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ABSTRACT 

MOTION DETECTION AND OBJECT TRACKING IN GRAYSCALE VIDEOS 

BASED ON SPATIOTEMPORAL TEXTURE CHANGES 

Roland Miezianko 

DOCTOR OF PHILOSPHY 

Temple University, January, 2006 

Dr. Longin Jan Latecki, Chair 

 

Automatic detection and tracking of moving objects are the fundamental tasks of 

many video-based surveillance systems. Higher level security assessment and decision 

making procedures rely upon these essential video analysis tasks. Robust motion 

detection and object tracking provide the basis for detection of increased activity, entry 

into a restricted area, detection of objects left behind, tracking of optical flow against 

established motion patterns, and other similar surveillance requirements. A common 

method for real-time segmentation of moving regions in image sequences involves 

modeling each pixel as a mixture of Gaussians and using K-means approximation to 

update the model. Each Gaussian distribution is assigned to represent the background or 

a moving object in the adaptive mixture model. Every pixel is then evaluated and 

classified as part of a moving region or as a background. This method does not adapt 
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well to graylevel videos since the color information is limited to a single value. The 

proposed motion detection and object tracking method is particularly suitable for 

grayscale videos, such as infrared, thermal, and converted color image sequences. 

Detection of moving objects in grayscale videos is based on changing texture in parts of 

the field of view. The proposed method estimates the speed of texture change by 

measuring the spread of texture vectors in the feature space. It robustly detects very fast 

and very slow moving objects. The theoretical and experimental results show that 

measuring spread of texture vectors significantly outperforms the Stauffer-Grimson 

approach based on Gaussian mixture model. The proposed spatiotemporal motion 

detection method does not require any post-processing, which is a necessary step 

required by the Gaussian mixture model. Additionally, real-time software designed to 

detect motion based on the spatiotemporal texture changes is evaluated using color and 

infrared cameras. The proposed selective hypothesis tracking method is fundamentally 

based on the location of spatiotemporal texture motion regions. It uses predicted motion 

vectors, sub-pixel image registration, and minimum cost estimation using distance, 

direction, size, and persistence. This method is capable of tracking fast and slow 

moving objects, objects that disappear and later reappear, and objects that merge and 

split. 
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CHAPTER 1 

INTRODUCTION 

Motion detection and object tracking algorithms are an important research area 

of computer vision and comprise building blocks of various high-level techniques in 

video analysis that include tracking and classification of trajectories. It is an obvious 

and biologically motivated observation that the main clue for detection of moving 

objects is the changing texture in parts of the view field. All optical flow computation 

algorithms use derivative computation to estimate the speed of texture change [20]. 

However, derivative computation may be very unstable in finite domains of images. 

Therefore, a proposed motion detection method is introduced that does not require any 

derivative computation. An approach is proposed to perceive motion and detect activity 

based on statistical properties of texture vectors [4]. 

Let us focus on a fixed position in a video plane and observe the sequence of 

texture vectors representing a patch around this position over time. Each texture vector 

describes the texture of the patch in a single video frame. An assumption of a stationary 

camera is made. In the observed patch that corresponds to part of the background 

image, the texture vectors will not be constant due to various factors (e.g., illumination 

changes, errors of the video capture device), but combined effect is merely a small 

spread of texture vectors over time. Also a repetitive background motion like tree 
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branches waving in the wind yields a relatively small spread of texture vectors. Since 

similar texture repeats frequently, the texture vectors in this case are highly correlated. 

On the other hand, if a moving object is passing through the observed location, it 

is very likely that object will have a different texture from the background patch. 

Therefore, the texture vectors are very likely to have a large spread. Even if different 

parts of the moving object have the same texture that is the same as the background 

texture, the texture vectors will have large spread at the observed location, since 

different texture parts will appear in the patch. This holds under the assumption that the 

texture is not completely uniform, since then different texture parts have different 

texture vectors. To summarize, the proposed approach can identify moving objects even 

if their texture is identical with the background texture, due to the fact that our 

classification is based on measuring the amount of texture change and texture structure 

is extremely unlikely to be perfectly uniform. 

Observe that the spread of texture vectors is measured in the texture space. 

Because of this, the direct optical flow computation is not possible, i.e., to estimate the 

directions and speed of moving objects. However, we are able to perform robust 

detection of moving objects. In comparison to the existing motion detection algorithms 

[6, 7, 14], no model of the background is computed. Only the measurement of the 

amount of texture change is computed and then classified it into two categories: moving 

and stationary objects. The afore-mentioned situation in which the background texture 

and the texture of moving object are similar illustrates a typical situation in which the 

proposed approach outperforms any background modeling method. In such cases, in the 
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background modeling approaches the texture of a moving object can be easily 

misclassified as background texture. 

Instead of color, graylevel, or infrared values at pixel locations, the values of all 

pixels in spatiotemporal regions represented as 3D blocks are considered. These 3D 

blocks are represented through compact spatiotemporal texture vectors to reduce the 

influence of noise and decrease computational demands. As shown in [11] the use of 

such texture vectors in the framework of Stauffer and Grimson [14] can improve the 

detection of moving objects while potentially cutting back the processing time due to 

the reduction of the number of input vectors per frame. Thus, we go away from the 

standard input of pixel values for motion detection that are known to be noisy and the 

main cause of instability of video analysis algorithms. The proposed motion detection 

technique is independent of any particular texture representation used. 

To represent texture, consider the values of all pixels within spatiotemporal 

regions represented as 3D blocks. A 3D block (e.g., 8 8 3× × ) consists of a few 

successive frames (e.g., 3) at the same quadratic patch (8 8)×  of a scene. To compactly 

represent these values and to reduce the influence of noise, a dimensionality reduction 

technique is applied by using principal components projection (PCA). As the result, 

texture is represented by a vector containing only the most significant projected 

components of texture, while less significant components and noise are filtered out 

through the process of feature extraction. The most significant projected components 

represent a small subset of all the projections. The obtained texture vectors provide a 

compact low dimensional joint representation of texture and motion patterns in videos, 
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and are used as primary inputs to a motion detection technique. As mentioned above, 

texture at a given location in video plane is very likely to considerably vary while a 

moving object is passing through this location. Measure this variance by estimating the 

covariance matrix of the texture vectors from the same location within a window of a 

small number of successive frames is computed, and determine the texture spread as the 

largest eigenvalue of the covariance matrix. This allows to indirectly determine the 

magnitude of texture variability in the direction of its maximal change. Finally, the 

decision whether a moving object or a stationary background is identified at a given 

spatiotemporal location is made by dynamic distribution learning of the obtained largest 

eigenvalue. 

The proposed technique can use a variety of video sequences as input, ranging 

from monochromatic grayscale, thermal, infrared (IR) videos to multispectral videos in 

visible or IR spectral domain. To demonstrate the usefulness of the proposed method, 

several benchmark videos from PETS workshop are used. The robust performance of 

the proposed motion detection method provides the basis to detect increased activity in 

videos. Motion amount is defined as a sum of motion activates of all blocks in a given 

frame (Chapter 5). By applying a simple statistical learning of the motion amount, 

increased activities may be detected and classified. Learning of the distribution of the 

total motion amount in all previous frames is necessary, under the assumption that 

mostly normal activities are present. An increased activity is detected as outlier of the 

learned distribution. 
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The proposed approach to increased activity detection does not include any 

specific domain knowledge about the monitored objects. Such knowledge can be 

incorporated in the framework, e.g., focusing on monitoring only human or vehicle 

activities. By adding a classifier that is able to label moving object categories, it can 

restrict system’s attention to particular object categories, e.g., see [18]. 

The usefulness of dimensionality reduction techniques to compactly represent 

3D blocks has already been recognized in video compression. There, 3D discrete cosine 

and 3D wavelet transforms are employed to reduce the color or graylevel values of a 

large number of pixels in a given block to a few quantized vector components, e.g., 

[15]. However, these techniques are not particularly suitable for detecting moving 

objects, since the obtained components do not necessarily provide good means to 

differentiate the texture of the blocks. Namely, these transformations are context free 

and intrinsic in that their output depends only on a given input 3D block. In contrast, the 

proposed technique allows obtaining an optimal differentiation for a given set of 3D 

blocks. To reach this goal, an extrinsic and context sensitive transformation such that a 

representation of the given block depends on its context is needed. The Principal 

Component Analysis (PCA) [8] satisfies these requirements. Namely, for a given set of 

3D blocks PCA assigns to each block a vector of the components that maximize the 

differences among the blocks. Consequently, PCA components are very suitable to 

detect changes in 3D blocks. 
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1.1 Related Work 

A good overview of the existing approaches to motion detection can be found in 

the collection of papers edited by Remagnino et al. [13] and in the special section on 

video surveillance in IEEE PAMI edited by Collins et al. [2]. A common feature of the 

existing approaches for moving objects detection is the fact that they are pixel based. 

Some of the approaches rely on comparison of color or intensities of pixels in the 

incoming video frame to a reference image. Jain et al. [7] use simple intensity 

comparison to reference images so that the values above a given threshold identify the 

pixels of moving objects. A large class of approaches is based on appropriate statistics 

of color or graylevel values over time at each pixel location. (e.g., the segmentation by 

background subtraction in W4 [6], eigenbackground subtraction [10], etc). Wren et al. 

[16] were the first who used a statistical model of the background instead of a reference 

image. 

One of the most successful approaches for motion detection was introduced by 

Stauffer and Grimson [14]. It is based on adaptive Gaussian mixture model of the color 

values distribution over time at each pixel location. Each Gaussian function in the 

mixture is defined by its prior probability, mean and a covariance matrix. It is shown 

that the proposed local variation is not only a much simpler but also a more adequate 

model for motion detection for graylevel videos. It can significantly reduce the 

processing time in comparison to the Gaussian mixture model, due to smaller 

complexity of the local variation computation, thus making the real time processing of 

high resolution videos as well as efficient analysis of large scale video data viable. 
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Moreover, the local variation based algorithm remains stable with higher dimensions of 

input data, which is not necessarily the case for an Expectation-Maximization (EM) 

type algorithm (used for Gaussian model estimation). This makes the proposed 

technique potentially appealing for moving detection in higher dimensional domains, 

such as multispectral remote sensing imagery. 

As argued in [9], the application of region level techniques can lead to increased 

stability when detecting objects in adverse conditions. However, [9] and related 

approaches (e.g., [1]) aimed to improve the Stauffer-Grimson algorithm [14] still 

perform motion detection on pixel level. Only the post processing of pixel-based motion 

detection results is region based. In contrast, the motion detection in the proposed 

approach is solely region-based. 

 

1.2 Background Subtraction Model 

The most basic form of motion detection is the method of subtracting know 

background image containing no objects from an image under test. There are several 

methods to background subtraction, including averaging background frames over time 

and statistical modeling of each pixel. Example of background subtraction of two 

frames is shown in Figure 1.1. Whereas Figure 1.2 shows some of the difficulties in 

using this method for motion detection. It shows the difficulty in selecting an 

appropriate threshold. All above the mean pixel values are scaled to the maximum value 

of 255. Figure 1.2 shows that other methods must be used to threshold the image. 
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Figure 1.1: Temple 1 background subtraction images. Two consecutive frames from 
Temple1 video showing motion, frame 219 and frame 220. 
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Figure 1.2: Temple 1 background subtraction absolute difference. Difference between 
frame 220 and 219 from Temple 1 video where each pixel greater than mean difference 
value is scaled to 255, showing the unreliable nature of the background subtraction 
model. 
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1.3 Gaussian Mixture Model 

Model the values of a particular pixel as a mixture of Gaussian distributions. 

Multiple adaptive Gaussians are necessary to cope with acquisition noise, lighting 

changes, and other natural occurrence. Pixel values that do not fit the background 

distributions are considered foreground. This is a common method for real-time 

segmentation of moving regions in image sequences. Model Gaussians are updated 

using K-means approximation method. Each Gaussian distribution is assigned to 

represent the background or a moving object in the adaptive mixture model. Every pixel 

is then evaluated and classified as a moving region or as a background. This method 

also requires post-processing for graylevel videos whereas the method proposed in 

Chapter 2 does not. 

Incremental model of Gaussian distribution is defined as 
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Example of Gaussian model showing and classifying a pixel as motion is shown 

in Figure 1.3. Actual distributions of one pixel 185x213 from Campus 1 video is shown 

in Figure 1.4 (Red-Green) and Figure 1.5 (Red-Green-Blue), were more than one 

background is very likely. 

 

 

 

 
 
Figure 1.3: Outlier pixel in the Gaussian distribution. Distributions are shown as ellipses 
and the pixel outside the distribution is classified as motion. 
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Figure 1.4: Campus 1 RG pixel distribution. Red-Green locations of pixel 185x213 
from Campus 1 video showing more than one possible background. 

 

 

 

 
 

Figure 1.5: Campus 1 RGB pixel distribution. Locations of pixel 185x213 from Camp1 
video showing more than one possible background. 
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CHAPTER 2 

MOTION FEATURE REPRESENTATION 

2.1 Spatiotemporal Texture Vectors 

Videos are represented as three-dimensional (3D) arrays of monochromatic 

(infrared or graylevel) pixel values , ,i j tg  at a time instant t  and a pixel location ( , )i j . 

A video is characterized by temporal dimension Z  corresponding to the number of 

frames, and by two spatial dimensions, characterizing number of pixels in horizontal 

and vertical direction of each frame. Each image is divided in a video sequence into 

disjoint BLOCK BLOCKN N×  squares (e.g., 8 8×  squares) that cover the whole image. 

Spatiotemporal 3D blocks are obtained by combining squares in consecutive frames at 

the same video plane location. All experiments reported here use 8 8 3× ×  blocks that 

are disjoint in space but overlap in time, i.e., two blocks at the same spatial location at 

times t  and 1t +  have two squares in common. The fact that the 3D blocks overlap in 

time allows us to perform successful motion detection in videos with very low frame 

rate, e.g., in experimental results, videos with 2 to 30 frames a second are included. The 

obtained 3D blocks are represented as 192-dimensional (8 8 3)× ×  vectors of 

monochromatic pixel values [21]. 
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In general the blocks are represented by N -dimensional vectors , ,I J tb , specified 

by spatial indexes ( , )I J  and time instant t . Vectors , ,I J tb contain all graylevel values 

, ,i j tg  of pixels in the corresponding 3D block. To reduce dimensionality of , ,I J tb  while 

preserving information to the maximal possible extent, we compute a projection of the 

normalized block vector to a vector of a significantly lower length K N  using a PCA 

[8] projection matrix ,
K

I JP  computed for all , ,I J tb  at video plane location ( , )I J . The 

resulting spatiotemporal texture vectors *
, , , , ,

K
I J t I J I J tb P b= •  provide a joint representation 

of texture and motion patterns in videos and are used as input of algorithms for 

detection of motion and objects tracking. Value of 10K =  is used in all experiments 

and value of 3K =  is used for simplicity in creating motion orbit graphs. The obtained 

K -dimensional vectors form a compact spatiotemporal texture representation for each 

block. It is important to notice that a different projection matrix ,
K

I JP  is used for each 

video plain location. This assures that the obtained texture vectors are able to optimally 

distinguish different textures that appear in a given block. The initial projection matrix 

is trained on the first 0t  frames under the assumption that only background is present in 

all block locations. The projection matrices are then updated during the time periods in 

which no motion is detected in a given block location. 

 

2.2 Detection of Moving Features by Measuring Texture Spread 

The spread of texture vectors over time indicates whether the corresponding 

object texture is stationary or moving. Recall that each spatiotemporal vector represents 
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texture of the corresponding block. Hence, by observing the characteristics of 

spatiotemporal vectors change over time, we are able to detect whether a particular 

block belongs to a moving object or to a background. Consider a single block position 

in a video plane. We can observe the trajectory of its spatiotemporal vectors, i.e., the 

loci of spatiotemporal vectors in successive time frames, which we call motion orbits. 

For example, see Figure 2.1, where each point represents the first three PCA 

components of the texture vectors. 

If during an observed time interval there is no moving object in the block, i.e., a 

stationary background is only present in the block, the spatiotemporal vectors will be 

close to each other. The background texture is represented by the large cluster of points 

as seen in Figure 2.1. In contrast, if there is a moving object passing through this block, 

the spatiotemporal texture vectors will change fast, that is, the spatiotemporal vectors 

will be spread in the space of their coordinates. 

To summarize, it can be observed that frames with only stationary objects are 

visible in the observed block location correspond to regions where spatiotemporal 

vectors are clustered into fairly spherical shapes with small spread. In contrary, when 

moving objects are passing through this block location, the trajectory of spatiotemporal 

vectors is typically elongated and the variance is relatively large. A simple way to 

determine the speed of spatiotemporal vector change would be to compute the norms of 

their first derivatives. However, computing finite differences of consecutive 

spatiotemporal vectors may be unreliable. In order to determine whether the consecutive 
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vectors belong to elongated trajectories, we need to observe whether they are making a 

consistent progress in one particular direction within a certain time interval. 

 

 

 

 
 
Figure 2.1: Split 1 motion orbits. Motion and background vectors of block (41,42) in 
Split 1 video. 

 

 

 

This requires the assessment of the spatiotemporal vector spread in the direction 

of maximal variance. To measure the variance of spatiotemporal vectors, we compute 

the covariance matrix of spatiotemporal vectors corresponding to the same block 

location for a pre-specified number of consecutive frames. We use the maximal 
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eigenvalue as the measure of trajectory elongation. More formally, for each location 

( , )x y , and temporal instant t , we consider vectors of the form 

 
* * * *
, , , , 1 , , , ,, , , , ,x y t W x y t W x y t x y t Wb b b b− − + +… …  

 

 

corresponding to a symmetric window of size 2 1W +  around the instant t . For these 

vectors, we compute the covariance matrix , ,x y tC , and assign the largest eigenvalue of 

, ,x y tC , denoted as , ,x y tΛ , to a given spatiotemporal video position to define a local 

variance measure. This local variance measure is also called motion measure 

 

( ) , ,, , x y tmm x y t = Λ  

 

 

The larger the motion measure ( , , )mm x y t , the more likely is the presence of a 

moving object at position ( , , )x y t . An example graph of ( , , )mm x y t  is shown in Figure 

2.2. The large values (spikes) correspond to time intervals when moving objects where 

observed at this video location. The large values exactly correspond to the elongated 

motion orbits, while the small values correspond to the texture vectors within the 

background cluster. 

For comparison, the infrared value of a pixel within block location 44x16 is 

shown in Figure 2.3. Due to a significant amount of noise, detection of moving objects 
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seems to be a very challenging if not impossible task when based on infrared pixel 

values. Distinct advantage to spatiotemporal block processing is evident from these 

figures, where motion is detected in block 44x16, yet the pixels inside that block show 

no relevant texture changes. 

As the graph in Figure 2.2 suggests, we can label video position ( , , )x y t  based 

on the history of ( , , )mm x y t  values over time (frames ( , , 1)t t −… ) as moving, by 

applying an outlier detection method to ( , , )mm x y t  values, i.e., a position is labeled as 

moving if motion measure value at a given time is classified as an outlier. To perform 

the outlier detection, we first learn the nominal distribution of ( , , )mm x y t  values over 

some initial time period 1( 1, , )t t= … . This requires that the amount of unusual activity 

is relatively small in the initial time period, i.e., the part of the scene we mostly view at 

this location in the initial time period is stationary (background) .Then we use running 

average to update the mean and standard deviation of this distribution. The update is not 

performed if the position is classified as moving. A particular ( , , )mm x y t  is classified 

as an outlier if it is further away from the mean than a certain number of standard 

deviations. The distribution learning and outlier detection algorithm is described in 

Section 2.3.  

The motion measure value provides a classification method for each block as 

moving or stationary. This is the basis for activity detection, noise detection, and the 

selective hypothesis tracking algorithm. 
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Figure 2.2: Infra 1 motion measure. Value for block 44x16 showing motion around 
frames 275 and 475. 

 

 

 

 
 

Figure 2.3: Infra 1 pixel values. Intensity of pixel 175x61 inside block 44x16 not 
showing any significant change. 
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2.3 Dynamic Distribution Learning and Outlier Detection 

Consider labeling each video position as moving or stationary (background) 

based on whether the motion measure ( , , )mm x y t  is larger or smaller than a suitably 

defined threshold. Dynamic distribution learning is used to determine the threshold 

value at position ( , , )x y t  based on the history of ( , , )mm x y t  values over time (at frames 

, 1t t −… ). Since ( , , )mm x y t  is a function of one variable t  for a fixed position ( , )x y  

(see Figure 2.2), the task reduces to dynamic estimation of the mean and standard 

deviation of mm . The only assumption that is made about the distribution of values of 

function f  is that it has a prominent right tail (such as a general Gaussian distribution). 

Given a function f  of one variable, we compute initial values of 0( )mean t  and 

variance 2
0( )tσ  of all values ( )f t  in some initial interval 01, ,t t= …  [3,5]. For 0t t> , 

we update the estimates using the technique described in the next paragraph. An outlier 

is detected at time 0t t>  if the standardized feature value is sufficiently large, i.e., when 

 

 

1
( ) ( 1)

( 1)
f t mean t C

std t
− −

>
−

 

 

 

where 1C  is a constant and 

 
2( ) ( )std t tσ=  
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Once an outlier is detected at time 1t , value 1( )f t  is labeled as an outlier. We 

update the nominal state at time t , if the standardized feature value drops below a 

threshold 2 1C C< , i.e., 

 

2
( ) ( 1)

( 1)
f t mean t C

std t
− −

<
−

 

 

We update the estimates of mean and standard deviation only when the outliers 

are not detected (nominal state), i.e., at the beginning of the execution of the algorithm 

and when feature value drops below a threshold. Then, ( )mean t  and ( )std t  are updated 

using running averages: 

 

 

( ) ( 1) (1 ) ( )mean t u mean t u f t= ⋅ − + − ⋅  

 
2 2 2( ) ( 1) (1 ) ( ( ) ( 1))t u t u f t mean tσ σ= ⋅ − + − ⋅ − −  

 
2( ) ( )std t tσ=  

 

 

For example, we use 1 29, 3, 0.99C C u= = =  in the case of the detection of 

moving blocks for f mm= . As stated before, the only assumption that we make about 

the distribution of values of function f  is that it has a significant right tail. This 
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assumption clearly applies to the Gaussian distribution, but is significantly more 

general. 

Figure 2.4 shows the detection of noisy frames in Temple 1 video [12] using the 

derivative of motion amount using the dynamic distribution learning algorithm. Figure 

2.5 shows motion measure values of block 47x54 from Campus 1 video. In Figure 2.6 

motion is detected also using dynamic distribution learning algorithm. The motion 

measure value is very small around frame 1500 relative to frames 800 or 2600, 

however, the dynamic distribution correctly identified motion around this location. 

 

 

 

 
 
Figure 2.4: Temple 1 detected noisy frames. Motion measure with periodic spikes due 
to compression errors. Spikes are detected using dynamic distribution learning. 
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Figure 2.5: Campus 1 motion measure. Motion measure of block 47x54 showing large 
motion spikes. 

 

 

 

 
 
Figure 2.6: Campus 1 detected motion. Detected motion based on motion measure of 
block 47x54 and dynamic distribution learning. 
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CHAPTER 3 

OBJECTIVE PERFORMANCE EVALUATION 

3.1 Motion Orbits in Texture Space 

The most common method to evaluate the performance of motion detection is 

simply to view the videos with moving objects marked by the applied algorithm as 

discuss in Chapter 2. However, a more objective method of performance evaluation is 

also possible. This section introduces and uses such a method to compare the proposed 

spread measure of texture vectors to the Gaussian mixture model introduced in [14]. To 

make the comparison more realistic, the Gaussian mixture model to texture vectors is 

applied. Hence, both compared techniques are based on the same spatiotemporal blocks 

that represent texture and motion patterns. We also show that the Gaussian mixture 

model on texture vectors significantly outperforms the original representation used in 

[14], RGB color values on a pixel level. 

A motion orbit is defined as a path that the texture representation at the fixed 

video plane location traverses over time. Recall that texture vectors are composed of 

first 3 PCA components of each spatiotemporal block vector. Hence, the motion orbit at 

video plane location ( , )x y  is a sequence of points in the 3D Euclidean space 

, ,1 , ,2 , ,, , ,x y x y x y Tv v v…  where *
, , , ,I J t I J tv b=  and T  is the total number of frames. 
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For instance, in Figure 3.1, orbits for the block (24,28) of the Campus 1 PETS 

video [25] are shown. Frames identified as moving using our local variation method are 

marked with gray dots while stationary frames are marked with black dots. The 

distribution of black dots is multimodal globally. We observe two main modes that 

represent the background blocks. They are identified as two 3D blobs that correspond to 

two different background textures that appeared in the course of this video at block 

position (24,28): a part of parking lot and a parked car. Around these blobs we see one 

dimensional orbits marked with gray dots corresponding to moving objects.  

 

 

 

 
 
Figure 3.1: Campus 1 motion frames. Orbits of block (24,28) vectors marked with 
motion frames, using ‘reset’ and ‘hold’ mechanisms identified by the EM algorithm. 
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We can view the proposed local variance method as orbit classification 

algorithm. The reason is that elongated one dimensional orbits that identify motion have 

higher spread than the stationary background objects.  

The dot labeling as shown in Figure 3.1 was computed by the proposed method 

for detection of moving objects. Observe that the gray dots perfectly correspond to the 

one dimensional motion orbits that identify moving blocks. Thus, the proposed 

algorithm correctly detected moving objects. In contrast, for the same Campus 1 video 

the incremental Expectation-Maximization type method failed to identify the motion 

orbit containing frames 633—663. In comparison to any pixel-based approaches (e.g., 

as originally proposed in [14]), motion detection based on 3D blocks performs better 

since it reduces noise in background and can extract information about temporal change 

of texture (since it is based on spatiotemporal texture representation of 3D blocks 

instead of pixels). To demonstrate how noisy RGB color values of a single pixel can be, 

we plot an orbit over time of RGB color values that occur at the pixel (185,217) which 

is one of the pixels in the block (24,28) of Campus 1 video (Figure 3.2). For better 

visualization, in Figure 3.2 we show the linearly transformed space of PCA projections 

of the original RGB color values (the trajectory in the space of original RGB colors is 

similar). To allow a proper comparison to the results in Figure 3.1 (computed by our 

local variance technique), the dot labels from Figure 3.1 are copied to Figure 3.2. 
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Figure 3.2: Campus 1 RGB pixel values. Standardized PCA components of RGB pixel 
values for Campus 1 at pixel location (185,217) that is inside block (24,28); allows a 
direct comparison to Figure 3.1. 
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By comparing Figure 3.1 to Figure 3.2 one can conclude that in both 

representations there are two distribution components corresponding to the background. 

However, using the block-based approach, the background variance is much smaller, 

since using block vectors that contain texture information results in effective noise 

reduction in comparison to using “raw” pixels. Hence, any technique to detect moving 

objects as outliers will perform much better using spatiotemporal blocks than when 

using the raw pixels. As it can be seen in Figure 3.2, the method from [14] has 

difficulties in properly detecting frames 611, 695, and 1477 belonging to the second and 

fourth moving objects that appear at the observed pixel. The gray dots incorrectly 

become parts of two background components, which imply that a pixel-based method 

[14] would classify the corresponding gray dots as belonging to a background 

distribution. The proposed local variation based technique can also be applied on pixel 

level. However, due to problems with large uniform texture regions as well as noise 

inherent to pixel values (shown above), the preferred technique is to apply local 

variance method on spatiotemporal texture block vectors. 

Figure 3.3 shows a close up of motion orbits for Campus 1 video with distinct 

two backgrounds. Each background cluster is very close-fitting and motion is evident 

by the elongated vectors. A single background without any motion is shown in Figure 

3.4. Same scale is used in Figure 3.4 as Figure 3.3 to compare background spread. The 

close up of Figure 3.4 shows the background as a compact representation of features 

and the noisy nature of Campus 1 video. 
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Figure 3.3: Campus 1 two backgrounds. Example of color motion orbits. Motion block 
47x54 of Campus1 video showing two background clusters and detected motion orbits. 
Full scale and close-up of two background clusters is shown. 

 



 30

 

 

 

 

 
 
 

Figure 3.4: Campus 1 single background. An example of color static background. Full 
scale and close-up of single background cluster without any motion orbits. 

 

 



 31

3.2 Decreased Sensitivity to Noise 

It is well-known fact that noise to signal ratio in thermal infrared videos is 

higher than in visible light videos. The infrared noise can be viewed as jitters in pixel 

values. Figure 3.5 illustrates the performance of the Gaussian mixture model [14] on 

infrared pixels values on Infra 2 video from [19]. A large number of false-positives, 

some have the size of actual moving objects. The usage of the proposed spatiotemporal 

texture vectors eliminates very effectively the infrared jitter noise as we can see in 

Figure 3.5. 

A noisy color video sequence also poses a challenge to the Gaussian mixture 

model as is shown in Figure 3.6. The spatiotemporal motion detection method handles 

the frame shift well when the texture blocks contain only most significant spread of 

texture vectors. Frame 120 of the Split 1 video shows three moving objects as detected 

by spatiotemporal motion vectors, whereas many more objects are detected by the 

Gaussian mixture model. 

Additionally, the visual inspection of frames is supplemented by ground truth 

data evaluation. Centroids of the motion regions as detected by spatiotemporal method 

and Gaussian mixture model method are projected onto single frame, and difference 

from ground truth data is computed (Section 3.3). 

It should be noted, that large frame shifts also introduce false motion detection 

by the spatiotemporal motion detection method. If the frame motion is significant, and 

large sections of the frame change position, the spatiotemporal method will mark blocks 

as motion when there is only translation of the entire frame (Chapter 4). 
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Figure 3.5: Infra 2 video frame 49 with detected motion: Example of sensitivity  to 
noise in infrared video as proposed by the outlier detection based on spatiotemporal 
blocks and S&G Gaussian mixture model. 
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Figure 3.6: Split 1 video frame 120 with detected motion: Example of sensitivity to 
noise in color video as proposed by the outlier detection based on spatiotemporal blocks 
and Gaussian mixture model. 
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3.3 Ground Truth Data Evaluation 

The video clips and corresponding ground truth data used in this evaluation were 

obtained from Ohio State University Thermal Pedestrian Database [19]. Video was 

captured using a Raytheon 300D thermal sensor core with 75 mm lens. Camera was 

mounted on an 8-story building overlooking a pedestrian intersection on the Ohio State 

University (OSU) campus. Ground truth data gives us number of objects and their 

centroids in each video frame. In order to compare the two methods to the ground truth 

data, we must detect motion, find objects from motion data, and compute their 

centroids. Process each video sequence to identify motion on block level and establish 

motion/no motion binary image as described in Chapter 2. The output from motion 

detection is fed into object labeling algorithm to measure the object’s region of interest 

and centroid location. Connected components are used to establish motion regions of 

interests with a minimum of two blocks per region. We evaluate motion block 

components as 8-connected objects. It should be noted that the method of creating 

motion rectangles is only used to compare motion centroids to ground truth data. The 

proposed tracking algorithm in Chapter 6 uses a different method to create tracking 

regions. The comparison of tracking regions to ground truth data is presented in Chapter 

6 as well. 

Ground truth centroids for Infra 2 video are shown in Figure 3.7. All ground 

truth centroid are projected to visualize all motion paths simultaneously. Observe that 

the motion centroids coincide very well with the ground truth for the proposed 

spatiotemporal method. On average, our spatiotemporal motion centroid distance from 



 35

ground truth data was 4.62 pixels with standard deviation of 2.54 pixels for Infra 2 

video. The infrared jitter noise on the pixel level makes the detected moving objects by 

Gaussian mixture model method (without post processing) to form a dense set in the 

video plane. 

Ground truth data comparison for Walk 1 video is shown in Figure 3.8. It was 

obtained from the CAVIAR project [24], and it shows the spatiotemporal motion 

centroids and Gaussian model region centroids superimposed on ground truth data. 
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Figure 3.7: Infra 2 ground truth projection. Projection of all ground truth data for Infra2 
video with objects size >= 2. Showing ground truth data, ground truth data and motion 
centroids, and ground truth data and Stauffer-Grimson Gaussian mixture model 
centroids. 
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Figure 3.8: Walk 1 ground truth projection. Projection of all ground truth data for Walk 
1 video with objects size >= 10. Showing ground truth data, ground truth data and 
motion centroids, and ground truth data and Stauffer-Grimson Gaussian mixture model 
centroids. 
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CHAPTER 4 

EVALUATING RELIABILITY OF MOTION FEATURES 

Two examples are shown of video content changes that cause the existing 

motion detection approaches to inaccurately detect the presence of substantial motion. 

Clearly, the detected motion is present in videos, but it is due to some content artifacts 

and is not due to the actual presence of moving objects. Consequently, human observant 

ignores such “motion” as irrelevant, while standard video analysis systems detect it as 

significant activity. It is shown that the proposed feature reliability methods identifies 

the unreliable motion features, and ignores the irrelevant artifacts. This is possible 

without reducing the detection rate of real moving objects. Consequently, the goal is to 

eliminate false alarms without reducing the detection rate. It is stressed that this is 

obtained without any direct video content analysis (e.g., using different features), but by 

monitoring the reliability of computed features. As stated before, direct video content 

analysis of features does not solve the problem, since these features may also become 

unreliable. 

First example illustrates motion artifacts in Campus 3 video introduced by some 

reflections in windows that are a result of passing by cars. Figure 4.1 shows two frames 

from Campus 3 video, one showing real motion, and the second showing the motion 

artifacts in addition to the normal motion. Second example, Figure 4.2 shows motion 
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artifacts introduced by video compression and the same scene without such artifacts. 

This Temple 2 video was recorded in real-world environment by the video surveillance 

system of the Campus Police Division of the Temple University. 

Figure 4.3 shows a video artifact produced by the wireless transmission of the 

video signal. Two frames of the Entry 1 video show a horizontal-scan band of noise, 

once when there is no real motion and again when there is actual motion in the field of 

view. When there is no real motion, the spatiotemporal algorithm detects motion where 

the noise band is located. This produces false-positive motion detection and is very 

difficult to differentiate from actual motion of a person. One of the solutions to this 

method involves the use of a tracking algorithm to distinguish between periodic motion 

and actual object motion. 

Section 4.1 describes a temporal method to determine the reliability of motion 

detection. The temporal method monitors features computed by the proposed motion 

detection approach presented in Chapter 2. The motion features are computed for 

graylevel or infrared videos using 3D spatiotemporal blocks of spatial size 8 8×  pixels, 

and temporal size of 3 frames. The blocks are disjoint in space and overlap by one 

frame in time. As a result we obtain motion activity values for each 8 8×  block in each 

video frame. By thresholding the motion activity values, a binary feature produced, 

called motion detection, with 1 for ‘motion detected’ and 0 for ‘no motion detected’. 

Other statistical methods that handle interference suppression are proposed by [17]. 
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Figure 4.1: Campus 3 reflected noise. Two frames from Campus 3 video with moving 
blocks highlighted red: Shown are motion artifacts due to reflections in the windows, 
and the same scene (a few frames later) without the artifacts. 

 



 41

 

 

 

 

 
 

Figure 4.2: Temple 2 video compression noise. Two frames from Temple 2 video with 
moving blocks highlighted showing: motion artifacts introduced by video compression, 
and the same scene (a few frames later) without the artifacts. 
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Figure 4.3: Entry 1 video transmission noise. Two frames from Entry 1 video with 
moving blocks highlighted by bounding rectangle showing: motion artifacts introduced 
by video transmission, and detected motion with more artifacts due transmission. 
 



 43

4.1 Temporal Analysis of Feature Reliability 

This section describes a temporal method to determine the reliability of motion 

features. The input motion feature has binary values for each 8 8×  block of each video 

frame with 1 for ‘motion detected’ and 0 for ‘no motion detected’. The algorithm 

described in Chapter 2 computes this feature vector. The 8 8×  feature blocks are 

disjoint. Let ( )f n  be the number of 1s in the frame number n , i.e., ( )f n  is the number 

of moving blocks as function of frame number. We use the finite difference 

approximation of first derivative of f , f t∂ ∂ , to monitor the reliability of our motion 

detection. In other words, if the jump in values of f t∂ ∂  is above a certain threshold for 

a given time interval, the binary feature is unreliable in this interval. The threshold 

necessary to detect the unreliable features is not static. The proposed dynamic 

thresholding algorithm described in Chapter 2 learns and varies this threshold. 

However, some other learning techniques could also be used. 

This reliability property works under the assumption that there exists an upper 

bound on the size of moving objects whose motion we want to detect (measured in the 

number of moving blocks). This assumption holds for most surveillance videos. Now let 

us consider an example video, Temple 2, that satisfies this assumption. This video is 

recorded by a roof mounted, stationary camera, so that a certain minimal distance to 

moving objects is guaranteed. Typical moving objects there, humans and vehicles, 

cannot get arbitrarily large. Hence, the fraction of the scene occupied by a moving 

object is limited. Observe that the actual value of the upper bound on the size of moving 

objects needs not to be known, since the algorithm learns it automatically. 
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Figure 4.4 shows the motion amount of Temple 1 video with significant spikes 

where the compression errors occur. When looking at motion orbits of a single block 

from this video that does not have actual motion, it is evident that due to compression 

errors, the video exhibits two distinct backgrounds as shown in Figure 4.5. Due to the 

shift in frame position, a block without any motion has two distinct background 

clusters. 

Figure 4.6 shows the graph of function f  and first derivative of f  for Temple 2 

video were significant motion artifact are present. Time intervals with significant jumps 

of f  that are correctly identified by the dynamic thresholding are marked with dotted 

lines in Figure 4.7. The graph of modified feature f , when f  was set to previously 

known value within the time intervals when motion was detected as unreliable is shown 

in Figure 4.7. The proposed method is able to identify and exclude the unreliable results 

of motion detection. By excluding these time intervals from further processing, we not 

only eliminate false alarms, but make it possible to correctly detect alarm situations, 

although the input motion detection in not 100% reliable. For example, a significant 

increase in the number of motion blocks after the frame 1700 indicates an alarm 

situation, Figure 4.7. This is a correct prediction; since a street fight is recorded in the 

video after this frame. 

As noted before, an interesting observation may be made when evaluating 

motion amount of the entire frame to the motion orbits of a single block without any 

motion. The relation of motion orbit vectors of the two backgrounds (Figure 4.5) it may 

be directly translated to the frame numbers of the motion amount graph in Figure 4.4. 
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Unfortunately, the thresholding constants 1C , 2C , and u  of the dynamic distribution 

learning algorithm need adjustment to detect motion between the two orbits in Figure 

4.5. 

Activity detection is further discussed in Chapter 5 showing the exact method to 

detect increased activity around frame 1700 of the Temple 2 video, once the noise is 

identified and removed. The first derivative of the filtered motion amount is then used 

to detect increased activities using the same principles of dynamic distribution learning 

as presented for motion detection. 
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Figure 4.4: Temple 1 motion amount. The graph of ( )f n , which is the number of 
moving blocks as function of frame number n  showing periodic jumps. 

 

 

 

 

 
Figure 4.5: Temple 1 noisy background without motion. Projection of  block 9x53 
showing two background clusters corresponding to the periodic jumps in Figure 4.4. 
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Figure 4.6: Temple 2 motion amount. The graph of ( )f n , which is the number of 
moving blocks as function of frame number n , and gradient of ( )f n  indicating the 
frames with large motion jumps. 
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Figure 4.7: Temple 2 filtered motion amount. The graph of ( )f n  with significant jumps 
of f  (caused by feature unreliability) correctly identified by our dynamic thresholding, 
and the graph of ( )f n  with unreliable motion frames removed. 
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CHAPTER 5 

DETECTION OF INCREASED ACTIVITIES 

The robust computation of the motion measure mm , allows to reliably estimate 

the motion amount in each video frame [23]. Motion amount can be defined as the sum 

of detected motion as a function of motion measures of all blocks: 

 

,
( ) ( , , )

x y
ma t dm x y t= ∑  

where  

 
1 ( , , )

( , , )
0 ( , , )

mm x y t motion
dm x y t

mm x y t static
→⎧

= ⎨ →⎩
 

 

The proposed method of detecting increased activities is again based on outlier 

detection (Chapter 2) but this time of the motion amount over time. System needs to 

learn the distribution of motion amount over time when the recorded video activity was 

considered usual or nominal. Then time intervals with increased activity are detected as 

outliers of the learned distribution. The proposed approach works under the assumption 

that there exists an upper bound on the size of moving objects whose motion we want to 

detect (measured in the number of moving blocks), and that the genuine moving objects 

do not appear rapidly in the frame. These assumptions hold for most surveillance 
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videos. The first video example, called Temple 1, satisfies the assumptions. Typical 

moving objects, people and cars, cannot get arbitrarily large as the distance to the roof 

mounted camera is fixed, and the motion regions are limited in size. As stated before, 

the upper bound on the size of moving objects the algorithm learns automatically. 

Similarly, the number of humans and vehicles cannot rapidly increase, since the regions 

of entry into the camera view field are limited in size. 

The graph of function ma  for Temple 1 video and correctly detected alarm 

situations are shown in Figure 5.1. For example, a significant increase in the number of 

motion blocks around frame 310 indicates an alarm situation. This is a correct 

prediction, since a street fight is recorded on the video around frame 310, see Figure 

5.2. Also, Figure 5.2 shows a frame with nominal detected motion. Only when nominal 

motion is exceeded around frame 310, the system marks these frames as ‘ACTIVITY’. 

Temple 2 video exhibits periodic noise as described in Chapter 4. Once noisy 

frames are identified and removed, a new filtered motion amount is used to detect 

increased activity. The dynamic thresholding and outlier detection is used on the filtered 

motion amount values to detect increased activities. The thresholding constants are set 

to 1 5C = , 2 2C = , and 0.95u = . These values are different from the motion detection 

constants used on the motion measure. 

Figure 5.3 shows the filtered motion amount and detected increased activity as 

dotted boundaries around frame 1700 of Temple 2 video sequence. The corresponding 

video frame shows a street disturbance around this timeframe in Figure 5.4. Individual 

motion objects are marked with rectangles to highlight their position in the video frame. 
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Figure 5.1: Temple 1 increased activity. Motion amount of Temple 1 video; and 
increased activity frames marked with dotted boundaries. 
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Figure 5.2: Temple 1 detected activity video frames. Frames showing no activity and 
showing increased activity due to street fight (ACTIVITY label is shown next to the 
frame number). 
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Figure 5.3: Temple 2 increased activity detection. Increased activity frames marked 
with dotted boundaries. 

 

 

 

 
 

Figure 5.4: Temple 2 increased activity video frame. Increased activity video frame 
1771 showing a street disturbance. 
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CHAPTER 6 

OBJECT TRACKING 

This chapter presents several tracking methods that are the basis for the 

proposed selective hypothesis tracking algorithm. Only the swarm template matching 

from Section 6.1 was not fully utilized in the proposed tracking method; however it is 

presented here as it was the first tracking method that employed the spatiotemporal 

motion regions. In Section 6.2 an initial minim cost tracking algorithm is presented, and 

in Section 6.3 the classic Lucas-Kanade image registration is evaluated. The proposed 

selective hypothesis tracking algorithm is presented in Section 6.4 utilizing modified 

image registration and minimum cost computation based on motion detection method 

presented in Chapter 2. Evaluation of several test videos is performed showing different 

tracking scenarios in color and infrared images. 

 

6. 1 Swarm Template Matching 

The particle swarm optimization (PSO) method, is an optimization method 

based on artificial life with its roots in bird flocking and swarming theory. Each 

potential solution is assigned a randomized velocity vector, and the potential solutions 
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called particles then converge through the search space seeking the function optima 

[26]. 

Random vector introduces a source of noise, search then becomes more directed 

after a few iterations as the swarm starts to concentrate around the best region. Particles 

change their direction based on the combination of their own experience and the best 

experience of the group. Better solutions attract the particles to the region with the 

optimum solution. Overall the total number of function evaluations is very small 

compared to the size of the solution space, such as pixel to pixel match. 

Particle swarm optimization general formula defines ( )ix t  and ( )iv t  as the 

position and velocity vectors at time t  of the thi  particle. The velocity vector and new 

position are defined as 

 

( )i i i i
old best bestv t V P G= + +  

 

( ) ( ) ( )1i i ix t x t v t= − +  

where 

 

( )1i i
oldV wv t= −  

 

( )( )1 () 1i i i
best bestP c rand p x t= ∗ ∗ − −  

 

( )( )2 () 1i i
best bestG c rand g x t= ∗ ∗ − −  
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and 

1c and 2c are weights that influence the velocity vector, 

w is a convergence decay constant, 

()rand  function generates a random number between 0 and 1 with a uniform 

distribution, 

i
bestp is the best solution observed so far of the thi particle, 

bestg is the global best parameter among all particles. 

 

In experiments we have used: 1 0.01c = , 2 0.5c = , and 0.01w = . The 

convergence condition is based on the global maximum of the target function. It is 

reached if a certain percentage of particles are in a given neighborhood ( )bestU g  of the 

best particle. We used 80% and 99% of particles, and ( )bestU g  was a 5 5×  pixel 

neighborhood. 

A modification to PSO formula is based on k-Groups of swarms. Each group 

evaluates a different function template, that is, each group searches for the maximum of 

a different function. The relations between maxima are approximately known and given 

by 

 

( ) ( ), ,offset i j offset j i= −  

 

The k-Groups swarm track algorithm has the following steps: 
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• Find global best solution bestg , 

• Evaluate for 50% convergence in ( )j
bestU g , for each group 

1j k= … , 

• For each group update velocity and position vectors, 

• If less than 50% of particles in k-Group are within best solution use 

bestg  and joffset . If more than 50%, of particles in k-Group are 

within best solution use j
bestg  in the PSO formula. 

 

 

The update formula for position of particles in group with bestg  is 

 

( )( ) ( )( )k k
i ig x g gbest=  

 

( ) ( )( 1) ( ) ( ) ( ) ( ) ( )
1 2() ()k k k k k k

i i i i ix x c rand pbest x c rand gbest xα+∆ = ∆ + − + −  

 

The update formula for position of particles in groups without bestg  is 

 

( )( ) ( )( )k k
i ig x g gbest≠  

 

( ) ( )( 1) ( ) ( ) ( ) ( ) ( )
1 2() ()k k k k k k

i i i i ix x c rand pbest x c rand gbest offest xα+∆ = ∆ + − + + −  

 

For particles in a group without the bestg , the position update is based on the 

bestg  and the known offset . This allows groups without bestg  to take advantage of the 

other group’s best value and its own offset. The convergence based on this concept, 
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allows dividing the search space where groups initially work alone and then combine 

their best experiences. 

 

6. 2 Minimum Cost Estimate 

Robust detection of motion regions in videos introduced in Chapter 2 is the basis 

for this initial tracking algorithm. A modified and simplified version of the  minimum 

cost tracking algorithm introduced by [22] is proposed. Each new detected motion 

region i in frame t  has a known bounding box iB , centroid location iX  and zero initial 

velocity iV . Known motion region L  in a frame 1t −  has centroid LX  and velocity LV  

and a predicted centroid LPX  in frame t . Minimum cost LiC  between LX  and iX  is 

computed based on the predicted location of known track labeled regions and new 

detected motion regions. 

Predicted centroid location of known motion region in frame t  is 

 
11 −− += t

L
t
L

t
LP VXX  

 

The cost between know motion region L  and new region i  is defined as 

 
t
i

t
LPLi XXC −=  
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The association of motion region to predicted LX  regions is: 

 

∑=
L

j
jii mM  

 

where  

 

1
0

t t
LP i

Li
X Bm
otherwise

⎧ ∈⎪= ⎨
⎪⎩

 

 

If 0iM =  then there is no known region association with any labeled region L . 

If the best LiC  is less than the minimum cost threshold CT , then L  is selected as the 

best match. Otherwise new tracking motion region is created with initial velocity set to 

0. If 1iM =  then there is exactly one tracking L  region association (Figure 6.1). If 

however 1iM > , then there is more than one tracking centroid within iB  (merge or 

crossover of motion regions). In this case iX  is updated using only the predicted 

location and the velocity remains constant.  

Each labeled object L  has a maximum time to live tracking factor associated 

with it, LT . For each selected associated pair ( , )L i , the LT  is set to the maximum 

allowed time to track value maxLT . All labeled objects L  not associated with any 

current detected motion regions i  have its LT  decremented by 1. Once LT  reaches 0 the 

labeled object L  is no longer used in computing the minimum cost association between 

pairs ( , )L i . 
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The minimum cost computation as proposed by [22] is also based on the size of 

the bounding box and predicted size computation. In this preliminary method the size 

component of the minimum cost computation is negligible and therefore not used. In the 

proposed selective hypothesis tracking method (Section 6.4), the minimum cost 

computation does include size as a cost measurement. 

An example of minimum cost computation tracking is shown in Figure 6.1. 

Object labeled ‘5’ is walking along the fence.  It then turns the corner and disappears 

from the filed of view.  This causes the motion not to be detected and consequently 

tracking to be suspended. Once object ‘5’ reappears on the other side of the fence, the 

minimum cost computation has no assigned motion rectangle with any tracking object. 

However, the closest object to this new motion region is ‘5’ and it is selected without 

creating a new object L . This is only possible as the distance between a motion region 

and last know labeled object to be less than CT . If however, this distance was greater 

than CT , then object ‘5’ that reappeared would not be labeled as ‘5’ but rather a new 

object would be created in its place. 

The selective hypothesis tracking method does utilize the minimum cost 

estimation, but it also uses image registration to confirm an object’s general 

characteristics. Image registration confirms if predicted velocity vector matches motion 

region objects. Additionally, size is also a factor in the proposed tracking method along 

with a direction cost. The direction cost is based on the direction of the labeled object 

and, and the direction from the object to the motion region. 
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Figure 6.1: Infra 1 object tracking. Video frame sequence 231-348 showing object ID, 
bounding box and tracking trail. Object 5 walking along the fence, turning corner and is 
hidden behind the fence; and finally head of object 5 reapers behind the fence, tracking 
continues. 
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6.3 Image Alignment 

One of the most widely used image alignment techniques is the Lucas-Kanade 

algorithm. It has become not only the standard for image alignment but also a standard 

for optical flow measurement. The basis to image alignment is the gradient descent 

computation, which is the de facto standard method. 

The original image alignment algorithm was described by Lucas and Kanade in 

their 1981 paper [27]. The aim of Lucas-Kanade algorithm is to align a template T  

from image at time ( )t i , to an input image G  at time ( 1)t i + . Both template T  and 

image G  contain vector of the pixel values at coordinates ( , )x y . Template T  is the 

extracted sub-region from image at time ( )t i . 

The goal of the Lucas-Kanade algorithm is to minimize the sum of squared error 

between the template T  and image G . Image G  is warped back onto the coordinate 

frame where template T  resides. This warping requires interpolating the image G  at 

sub-pixel coordinates relative to the coordinates of the template’s frame. 

 

 

 

 
Figure 6.2: Lucas-Kanade registration. Register region R  in frame G  and find the 
offset vector ( , )u v  

F(x,y) G(x,y)

R

R

(u,v)

T
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The following error estimation is used to terminate the iterative process  

 

2

,
( , ) ( ( , ) ( ))

x y R
E u v F x u y v G x

∈
= + + −∑  

 

it may be approximated by 

 

2

,
( , ) ( ( , ) ( , ) ( , ))x y t

x y R
E u v F x y u F x y v F x y

∈
≈ + −∑  

 

where spatial gradients are xF and yF  and the temporal gradient is tF . To minimize 

( , )E u v , both gradients are initially set to 0 
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0E
v

∂
=

∂
 

 

and vectors u  and v  are computed based on the spatial and temporal gradients 
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1C D
u
v

−⎡ ⎤
=⎢ ⎥

⎣ ⎦
 

 

Parameters u  and v  are then updated 

 

u u u← +∆  , v v v← +∆ , 

 

and ( , )E u v  is checked against the previous values, and the error threshold 

 

oldE E ε− <  

 

Optimal ( ),u v  satisfies the Lucas-Kanade equation, however it should be noted 

that solving for ( ),u v  implies that 1C D−  should be well-conditioned and should be 

invertible. Additionally, the eigenvalue ratio 1 2/λ λ  should not be too large. 

The algorithm iterates until measured error is small enough and convergence is 

achieved. Value of 2
tF  is used to test for convergence. An example of error value 

convergence is shown in Figure 6.3. 

To compute gradients xF , yF , and tF , the image is blurred and convoluted with 

spatial derivative filter. The tF  is computed using weighted averaging kernel where 

emphasis is on the center. Both xF  and yF  are computed using standard deviation 

where emphasis is on the spread.  
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Figure 6.3: Error value per iteration. Convergence to the minimum error occurs around 
iteration number 4. 

 

 

 

 
 

Figure 6.4: Image alignment temporal kernel. Temporal kernel used in Lucas-Kanade 
image registration. 
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Figure 6.5: Image alignment spatial kernels. Spatial kernels used in Lucas-Kanade 
image registration showing Kernel X and Kernel Y. 
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The selection of Gaussian kernel derivatives to compute the gradients is based 

on mathematical convenience and efficiency. They also provide localization of the 

derivative and low signal to noise ratio. 

Sub-pixel image interpolation is needed for the warping part of the registration 

algorithm, as image pixels will not be located on an integral grid. Simple bilinear 

interpolation is used to warp frame G , since the assumption is that the image is locally 

bilinear.  

The warping function is defined as 

 

( ), 0G x y ax by cxy d= + + + =  

 

and it is interpolating within given region 

 
( , ) ( 1, )

( , 1) ( 1, 1)
G x y G x y

G x y G x y
+⎡ ⎤

⎢ ⎥+ + +⎣ ⎦
 

 

when u is within distance x and x+1 

 

, , 1u x x∈ +…  

 

and v is within distance y and y+1 

 

, , 1v y y∈ +… . 
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The warping is computed using the above equation for ( ),G x y  to obtain 

 

,warp
u

G h G
v

⎛ ⎞⎡ ⎤
= ⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
 

 

function h warps frame G  by vectors ( ),u v  using bilinear interpolation. 

An extension to the above two-dimensional registration is accomplished by 

applying the affine motion model, which is defined as 
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this model provides for 2D translation, 2D rotation, scale in X and Y, and shear. The 

error estimation function for the affine motion model is defined as 

 

2
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where 1 6, ,α α…  are solved using 
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6.4 Selective Hypothesis Tracking 

The proposed tracking method utilizes spatiotemporal motion regions, modified 

image registration technique, and improved minimum cost estimation based on distance, 

motion vectors, direction, and persistence. Selection is made as when to use image 

registration offsets or estimated velocity vectors. Also, the minimum cost analysis 

selects the appropriate offsets. There is only one hard limit used in minimum cost 

estimation, the distance between motion region and any know template. This hard limit 

is based on the video’s frames per second and a fixed threshold, providing a standard 

time and distance based limit. 

Known templates are compared to the motion regions in order to classify the 

motion regions into either new templates or known templates. Each active template is 

registered in the current frame using the image alignment technique described in 

Section 6.3. Each template is then associated with a motion region based on image 

alignment (if template is not merged) or predicted motion (if template is merged). This 

template association selection is the core of the selective hypothesis tracking method. 

Finally, minimum cost estimation is computed for each motion region that does not 

have two or more templates associated with it. If there is exactly one association of 

template to motion region, it is treated as if motion region had no associated template. 

This decision allows picking the best template that matches the motion region, as the 

associated template may not be the best. This applies to the merge-split and disappear-

reapers situations.  
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Each template has the following information associated with it: 

 

N  Number of tracked objects 

iT  ith tracked objects 

i
fT  ith tracked object’s last registered frame number 

i
tT  ith tracked object’s time to live value, where 

{0,.., }MAXt TTL∈  

i
mT  ith tracked object’s merged flag, where {0,1}m∈  

i
aT  ith tracked object’s assigned flag, where {0,1}a∈  

i
CT  ith tracked object’s centroid location (row, column) 

i
RT  ith tracked object’s bounding rectangle (left, top, 

right, bottom) 

i
vT  ith tracked object’s registration offset vector 

i
sT  ith tracked object’s motion speed vector 

i
MT  ith tracked object’s associated motion bounding 

rectangle (left, top, right, bottom)  

 

Each motion region has the following information associated with it: 

 

K  Number of motion regions in frame f  

jM  jth motion region in a frame f  

j
CM  jth motion region’s centroid location (row, column) 
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j
RM  jth motion region’s rectangle (left, top, right, 

bottom) 

j
TM  jth motion region’s vector of associated templates 

 

Constants used in the selective hypothesis tracking include: 

 

MAXTTL Maximum time to live beyond last know 

registration, based on frames per second ( )fpsfα  

pw  Cost weight factor for position and distance offset 

dw  Cost weight factor for direction difference 

sw  Cost weight factor for size difference, where 

1p d sw w w w= + + =  

MAXP  Maximum distance as a function of block size, 

( )BLOCKfβ  

S  Speed update decay factor, where {0.0..1.0}S ∈  

MAXL  Maximum number of iterations if convergence is 

not achieved 

 

 

Selective hypothesis tracking algorithm processes each frame, aligning and 

computing the minimum cost between known templates and current motion regions. If 
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there are no templates created and there is motion in the current frame, then templates 

are created and new next frame is processed. 

 
If 0N =  and ( ) 0K f >  

Create initial templates iT  
( )N K f=  

Go to next frame 

 

For every active template perform image alignment of the templates region of 

interest to the current frame. Compute the offset vector for all templates that are not 

merged. 

 
For each template repeat, 1:i N=  
 
If 0i

tT =  or 1i
mT =  go to next i  

0i
aT =  

i
fF T=  

Compute spatial gradients based on i
RT  region 

2 ( )i
x RF T  
2 ( )i
y RF T  

( )i
x y RF F T  

maxC L=  
G f=  
Repeat 

,warp
u

G h G
v

⎛ ⎞⎡ ⎤
= ⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
 

( )t warpF G F= −  
Compute temporal gradients 

( )i
t x RF F T  

( )i
t y RF F T  
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Compute offset 
12

2

( ) ( ) ( )

( )( ) ( )

i i i
x R x y R t x Re

ii i
e t y Rx y R y R

F T F F T F F Tu
v F F TF F T F T

−
⎡ ⎤ ⎡ ⎤∑ ∑ ∑⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥ ∑⎢ ⎥⎣ ⎦ ∑ ∑ ⎣ ⎦⎣ ⎦

 

eu u u= −  

ev v v= −  

,i
vT u v=  

Update the error estimation 
2( , ) ( ( ) ( ) ( ))i i i

x R y R t RE u v F T u F T v F T= + −∑  
1C C= −  

Until ( , )E u v ε<  or 0C =  
 
 
TM  = FALSE 
For 1:j K=  

If 1i
mT ≠  then 

( )i i j
C v RP T T M← + ∈  

Else 
( )i i j

C s RP T T M← + ∈  

If max
i

tT TTL=  and P  = TRUE 
j j i

T TM M T= +  
TM  = TRUE 

 
 
 
If TM  is FALSE 

Check if there is a motion blob in the vicinity 
of this template 
If any MAX

j i
C CM T P− <  then 

1i i
t tT T= −  

Else 
i i

t tT T δ= − , where 1δ >  
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Process motion blobs that have more than one template (merged condition), 

 
For 1:j K=  and 1j

TM >  

For 1: j
Ti M=  

i
fT f=  

MAX
i

tT TTL=  

1i
mT =  

1i
aT =  
i i i

C C sT T T= +  
i i i

R R sT T T= + , note: i
CT  and i

RT  are bound by j
RM  

i j
M RT M=  

 

Process motion blobs that have one or no registered templates based on minimum cost 

estimation, 

 
For 1:j K=  and 1j

TM ≤  

0
best

best

C
T

= ∞

=
 

For 1:i N=  and 0i
tT >  and 1i

aT ≠  
j i

C Cp M T∆ = −  

( )j i j i
R R R Rs M T M T∆ = − +  

arctan( ) arctan( )i j i
s C Cd T M T∆ = − −  

( )MAX MAX
i

tt TTL T TTL∆ = −  
Compute the cost 

p d sC w p w d w s t= ∆ + ∆ + ∆ + ∆  
If bestC C<  and MAXp P∆ <  

bestC C=  
i

bestT T=  
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If 0bestT =  

Create new template based on jM  
Else 

i
bestT T=  

i
fT f=  

MAX
i

tT TTL=  

0i
mT =  

1i
aT =  

(1 ) ( )i i j i
s s C CT S T S M T= + − −i i  
i j

C CT M=  
i j

R RT M=  
i j

M RT M=  

 

Each new frame containing motion regions is evaluated against know templates. 

New template is only created if a motion region has no associated template based on 

image alignment, predicted position, or minimum cost computation. New template’s 

characteristics are only based on an unassociated motion region. Once the association is 

established, template’s predicted velocity is still computed despite the image alignment 

calculation, as it may be necessary to use predicated position when templates merge. 

Templates that are not within any motion region have their time to live i
tT  

decreased. Once this value reaches zero, the template will no longer be used during the 

association with the motion region. This may provide false results when an object 

disappears and reappears beyond the time to live timeframe. A higher level template 

matching method may be used to solve this problem, such as the swarm template 

matching presented in Section 6.1. 
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6.5 Results 

Two methods are used to evaluate selective hypothesis tracking results: the 

visual inspection of identified tracking objects and comparison of tracking centroids to 

independent ground truth data. The simplest visual evaluation involves tracking a single 

object that appears and disappears in the field of view, without any obstruction or 

merging with other objects. More challenging scenarios involve several objects merging 

and splitting where two or more objects cross paths as observed by the camera and 

some objects become hidden during the merging. The tracking algorithm must predict 

the possible location of each individual object despite the fact that the motion detection 

only provides a single motion rectangle. In this scenario, the image registration 

technique will not work as possibly only one of the merged objects is in the foreground. 

The known velocity of each object before the merge occurred is used to update the 

predicted position of each object. The predicted position is then bound by the observed 

motion rectangle, limiting the objects position to within the motion rectangle.  

Another challenging tracking sequence involves an object that appears and 

disappears within the field of view. This may occur when object disappears behind a 

tree, building, or a parked car and reappears within a few seconds later. This scenario 

has one major difference from the objects that merge: there is no motion rectangle 

presents. When object that is tracked disappears, the corresponding motion rectangle is 

not present. The algorithm keeps tracking templates for some period of time in case this 

template reappears later.  
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There is one limitation to this scheme. An object that disappears and reappears 

much later than is allowed by the algorithm, a new template is created instead of 

matching to templates already seen by the system. The splitting of single template into 

multiple objects is a difficult case of label assignment. The single label of the object 

before the split must now be assigned to one of the motion regions after the split. 

An example of two objects crossing the same path in the field of view is shown 

in Figure 6.6. In frame 863, object 3 (van) and object 4 (group of people) approach each 

other. In frame 898 the merge occurs with object 3 is in the foreground. Image 

registration of object 4 is impossible as it is partially visible. The predicted position 

based on last know motion velocity along with bounding motion rectangle provide a 

sufficient location of individual objects (frame 923). In frame 963 both objects split and 

continue in their respective directions while maintaining the correct labels. 

Single object split is shown in Figure 6.7. Single object 4 (group of people) is 

approaching parked cars in frame 1043. In frame 1099 a person left one of the parked 

cars while object 4 passed next to it. In this situation there is a single motion blob 

corresponding to tracking object 4. While this motion region is expanding due to the 

fact that a single person is walking in the opposite direction to the object 4, there is still 

single object being tracked. The split occurs in frame 1141, where the single person is 

assigned new tracking label 6 while object 4 continues along its course maintaining it 

own label, as seen in frame 1214. 

Example of an object that disappears and later reappears is shown in Figure 6.8. 

Infra 3 is a thermal infrared video sequence showing single person walking behind two 
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trees. In frame 233 object 1 approaches the first tree and becomes invisible to the 

camera in frame 252. It reappears in frame 263 as the tracking algorithm keeps the same 

object label and does not create a new template. Object 1 is tracked continuously until 

frame 431 when it disappears again. Later it reappears again as object 1 in frame 461 

before leaving the field of view. 

The selective hypothesis tracking algorithm may also be applied to tracking 

microscopic objects, such as individual cells. Figure 6.9 shows tracking of a single cell 

while it is transforming its shape from a star-like figure (frame 49) to an elongated 

cigar-like figure (frame 97). Frames 67 and 86 showed the position change via the 

trailing template centroids. This type of visual verification of the tracking algorithm is 

supplemented by the comparison of tracking centroid to the independent ground truth 

data. 

Independent ground truth data was used not only to test the proposed motion 

detection method but also to verify the selective hypothesis tracking algorithm. Split 1 

video along with its ground truth data is used to evaluate the proposed tracking method. 

Once each tracking object is identified, their centroids were compared to the ground 

truth data. Figure 6.10 displays the projection of all ground truth data onto a single 

frame, this includes individual object projection and group projection. A close up of the 

projection were two objects merged and split is also shown. On average, the tracking 

centroid distance from ground truth data was 5.2 pixels with standard deviation of 2.6 

pixels for Split 1 video, while the motion block size was 4 4x . 
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Figure 6.6: Campus 1 cross-tracking. Example of two objects crossing paths, when one 
becomes obscured by the foreground objects. Objects 3 and 4 approach each other. 
Object 4 is less visible as object 3 is in the foreground, and finally objects 3 and 4 
continue in opposite directions. Campus 1 video sequence 863-963. 
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Figure 6.7: Campus 1 single split tracking. Example of single object splitting into two 
distinct objects, when the single object retains most of its previous shape and direction. 
Object 4 approaches parked cars when a person appears inside object 4 and walks in the 
opposite direction. Object 4 splits from and continues while new object 6 is created. 
Finally object 4 and 6 continue in the opposite directions. Campus 1 video sequence 
1043-1214. 
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Figure 6.8: Infra 3 disappear-reappear tracking. Example of tracking an object that 
disappears from the field of view. Person appears before and after each tree while label 
is maintained. Person is hidden behind a tree, as no active object is being tracked. Infra 
3 video sequence 233-461. 
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Figure 6.9: Cell 1 change size tracking. Example of tracking an object that changes size, 
direction, and position. Cell labeled ‘1’ starts as a compact star-like shape and changes 
into a vertically elongated cell. Cell 1 video sequence 49-97. 
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Figure 6.10: Split 1 tracking ground truth comparison. Comparing ground truth data and 
tracking centroids of Split 1 video. Showing original ground truth data, Ground truth 
data with superimposed tracking centroids, and close-up of the location when two 
objects meet and walk together. 
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6.6 Future Work 

A map of active regions may be constructed from tracking centroids when they 

are projected onto camera’s field of view. The projection will dynamically identify most 

active regions which it turn may be assigned a higher detection priority. An inverse of 

this may also apply, the least active regions of the field of view may be assigned higher 

detection priority, including an alarm generation when motion is detected. Figure 6.11 

shows all the tracking centroids of Campus 1 video sequence projected onto a single 

frame. The alignment of tracking centroids to the active part of the field of view 

identifies the road as the most active motion region. 

 

 

 

 
 

Figure 6.11: Campus 1 track centroid projection. Superimposing tracking centroids on a 
field of view allows building a map of active regions of Campus 1 video. 
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Information from the tracking data may be compiled to create a timeline of 

motion events. This timeline identifies the object’s unique number along with a picture 

of the object. Analysis may reveal what objects occupied the same timeframe, and if 

any object disappeared and reappeared later. Further analysis may include the 

identification of the object’s type, such as a human or a vehicle. Figure 6.12 shows the 

timeline of Campus 1 video sequence with each object’s unique label, picture and 

timeframe. 

 

 

 

 
Figure 6.12: Campus 1 tracking timeline. Timeline of activity in Campus 1 video shows 
type of object at each time frame and total duration of object tracking. 
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CHAPTER 7 

REAL-TIME MOTION DETECTION SOFTWARE 

The ViVi Lab Motion Detector software was written in C++ for a Microsoft® 

Windows® platform. A faithful implementation of the motion detection, dynamic 

distribution learning and outlier detection was achieved. The Principal Components 

Analysis classical method for dimensionality reduction and exploratory data analysis 

was based on the Karhunen-Loeve expansion. 

There are several USB-based security video cameras manufactured around the 

world. The uniformity with which cameras are available to the software developer 

under the Windows platform was the main reason for selecting the USB-based system. 

High quality USB video cameras also provide a direct access to the frame buffer using a 

proprietary application programming interface (API). This API may be used to 

manipulate the video frames instead of the generic Windows function calls. Regardless 

of the method used, any USB camera and corresponding software provide a viable 

solution for a commercial-based security product. 

The incoming video frame size was set to 320x240 pixels in 24-bit RGB color 

resolution. The system is capable of showing live video stream at 30 frames per second 

from USB-based color camera, and 14 frames per second from an infrared camera 
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(camera limitation). While detecting motion, a frame rate of about 25 frames per second 

was achieved for the color camera. 

Figure 7.1 shows the main screens of the motion detection system. Video 

resolution and camera control is accessible from the File menu. Settings for the initial 

alarm threshold is available form the Video menu. Live video stream is displayed in the 

main view, along with estimated motion frames per second (fps) and a current 

timestamp. Once video input size is selected, the main view will automatically resize to 

accommodate the full width and height of the video frame. 

The initialization stages required to configure the ViVi Lab Motion Detector 

software is shown in Figure 7.1. The first step involves the creation of the projection 

matrix for each block in the frame. If frame size is set to 320x240 pixels and block size 

is 8 pixels, the software must create 1200 projection matrices. Next initializing step 

involves computing the average and standard deviation of each block’s motion measure, 

used by the dynamic distribution learning thresholding algorithm. Motion and activity 

detection is processed at 25 frames per second (color camera) and shows a number of 

motion block enclosed by square brackets (Figure 7.1). 

The real-time motion detection and increased activity detection was tested 

indoors where captured video frames showed an intruder in the filed of view. Changes 

in lighting conditions did not trigger any false alarms, as the dynamic distribution 

learning algorithm constantly monitored the video stream. Figure7.2 shows one RGB 

color video frame with detected alarm situation and alarm timestamp. The estimated 

motion detection and activity detection processing speed is between 25 to 30 frames per 
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second for the full-color 320x240 RGB frame size. Person entering the field of view 

triggered a sequence of video frames to be saved in the remote image depository server. 

Figure 7.3 shows detected motion of packages traveling on an industrial package-

sorting conveyer belt. The surrounding area was flooded with fluorescent light, however 

motion was detected correctly. 

Software system parameters that are configurable include motion detection 

dynamic distribution learning thresholding parameters 1
mC , 2

mC , and mu , and 

corresponding activity detection flag aD , and dynamic distribution learning 

thresholding parameters 1
aC , 2

aC , and au . These parameters may be changed while the 

system is detecting motion blocks, that is, when it is actively processing frames. This 

allows fine tuning the parameters for a given situation, such as type of camera used 

(color or infrared), or a specific location (indoor or outdoor). 

Additional motion detection tests are performed indoors under fluorescent lights. 

Figure 7.2 shows a typical office setting with detected motion, and Figure 7.3 shows an 

industrial setting where boxes are moving on a conveyer belt. 
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Figure 7.1: Stages of Motion Detector software. Create PCA projections; Average 
frames; Running, no motion detected; Running, motion detected, number of blocks is 
114; Learning activity; Increased activity detected, number of blocks is 166. 
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Figure 7.2: Indoor motion detection. Showing no motion detected where strong 
fluorescent light is present. Motion detected, number of motion blocks is 126. 

 

 

 

 
 
Figure 7.3: Conveyer belt motion detection. Showing no motion detected where 
multiple fluorescent lights are present. Motion detected, number of motion blocks is 42. 
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CHAPTER 8 

CONCLUSION 

The proposed spatiotemporal texture motion detection algorithm is a much 

simpler but also a more adequate model for motion detection in color, infrared and 

thermal surveillance videos. It can significantly reduce the processing time in 

comparison to the Gaussian mixture model, due to smaller complexity of the local 

variation computation. Moreover, the local variation based algorithm remains stable 

with higher dimensions of input data, which is not necessarily the case for an 

Expectation-Maximization type algorithm, used for Gaussian model estimation. The 

selective hypothesis tracking based on spatiotemporal motion regions is the foundation 

for more sophisticated object classification algorithm. It provides for the robust tracking 

of objects that merge and split, and objects that appear and disappear. The tracking 

method combines the best image alignment algorithm with improved minimum cost 

estimation algorithm. 

 

8.1 Future Work 

Future work may include the expansion of tracking algorithm to classify 

tracking objects as human, cars or planes; and building a map of objects that occupy the 
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same timeframe. The most interesting work may include combining one color camera 

with one thermal infrared camera to create motion detection and tracking system that 

takes advantage of both sensors and combines the results. Problem of an object that 

disappears from the filed of view and reappears much later is also not solved 

completely. A more precise image registration must be used to see if the returning 

object is the same as seen previously or it is in fact a new object. 
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