OSB score matrix with ghost points; DTW score matrix without ghost points;

and DTW score matrix with ghost points.

4.5 Experimental Results on UCR Time Se-

ries

Of the twenty UCR time series data sets, there are 17 that contain what

we define as a minority class, i.e. a data set that has at least one class that

is at most 35% of the size of the total data set. These data sets are listed

in Table 4.1. The number of classes for these data sets range from two to

fifty. Three of the data sets, Wafer, Lightning-2, and ECG, each have only

two classes, one of which meets our definition of a minority class. For each

91

of the other fourteen data sets, any class whose size is at most 35% of the

entire data set is taken as a minority class, the examples of all other classes of

the data set are combined into a single class, and then we run the algorithm

described in Section 4.4. If a data set has more than one of these simulated

minority classes, we average the results over all the minority classes for that

data set. The only exception to this method is with the 50 Words data set.

It has one class with only one training example, and since we need at least

two examples to be able to insert a ghost point between them, this one class

is excluded as a minority class. Tables 4.1 and 4.2 list the characteristics for

each data set, including the number of original classes, the number of classes

that are used as a minority class as they meet the requirements we defined,

and the minimum and maximum number of minority class examples in the

training data for each data set.

We compare the results of SVM on OSB with and without ghost points on

the seventeen data sets in Table 4.1 and the results of SVM on DTW with and

without ghost points on the seventeen data sets in Table 4.2. Because we are

interested in the performance on minority classes, specifically minimizing the

number of false negatives (see Section 3.4.1), we measure the overall accuracy

(Eq. 3.7), the F1-measure (Eq. 3.8 with β = 1) which weights precision and

recall equally, and the F2-measure (Eq. 3.8 with β = 2) which weights recall

twice as heavily as precision.

92

As the results show in Table 4.1, for the OSB score matrix adding ghost

points improves the overall accuracy on fifteen of the seventeen data sets. On

the two data sets (Beef and TwoPatterns) where the overall accuracy de-

creases after adding ghost points, the drop is by less than 1 percentage point

for both. Of the data sets where overall accuracy increases, seven have in-

creases of over three percentage points. For example, adding ghost points

increases Lightening-2 ’s accuracy by 11.5 percentage points, and ECG ’s ac-

curacy increases by 6.0 percentage points. For sixteen of the seventeen data

sets, the F1-measure increases with the addition of ghost points and for twelve

of these data sets, the increase is more than 10 percentage points. For three

data sets (Lightening-2, Lightening-7, and Adiac, ghost points increase the

F1-measure by over 20 percentage points (increases of 21.7, 27.4, and 20.5

percentage points, respectively), and Beef ’s F1-measure increases by 33.7 per-

centage points. Fifteen of the seventeen data sets’ F2-measure increases, with

again twelve of them having increases of more than 10 percentage points. Two

data sets (Wafer and Adiac) have increases over 20 percentage points, and

three data sets (Lightning-2, Lightning-7, and Beef) have increases over 30

percentage points. The only data set where adding ghost points decreases all

three measures is TwoPatterns, but that is because we do not train any of the

three parameters discussed in Section 4.4. With training, the results can be

improved so that adding ghost points performs better than not adding ghost

93

points.

When using the DTW score matrix (Table 4.2), adding ghost points in-

creases the overall classification accuracy for fifteen of the seventeen data sets,

decreases it for one data set, and leaves one unchanged. Four of the accuracy

increases are over 4 percentage points. One data set, Face Four, has an in-

crease in overall classification accuracy of 8.8 percentage points when ghost

points are added. For sixteen of the seventeen data sets, adding ghost points

increases the F1-measure and the F2-measure. These measures decrease for

only the ECG data set. Ten data sets’ F1-measure increases by more than

10 percentage points with ghost points. Four of them have increases over 20

percentage points and two have increases over 30 (FaceFour and OliveOil. Of

the sixteen data sets with F2-measure increases, eleven have increases over 10

percentage points, four with over 20, and two with over 30 (again FaceFour

and OliveOil.

These results for both OSB and DTW distance measures demonstrate that

adding ghost points to minority classes may not only improve the overall clas-

sification accuracy, but may significantly increase the accuracy of predicting

the rare event and at the same time reduce the number of false negatives.

94

N
u
m

G
P

A
d
d
ed

O
ve

ra
ll

F
1
-M

ea
su

re
F

2
-M

ea
su

re

p
er

M
in

or
it
y

A
cc

u
ra

cy
M

in
or

it
y

C
la

ss
M

in
or

it
y

C
la

ss

D
at

a
S
et

E
x
am

p
le

S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P

Sy
nt

he
ti

cC
on

tr
ol

2
98

.8
3%

99
.7

8%
X

0.
96

68
0.

99
33

X
0.

98
43

0.
99

13
X

C
B

F
1

96
.8

9%
98

.6
7%

X
0.

94
98

0.
97

94
X

0.
92

83
0.

96
87

X
Fa

ce
A

ll
1

98
.8

3%
99

.1
0%

X
0.

90
63

0.
93

32
X

0.
93

07
X

0.
92

55

O
SU

L
ea

f
2

86
.1

6%
87

.3
3%

X
0.

36
89

0.
56

04
X

*
0.

32
94

0.
52

67
X

*

Sw
ed

is
hL

ea
f

3
98

.2
7%

98
.5

1%
X

0.
85

52
0.

88
26

X
0.

81
45

0.
84

96
X

50
W

or
ds

1
98

.7
8%

98
.8

7%
X

0.
32

36
0.

46
74

X
*

0.
27

85
0.

41
24

X
*

T
ra

ce
2

91
.5

0%
96

.5
0%

X
*

0.
79

21
0.

92
66

X
*

0.
74

84
0.

92
50

X
*

T
w

oP
at

te
rn

s
1

99
.7

8%
X

98
.8

8%
0.

99
54

X
0.

97
71

0.
99

27
X

0.
96

40

W
af

er
9

96
.2

5%
99

.5
3%

X
*

0.
79

13
0.

97
81

X
*

0.
70

60
0.

97
50

X
*

Fa
ce

Fo
ur

1
91

.1
9%

96
.8

8%
X

*
0.

79
02

0.
93

94
X

*
0.

73
56

0.
92

35
X

*

L
ig

ht
ni

ng
2

1
73

.7
7%

85
.2

5%
X

*
0.

61
90

0.
83

64
X

*
0.

51
59

0.
82

73
X

*

L
ig

ht
ni

ng
7

1
89

.6
3%

93
.7

4%
X

*
0.

45
22

0.
72

59
X

*
0.

39
70

0.
70

26
X

*

E
C

G
1

87
.0

0%
93

.0
0%

X
*

0.
78

69
0.

89
55

X
*

0.
71

01
0.

85
71

X
*

A
di

ac
3

98
.0

7%
98

.3
0%

X
0.

44
16

0.
64

65
X

*
0.

37
65

0.
60

92
X

*

F
is

h
3

94
.8

6%
96

.1
6%

X
0.

75
50

0.
85

72
X

*
0.

68
57

0.
83

70
X

*

B
ee

f
2

82
.6

7%
X

82
.0

0%
0.

16
67

0.
50

34
X

*
0.

16
67

0.
47

60
X

*

O
liv

eO
il

1
91

.1
1%

94
.4

4%
X

*
0.

57
08

0.
74

54
X

*
0.

54
29

0.
70

19
X

*

T
ab

le
4.

1:
T

h
e

re
su

lt
s

of
ad

d
in

g
gh

os
t

p
oi

n
ts

u
si

n
g

L
C

D
P

to
th

e
O

S
B

d
is

ta
n
ce

sc
or

es
on

th
e

im
b
al

an
ce

d
U

C
R

ti
m

e
se

ri
es

d
at

a
se

ts
.

B
ol

d
ed

,
ch

ec
ke

d
re

su
lt

s
in

d
ic

at
e

b
es

t
sc

or
es

.
A

n
as

te
ri

sk
fo

r
ac

cu
ra

cy
in

d
ic

at
es

at
le

as
t

3
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
;
fo

r
F

β
-m

ea
su

re
it

in
d
ic

at
es

at
le

as
t

10
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
.

95

N
u
m

G
P

A
d
d
ed

O
ve

ra
ll

F
1
-M

ea
su

re
F

2
-M

ea
su

re

p
er

M
in

or
it
y

A
cc

u
ra

cy
M

in
or

it
y

C
la

ss
M

in
or

it
y

C
la

ss

D
at

a
S
et

E
x
am

p
le

S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P
S
V

M
S
V

M
-G

P

Sy
nt

he
ti

cC
on

tr
ol

2
97

.4
4%

99
.2

8%
X

0.
92

92
0.

97
88

X
0.

96
83

0.
98

14
X

C
B

F
1

95
.8

3%
97

.7
8%

X
0.

93
37

0.
96

52
X

0.
91

71
0.

94
78

X
Fa

ce
A

ll
1

96
.0

8%
97

.1
0%

X
0.

73
06

0.
80

64
X

0.
79

16
0.

81
19

X
O

SU
L
ea

f
2

85
.1

2%
86

.2
9%

X
0.

34
50

0.
49

68
X

*
0.

30
85

0.
45

81
X

*

Sw
ed

is
hL

ea
f

3
97

.9
4%

98
.6

3%
X

0.
82

94
0.

89
64

X
0.

79
13

0.
88

85
X

50
W

or
ds

1
98

.7
6%

98
.9

7%
X

0.
31

09
0.

49
68

X
*

0.
27

17
0.

45
02

X
*

T
ra

ce
2

90
.2

5%
95

.0
0%

X
*

0.
76

90
0.

89
77

X
*

0.
71

71
0.

87
90

X
*

T
w

oP
at

te
rn

s
1

98
.4

5%
99

.0
3%

X
0.

96
80

0.
98

02
X

0.
95

28
0.

96
90

X
W

af
er

9
96

.8
2%

99
.7

1%
X

0.
82

99
0.

98
66

X
*

0.
75

95
0.

99
10

X
*

Fa
ce

Fo
ur

1
83

.5
2%

92
.3

3%
X

*
0.

51
52

0.
83

86
X

*
0.

46
38

0.
79

91
X

*

L
ig

ht
ni

ng
2

1
77

.0
5%

81
.9

7%
X

*
0.

68
18

0.
77

55
X

0.
58

59
0.

71
43

X
*

L
ig

ht
ni

ng
7

1
90

.0
2%

91
.7

8%
X

0.
44

11
0.

64
39

X
*

0.
42

13
0.

63
37

X
*

E
C

G
1

82
.0

0%
X

*
79

.0
0%

0.
70

97
X

0.
66

67
0.

64
71

X
0.

61
40

A
di

ac
3

97
.7

4%
98

.0
9%

X
0.

41
88

0.
55

49
X

*
0.

38
87

0.
51

97
X

*

F
is

h
3

93
.5

5%
95

.5
1%

X
0.

70
77

0.
82

98
X

*
0.

65
02

0.
79

39
X

*

B
ee

f
2

82
.0

0%
X

82
.0

0%
X

0.
16

67
0.

38
33

X
*

0.
16

67
0.

34
87

X
*

O
liv

eO
il

1
85

.5
6%

90
.0

0%
X

*
0.

40
00

0.
70

44
X

*
0.

37
14

0.
69

37
X

*

T
ab

le
4.

2:
T

h
e

re
su

lt
s

of
ad

d
in

g
gh

os
t

p
oi

n
ts

u
si

n
g

L
C

D
P

to
th

e
D

T
W

d
is

ta
n
ce

sc
or

es
on

th
e

im
b
al

an
ce

d
U

C
R

ti
m

e
se

ri
es

d
at

a
se

ts
.

B
ol

d
ed

,
ch

ec
ke

d
re

su
lt

s
in

d
ic

at
e

b
es

t
sc

or
es

.
A

n
as

te
ri

sk
fo

r
ac

cu
ra

cy
in

d
ic

at
es

at
le

as
t

3
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
;
fo

r
F

β
-m

ea
su

re
it

in
d
ic

at
es

at
le

as
t

10
p
er

ce
n
ta

ge
p
oi

n
ts

d
iff

er
en

ce
.

96

CHAPTER 5

Conclusions

The body of work presented here addresses several significant problems in

time series classification and imbalanced data sets.

Firstly, the proposed sequence matching method, OSB, directly optimizes

the sum of distances of corresponding elements, allows penalized skipping of

outlier elements, and defines a bijection on the remaining subsequences. A

key feature of OSB is the fact that penalty for skipping outliers is part of the

edge weights of the DAG built from two matched sequences. This results in

skipping decisions being made with a dynamic threshold whose optimization

is directly included in the dynamic programming optimization.

As demonstrated in the experimental results on standard time series data

sets, the ability of skipping outlier elements leads to improved retrieval per-

formance on many of the test data sets. However, for some data sets with-

97

out significant outliers it may lead to slightly reduced retrieval performance.

When dealing with partial shape similarity in the presence of noise, the ability

of skipping outlier elements is essential.

Secondly, we introduce an innovative method for over-sampling the minor-

ity class of imbalanced data sets. Unlike other feature based methods, our

synthetic points, which we call ghost points, are added in distance space. In

addition, ghost points can be added to distance spaces that are not metric,

such as those induced by elastic sequence matching algorithms like Dynamic

Time Warping and Optimal Subsequence Bijection. The experimental results

on standard time series data sets from varied domains show that adding ghost

points to the minority class can significantly improve the overall accuracy, and

especially the F1-measure and F2-measure.

We also introduce a way to use ghost points to visualize distance data for

imbalanced data sets. When plotting the distance space, adding ghost points

to the minority class may change the underlying structure of the distance space

such that the previously indistinct minority class now becomes observable.

Lastly, we introduce the addition of ghost points to densify minority classes

in imbalanced data sets and then use the locally constrained diffusion process

to reveal the intrinsic relation between data. Instead of using the direct dis-

tance between data, our approach can capture the topology of the data so that

the distance measure between objects is found through the manifold enclosing

98

the data. It can also be viewed as a novel supervised learning method for rel-

evance ranking. The supervised scenario is realistic, since we know the class

labels of the database objects for training data.

99

REFERENCES

[1] John Aach and George M. Church. Aligning gene expression time series

with time warping algorithms. Bioinformatics, 17:495–508, 2001.

[2] A. Aizerman, E. M. Braverman, and L. I. Rozoner. Theoretical foun-

dations of the potential function method in pattern recognition learning.

Automation and Remote Control, 25:821–837, 1964.

[3] R. Akbani, S. Kwek, and N. Japkowicz. Applying support vector machines

to imbalanced datasets. In Proceedings of ECML’04, pages 39–50, 2004.

[4] Arik Azran. The rendezvous algorithm: Multiclass semi-supervised learn-

ing with markov random walks. In In Proceedings of the 24th International

Conference on Machine Learning, 2007.

[5] Xiang Bai, Xingwei Yang, Longin Jan Latecki, Wenyu Liu, and Zhuowen

Tu. Learning context-sensitive shape similarity by graph transduc-

100

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,

32:861–874, 2010.

[6] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina

Monard. A study of the behavior of several methods for balancing ma-

chine learning training data. SIGKDD Explor. Newsl., 6(1):20–29, 2004.

[7] Donald J. Berndt and James Clifford. Using dynamic time warping to

find patterns in time series. In KDD Workshop, pages 359–370, 1994.

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning (In-

formation Science and Statistics). Springer, 1st ed. 2006. corr. 2nd print-

ing edition, October 2007.

[9] Philip Chan and Salvatore J. Stolfo. Toward scalable learning with non-

uniform class and cost distributions: A case study in credit card fraud

detection. In In Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining, pages 164–168. AAAI Press, 1998.

[10] N. V. Chawla, K. W. Bowyer, and W. P. Kegelmeyer. Smote: Synthetic

minority over-sampling technique. Journal of Artificial Intelligence Re-

search, 16:321–357, 2002.

[11] Nitesh V. Chawla, Ar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer.

Smoteboost: improving prediction of the minority class in boosting.

101

In Proceedings of the Principles of Knowledge Discovery in Databases,

PKDD-2003, pages 107–119, 2003.

[12] Lei Chen and Raymond Ng. On the marriage of lp-norms and edit dis-

tance. In VLDB ’04: Proceedings of the Thirtieth International Con-

ference on Very Large Data Bases, pages 792–803. VLDB Endowment,

2004.

[13] Lei Chen, M. Tamer Özsu, and Vincent Oria. Robust and fast similarity

search for moving object trajectories. In SIGMOD ’05: Proceedings of the

2005 ACM SIGMOD international conference on Management of data,

pages 491–502, New York, NY, USA, 2005. ACM.

[14] Chiu, Keogh, and Lonardi. Probabilistic discovery of time series motifs.

In Proceedings ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining, Washington, 2003.

[15] Chu, Keogh, Hart, and Pazzani. Iterative deepening dynamic time warp-

ing for time series. In Proceedings SIAM International Conference on

Data Mining, 2002.

[16] David A. Cieslak and Nitesh V. Chawla. Start globally, optimize locally,

predict globally: Improving performance on imbalanced data. In ICDM

’08: Proceedings of the 2008 Eighth IEEE International Conference on

102

Data Mining, pages 143–152, Washington, DC, USA, 2008. IEEE Com-

puter Society.

[17] Ronald R. Coifman and Stephane Lafon. Diffusion maps. Applied and

Computational Harmonic Analysis, 21(1):5–30, July 2006.

[18] Das, Gunopulos, and Mannila. Finding similar time series. In Principles

of Data Mining and Knowledge Discovery, pages 88–100, 1997.

[19] Alex A. Freitas and Jon Timmis. Revisiting the foundations of artificial

immune systems: a problem-oriented perspective. In Hart (Eds.) Artifi-

cial Immune Systems (Proc. ICARIS-2003), LNCS 2787, pages 229–241.

Springer, 2003.

[20] Costis Georgiou and Hamed Hatami. CSC2414- Metric embeddings. Lec-

ture 1: A brief introduction to metric embeddings, examples and motiva-

tion. 2008.

[21] Hui Han, Wenyuan Wang, and Binghuan Mao. Borderline-smote: A new

over-sampling method in imbalanced data sets learning. volume 3644 of

Lecture Notes in Computer Science, pages 878–887. Springer, 2005.

[22] Xiaofei He, Shuicheng Yan, Yuxiao Hu, Partha Niyogi, and Hong jiang

Zhang. Face recognition using laplacianfaces. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 27:328–340, 2005.

103

[23] D. S. Hirschberg. A linear space algorithm for computing maximal com-

mon subsequences. Commun. ACM, 18(6):341–343, 1975.

[24] Hoeppner. Discovery of temporal patterns. learning rules about the qual-

itative behavior of time series. In Proceedings of the 5th European Con-

ference on Principles and Practice of Knowledge Discovery in Databases,

Freiburg, pages 192–203, 2001.

[25] Karen Hovsepian, Peter Anselmo, and Subhasish Mazumdar. Supervised

inductive learning with LotkaVolterra derived models. Knowl. Inf. Syst.,

2010.

[26] David W. Jacobs, Daphna Weinshall, and Yoram Gdalyahu. Classification

with nonmetric distances: Image retrieval and class representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22:583–600,

2000.

[27] Keogh, Lonardi, and Ratanamahatana. Towards parameter-free data min-

ing. In Proceedings ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, Seattle, 2004.

[28] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. UCR time series

classification/clustering page. Website, 2006. http://www.cs.ucr.edu/

~eamonn/time_series_data/.

104

[29] Miroslav Kubat, Robert C. Holte, and Stan Matwin. Machine learning

for the detection of oil spills in satellite radar images. Machine Learning,

30(2-3):195–215, 1998.

[30] Longin Jan Latecki, Rolf Lakämper, and Ulrich Eckhardt. Shape descrip-

tors for non-rigid shapes with a single closed contour. In IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), pages 424–429, 2000.

[31] Longin Jan Latecki, Qiang Wang, Suzan Köknar-Tezel, and Vasileios

Megalooikonomou. Optimal subsequence bijection. IEEE International

Conference on Data Mining, pages 565–570, 2007.

[32] Julian Laub and Klaus-Robert Müller. Feature discovery in non-metric

pairwise data. Journal of Machine Learning Research, 5:801–818, 2004.

[33] Haibin Ling and David W. Jacobs. Shape classification using the inner-

distance. IEEE Trans. Pattern Anal. Mach. Intell, 29:286–299, 2007.

[34] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Aca-

demic Press, 1979.

[35] Pierre-François Marteau. Time warp edit distance with stiffness adjust-

ment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell.,

31(2):306–318, 2009.

105

[36] Jiri Matousek. Lectures on Discrete Geometry. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2002.

[37] Vasileios Megalooikonomou, Qiang Wang, Guo Li, and Christos Faloutsos.

A multiresolution symbolic representation of time series. In ICDE ’05:

Proceedings of the 21st International Conference on Data Engineering,

pages 668–679, Washington, DC, USA, 2005. IEEE Computer Society.

[38] L. Mena and J.A. Gonzalez. Machine learning for imbalanced datasets:

Application in medical diagnostic. In In Proceedings of the 19th Interna-

tional FLAIRS Conference, 2006.

[39] Michael D. Morse and Jignesh M. Patel. An efficient and accurate method

for evaluating time series similarity. In SIGMOD ’07: Proceedings of the

2007 ACM SIGMOD international conference on Management of data,

pages 569–580, New York, NY, USA, 2007. ACM.

[40] Rafiei. On similarity-based queries for time series data. In Proceedings of

the Int. Conf. on Data Engineering, Sydney, pages 410–417, 1999.

[41] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290:2323–2326, 2000.

[42] Hiroaki Sakoe and Seibi Chiba. A dynamic programming approach to

continuous speech recognition. In Proceedings of the Seventh International

106

Congress on Acoustics, Budapest, volume 3, pages 65–69, Budapest, 1971.

Akadémiai Kiadó.

[43] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm opti-

mization for spoken word recognition. IEEE Transactions on Acoustics,

Speech, and Signal Processing, 26:43–49, 1978.

[44] Salvador, Chan, and Brodie. Learning states and rules for time series

anomaly detection. In Proceedings of the 17th Intl. Florida Artificial In-

telligence Research Society Conference, Florida, pages 306–311, 2004.

[45] Martin Szummer and Tommi Jaakkola. Partially labeled classification

with markov random walks. In Advances in Neural Information Processing

Systems, pages 945–952. MIT Press, 2002.

[46] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric

framework for nonlinear dimensionality reduction. Science, 290:2319–

2323, 2000.

[47] Edward R. Tufte. The Visual Display of Quantitative Information, 2nd

edition. Graphics Press, Cheshire, CT, USA, second edition, 2001.

[48] C.J van Rijsbergen. In Information Retrieval. Butterworths, London,

1979.

107

[49] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-

Verlag New York, Inc., New York, NY, USA, 1995.

[50] V. M. Velichko and N. G. Zagoruyko. Automatic recognition of 200 words.

International Journal of Man-Machine Studies, 2:223–234, 1970.

[51] Vlachos, Hadjieleftheriou, Gunopulos, and Keogh. Indexing multi-

dimensional time-series with support for multiple distance measures. In

Proceedings of ACM SIGKDD Int. Conf. on Knowledge Discovery and

Data Mining, Washington, pages 216–225, 2003.

[52] Vlachos, Kollios, and Gunopulos. Discovering similar multidimensional

trajectories. In Proceedings of 18th ICDE, San Jose, CA, pages 673–684,

2002.

[53] Benjamin X. Wang and Nathalie Japkowicz. Boosting support vector

machines for imbalanced data sets. Knowledge and Information Systems,

March 2009.

[54] Marc Weber, Marc Alexa, and Wolfgang Müller. Visualizing time-series

on spirals. In Proceedings of the IEEE Symposium on Information Visu-

alization 2001 (INFOVIS’01), pages 7–14, 2001.

[55] Gary M. Weiss. Mining with rarity: a unifying framework. SIGKDD

Explor. Newsl., 6(1):7–19, 2004.

108

[56] Gary M. Weiss and Haym Hirsh. Learning to predict rare events in event

sequences. In In Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining, pages 359–363. AAAI Press, 1998.

[57] Gary M. Weiss and Foster Provost. Learning when training data are

costly: The effect of class distribution on tree induction. Journal of Ar-

tificial Intelligence Research, 19:315–354, 2003.

[58] K. Woods, C. Doss, K. Bowyer, J. Solka, C. Priebe, and P. Kegelmeyer.

Comparative evaluation of pattern recognition techniques for detection

of microcalcifications in mammography. International Journal of Pattern

Recognition and Artificial Intelligence, 7:1417–1436, 1993.

[59] Gang Wu and Edward Y. Chang. Class-boundary alignment for im-

balanced dataset learning. In Workshop on Learning from Imbalanced

Datasets in International Conference on Machine Learning (ICML), 2003.

[60] Xingwei Yang, Xiang Bai, Longin Jan Latecki, and Zhuowen Tu. Improv-

ing shape retrieval by learning graph transduction. In ECCV (4), vol-

ume 5305 of Lecture Notes in Computer Science, pages 788–801. Springer,

2008.

[61] Yi, Jagadish, and Faloutsos. Efficient retrieval of similar time sequences

under time warping. In Proceedings Int. Conf. on Data Engineering

(ICDE98), pages 201–208, 1998.

109

[62] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In

Advances in Neural Information Processing Systems 17, pages 1601–1608.

MIT Press, 2004.

[63] Huimin Zhao. Instance weighting versus threshold adjusting for cost-

sensitive classification. Knowl. Inf. Syst., 15(3):321–334, 2008.

[64] Dengyong Zhou and Bernhard Schlkopf. Learning from labeled and un-

labeled data using random walks. In Pattern Recognition, Proceedings of

the 26th DAGM Symposium, pages 237–244. Springer, 2004.

[65] Xueyuan Zhou and Chunping Li. Text classification by markov random

walks with reward. In DMIN, pages 275–278, 2005.

