
A FRAMEWORK TO CREATE RESOURCE-BOUNDED NETWORK
SERVICES

A Dissertation
Submitted to

the Temple University Graduate Board

in Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by
Jaiwant Mulik
August, 2004

iii

c©

by

Jaiwant Mulik

August, 2004

All Rights Reserved

iv

ABSTRACT

A FRAMEWORK TO CREATE RESOURCE-BOUNDED NETWORK SERVICES

Jaiwant Mulik

DOCTOR OF PHILOSOPHY

Temple University, August, 2004

Dr. Longin Jan Latecki, Chair

Active networks and network services hold promise to make the network infras-

tructure more flexible, providing an infrastructure for innovative applications. However,

concerns related to resource consumption by network services at intermediate nodes is a

major concern for practical deployment. Since typically more than one network service

can be deployed at a network node, it is essential that in order to maintain useful ser-

vices, requirements on node resources not exceed those that are available. In this document

we present a two step technique to limit, with fixed arbitrary probability, demand for re-

sources exceeding total available resources at a node. This technique can be applied to both

component-based and ad-hoc service environments. In component-based environments our

technique returns a single number such that as long as the end user uses only up to that num-

ber of components to create a service at a node, we can guarantee, with arbitrary probability

that the resource consumption at that node will not exceed a given limit. Our technique is

based on two observations: (a) Several component-based architectures exist that can be used

to implement network services by combining components, and (b) such components cannot

v

be arbitrarily combined. Also, we present efficient counting algorithms and present sim-

ulations and experiments demonstrating the application of our algorithms. Some resource

scheduling issues that affect per user throughput are also addressed.

vi

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Longin Jan Latecki for his support during

this research, and to Dr. Jawahar ’Jay’ Pathak for inspiring discussions, help with the

algebraic setting and always providing ice-cold PepsiTM. Dr. Phillip Conrad provided

initial support and was a major influence on my networking studies.

vii

To my family.

viii

TABLE OF CONTENTS

ABSTRACT iv

ACKNOWLEDGEMENT vi

DEDICATION vii

LIST OF FIGURES ix

1 INTRODUCTION 1

1.1 Related Work . 2

1.2 Our Approach . 4

1.2.1 Component-Based Environments 5

1.2.2 Ad-hoc Services Environments . 6

2 ESTIMATING RESOURCE CONSUMPTION 7

2.1 Preliminaries . 7

2.2 Adjacency of Components . 9

2.3 Cost Analysis . 10

ix

2.4 Anchor Points . 13

2.5 Probabilistic Estimates on Consumption 18

2.6 Anchors to Points . 22

2.6.1 Points Counting . 24

2.6.2 Generalized Points Counting . 25

2.7 Complexity Analysis . 27

2.7.1 Comparison with Brute Force Method 31

2.7.2 Comparison with Generating Functions 31

3 SLICE ALGORITHMS 35

3.1 Preliminaries . 35

3.2 Counting Points in Slice . 40

3.3 Complexity of Counting Points in Slice 41

3.4 Examples . 44

3.4.1 Example 1 . 44

3.4.2 Example 2 . 48

4 APPLICATIONS 51

4.1 Application to Component-Based Environments 51

4.2 Application to Ad-hoc Environments . 53

4.2.1 Assigning Costs . 54

4.2.2 User Access Discipline . 56

4.2.3 Service Failures . 57

4.2.4 User Perceived Performance . 58

x

4.2.5 Service Access Patterns . 60

4.2.6 Porting Costs . 62

4.2.7 Related Work . 63

5 CONCLUSION 65

5.1 Future Work . 65

5.2 Conclusion . 66

A Experimental Data 68

REFERENCES 70

xi

LIST OF FIGURES

2.1 Anchor points (shown with “*”) for cost matrix [1,3,9,12] and T = 12. . . 21

2.2 Illustrating Algorithm 2, counting points from anchor points 25

2.3 Illustrating Algorithm 4, counting points from anchor points 27

3.1 Illustrating Algorithm 5, for Example 1 48

3.2 Illustrating Algorithm 5, for Example 2 50

4.1 Max sequences lengths . 53

4.2 Probability errors . 53

4.3 Effect of with and without discipline with 3 users. 57

4.4 Service failure events. T = 13. 58

4.5 Counting points ≥ T and a user’s costs ≥ T/U . Shaded area is discarded a.ps. 59

4.6 User perceived performance: Service R1, R2, R3, R4 with uniform access. . 60

4.7 Counting points ≥ T and a user’s costs ≥ T/U with cost weights [1,4,2,2]. 61

4.8 User perceived performance: Access weights 2,1,2,4. 62

4.9 User perceived performance: Services R1, R2, R3, R4 on a faster workstation 63

1

CHAPTER 1

INTRODUCTION

Network services are services provided by switching devices within a network.

The required network service of most routers is unicast forwarding. However, it has been

shown [20, 3] that some end-to-end applications can greatly benefit from network services

other than unicast forwarding. Dynamically adding such network services into network el-

ements is the focus of the field of active networking. These services range from advanced

switching functions such as content specific redirection of data [19] to non-switching func-

tions such as data transformation (e.g. transcoding of multimedia streams) [6]. While active

networks hold the promise to make network infrastructure more flexible, there are security

concerns related to resource consumption by network services. Since typically, more than

one network service can be deployed at a network node it is essential that node resources

(CPU, memory and bandwidth) be shared “fairly” among the services. The exact definition

of “fair” depends on local resource sharing policies.

We present techniques to assign costs to services and capacity to processing

2

nodes, and counting algorithms to provide probabilistic guarantees of resource availability

to services. The rest of the report is organized as follows: This chapter provides references

to related work and an outline of our approach to the problem. Chapter 2 formalizes the

concept of sequence of components and presents formulae to compute the average cost of

sequences. Chapter 2 also presents counting algorithms that help in determining proba-

bilistic guarantees for end-users. Chapter 3 presents algorithms that improve upon those

in Chapter 2 by reducing the domain of the problem. Chapter 4 presents simulation and

experimental results demonstrating the application of our algorithms. Chapter 5 concludes

this report with a discussion on future work.

1.1 Related Work

Most current approaches to manage resource consumption by network services

can be categorized into the following categories:

• TTL based ([15, 31]): Here a Time-To-Live field in the active packet is an indicator

of the total resources allocated to that packet. Each time the packet is processed,

the TTL field is decremented, and discarded when the field value reaches zero. If

processing the packet creates new packets, the initial remaining TTL value of the

original packet is distributed over the newly created packets. Yamamoto et. al. [33]

use a market based approach where each active packet carries a “budget” that is used

to pay for resources at each node. The cost of a resource varies by current “market”

demand.

• Time based ([17, 31]): This approach is well suited for memory resources whereby a

3

time limit is set on how long active services can use allocated memory [17]. Wetherall

et. al. [31] limit the amount of CPU time an active packet can use.

• Length ([21, 14]): In this type, resource consumption is limited by estimating re-

source consumption of network services based on the length of the program. SNAP [21]

guarantees that the resource consumption of a program is directly proportional to the

length of the program with a known small constant of proportionality. While this ap-

proach has been proven to be simple to implement, the main drawback is that either

all instructions have to use almost identical amount of resources or dummy instruc-

tions need to be introduced to maintain the proportionality between length of program

and total resource consumption.

• Centralized/Directory service ([22, 25]): These approaches use centralized mecha-

nisms that are aware of resources at active nodes. Typically these resources include

both software (active code) and hardware resources. Before applications requiring

network services can begin, the centralized systems compute the most efficient path

and pre-allocate required resources.

• OS scheduling ([27, 23]): Ramchandran et. al. [23] use a packet scheduling scheme

that attains fair resource allocation among multiple resources (CPU and bandwidth).

In Schwartz et. al. [27] the virtual machine executing active packets runs in the

control plane and depends on the native OS scheduling policy for resource allocation.

• Direct measurement([8]): This approach uses direct measurement of resources at

a node and then translates those results to heterogeneous nodes, so that meaningful

4

resource consumption metrics and can be obtained at each node.

1.2 Our Approach

In this report we present another approach aimed at controlling overall resource

consumption at a node. Our approach is based on the following observations:

1. There exist architectures [18, 4, 26] ([9] presents a survey) that, using a set of ele-

mentary components, allow construction of complex services at network elements.

Such construction principles are common in other areas of computer science, e.g.

software engineering, where simple to moderately complex reusable components can

be combined to produce programs of greater complexity.

2. Such components cannot be arbitrarily combined. At least, the output of one com-

ponent must be compatible with the input of the other. Compatibility is context de-

pendent and can range from syntactic to semantics characteristics. CCML [28] a

markup language that allows active nodes to constrain component composition based

on hardware compatibility. For component-based systems in general, Whaley et.

al. [32] use finite state models to extract interface models which can then be used by

static checkers to determine composition constraints.

While all the above approaches try to deterministically limit access to resources

in an effort to control overall resource consumption, we relax this approach and provide

probabilistic guarantees on overall resource consumption. The immediate advantage of

probabilistic guarantees is an increase in system utilization. The downside is that at times

5

some components might not be able to maintain required processing capabilities. Our ap-

proach can be used to enforce a resource control mechanism so that the demand on a node

exceeds the available resources only with a fixed probability P. P allows the system admin-

istrator to set an acceptable tradeoff between system utilization and service performance.

Our overall strategy consists of two distinct steps:

1. We show formally (Sections 2.1-2.3), what is now intuitively probable, that if we

assign a cost (some measure of resource consumption) to each component and impose

a restriction on the maximum number of components that can be combined to create

services, we can create services with known resource consumption characteristics.

2. Once the resource consumption characteristics of services are known, then given the

number of users and system capacity, we estimate (Sections 2.4-2.6) the probability

with which demand might exceed capacity.

There are two ways in which the above strategy can be used. In component-based

environments and in ad-hoc services environments. We say a service environment is ad-hoc

when there are no components available to end-users to create services, but fixed services

are already available [17].

1.2.1 Component-Based Environments

In component-based environments, we use Step 1 above to determine the aver-

age cost of all services created using l components for each l in some range 1 ≤ l ≤ L .

Then we use Step 2 to determine the probability of overall resource consumption exceeding

the capacity if users create services using up to L components. Hence we can determine

6

the maximum number of components that the users should be allowed to combine to cre-

ate services such that the requirement of P is met. Section 4.1 presents simulations that

demonstrate this type of usage.

1.2.2 Ad-hoc Services Environments

In ad-hoc environments we can skip Step 1 since we can directly determine the

cost of services. In these environments we use Step 2 as above, plug in the cost of services

and determine P. Section 4.2 presents experimental results that demonstrate this type of

usage.

7

CHAPTER 2

ESTIMATING RESOURCE

CONSUMPTION

This chapter consists of three parts. In Sections 2.1-2.3 we formalize compo-

nents, sequences of components and present some results on the cost of such sequences.

Sections 2.3-2.6 present the set of counting algorithms that can be used to determine the

probability of resource consumption exceeding available capacity. Finally in Section 2.7

we compare the complexity of our approach with using generating functions and brute

force.

2.1 Preliminaries

In this report we consider an algebra of free words on n components {a1,a2,

. . . ,an}. Let X 6= φ be the set of data values, then ai : X1 → X2, Xi ⊂ X , is called a compo-

8

nent on X . A sequences of components1 a1a2 . . .an is a free word [a1a2 . . .an]. An empty

sequence is []. We define the multiplication operator ∗ as

[a1a2 . . .an]∗ [b1b2 . . .bm] = [a1a2 . . .anb1b2 . . .bm]

Let S be a set of sequences in {a1a2 . . .an}. Then,

1. ∀s1,s2,s3 ∈ S,(s1 ∗ s2)∗ s3 = s1 ∗ (s2 ∗ s3) = s1s2s3, hence ∗ is associative.

2. [a1a2 . . .an][] = [][a1a2 . . .an] = [a1a2 . . .an], hence [] is an identity.

Hence, (S,∗) is a semigroup with identity [].

The height of a sequence s, denoted by ht(s), is the number of components in s

minus 1. Since every sequence is a free product of components, the height is a well defined

constant.

The prefix of a sequence s = a1 . . .an is the sequence a1 . . .am where m ≤ n.

The suffix of a sequence s = a1 . . .an is the sequence al . . .an where l ≤ n.

A factor of a sequence s is the sequence formed by deleting a prefix and suffix

from s. A factor is a part of a sequence. For example a1a2 is a factor of a1a2a3, but not of

a1a3a2.

A bifactor of a sequence is a factor of height 1.

1In the rest of this report, where the context is unambiguous, we refer to a sequence of components as simply
a sequence

9

2.2 Adjacency of Components

Using several simple components in sequences, such that the output of a pre-

ceding component can be acted upon by the succeeding component, can provide complex

functionality. However, it might not always be possible to arbitrarily combine components.

For example, a component that outputs a character string cannot be followed by a com-

ponent that expects numeric input. Hence, for any two components a1 and a2 to appear

adjacent to each other in a sequence as a1a2, at least the following must be true,

range(a1)∩domain(a2) 6= φ

Such adjacency constraints can be specified using an adjacency matrix. We can

now formally define the adjacency matrix.

Suppose M = a1, ..an is a set of components. Let (ai j) = A be a n× n matrix

such that all the entries are 0 or 1. We say that a sequence ai1 ai2 is A-admissible (or simply

admissible) iff ai1i2 = 1. Sequences with only 1 component are always admissible.

A sequence s is called A-admissible if every bifactor of s is admissible. S(A)

denotes the set of admissible sequences. The matrix A is then called an adjacency matrix of

M.

Lemma 2.2.1. If s′ is a factor of s where s ∈ S(A), then s′ ∈ S(A).

Lemma 2.2.2. If ai1 . . .ain and ain ain+1 . . .aim are two sequences in S(A), then ai1 . . . ain ain+1

. . .aim ∈ S(A).

Proof. Suppose s is a bifactor of ai1 . . . aim , then s is a factor of ai1 . . . ain or ain ain+1 . . .aim

10

(i.e s cannot be “split across” the two sequences since there is only one a in). Hence, by

Lemma 2.2.1 s ∈ S(A). Hence since any such factor s of ai1 . . .aim is admissible, by defini-

tion, ai1 . . .aim is admissible. Hence, ai1 . . .aim ∈ S(A).

Theorem 2.2.3. Let A ∈ Mn({0,1}) and let S(A) be the set of admissible sequences of A.

Suppose Ak = ak
(i j), then ak

i j is the number of sequences in S(A) of height k with prefix ai

and suffix a j .

Proof. From Lemma 5.1, Chapter 31 in [11].

2.3 Cost Analysis

The cost of a module is a positive number assigned to it. We denote the cost of

ai = ci. Set,

C(0) = (c(0)
i j)

where,

c(0)
i j = δi jci (2.1)

In Equation (2.1), δi j is the Kronecker delta defined as,

δi j =







0 for i 6= j

1 for i = j

Hence, Equation (2.1) defines a diagonal matrix with the cost of module a i at cii.

We define the cost of a sequence as a sum of the cost of all modules in the sequence. Thus,

11

For s = ai1 . . .aim ,

c(s) =
m

∑
l=1

cil

We assume that cost of [], c([]) = 0.

Theorem 2.3.1. Suppose A ∈ Mm({0,1}) and S(A) is the set of admissible sequences. Set

C(n) = AnC(0) +C(n−1)A

Then

C(n)
i j = cost of all sequences in S(A) of height n with prefix ai and suffix a j .

Proof. We prove by mathematical induction. Put C(0) = (c(0)
i j) as defined above. Then the

(i, j)th entry

(AC(0) +C(0)A)i j =
m

∑
l=1

ailc
(0)
l j +

m

∑
l=1

c(0)
il al j

= ai jc j + ciai j

= ai j(ci + c j)

If aia j is admissible then ai j = 1 and ci j = ci + c j . This proves the base case for

n = 1.

Now assume,

C(n) = (c(n)
i j) = AnC(0) +C(n−1)A

12

then,

c(n)
i j = cost of all sequences with height n with prefix ai and suffix a j

Now,

C(n+1) = (c(n+1)
i j) = An+1C(0) +C(n)A

then the (i, j)th entry of C(n+1) is,

c(n+1)
i j =

m

∑
l=1

an+1
il c(0)

l j +
m

∑
l=1

c(n)
il al j

= an+1
i j c j +

m

∑
l=1

c(n)
il al j (2.2)

Now using Theorem 2.2.3, the first term of Equation (2.2) is

an+1
i j c j = (number of sequences of height n+1)(c j)

Also, by induction assumption, c(n)
il is the total cost of sequences of height n with

prefix ai and suffix al . Now, any sequence, with prefix ai and suffix al can be appended

with a j iff al j 6= 0. Thus,

an+1
i j c j +

m

∑
l=1

c(n)
il al j = (number of sequences of height n + 1)(c j)+

(cost of sequences of height n with prefix ai and

which can be appended by a j)

= (cost of all admissible sequences of height n+1 with

prefix ai and suffix a j)

13

Hence, by induction,

C(n)
i j = cost of all sequences of height n with prefix ai and suffix a j .

2.4 Anchor Points

Let,

V = {(x1,x2. . . . ,xu) | 1 ≤ xi ≤ n, i = 1 . . .u}

Define cost of a point,

C : V → R+

C((x1,x2. . . . ,xu)) =
u

∑
i=1

Cxi

where,

1. Ci ≤C j if i < j

2. Ci ∈ R+

Using the symbols described above, we first introduce some definitions. Let

X ∈V , where V is a virtual space in R
u on n components.

Definition 2.4.1. A point J =(j1, j2, . . . , ju) is a neighbor of point I = (i1, i2, . . . , iu), if I 6= J

and |ik − jk| ≤ 1, for all k, 1 ≤ k ≤ u.

Definition 2.4.2. A point J = (j1, j2, . . . , ju) is a smaller neighbor of point I = (i1, i2, . . . , iu)

if jk = ik−1 for exactly one value of k. Note that (1,1, . . .) does not have a smaller neighbor.

14

Definition 2.4.3. A point is an anchor point (a.p.) if the following are true for some T ≥ 0,

• cost of the point is ≥ T

• If the point has 1 or more smaller neighbors, the cost of at least one of those smaller

neighbors is < T .

Definition 2.4.4. X is connected if for any I, I ′ ∈ X , ∃I1, I2, . . . , Ir such that {I1, I} are neigh-

bors, {I2, I1} are neighbors and so on up to {Ir, I′} are neighbors and Ii ∈ X , 1 ≤ i ≤ r.

{I, I1, . . . , Ir, I′} is called the connected path.

Theorem 2.4.1. If A =(a1,a2, . . . ,au) is an anchor point such that A /∈{(1,1 . . .),(n,n, . . .)}.

Then if there are other anchor points, at least one neighbor of A must also be an anchor

point.

Proof. We try to assign non-anchor points to every neighbor of A and then use proof by

contradiction. W.l.o.g assume S = (a1 − 1,a2, . . . ,au) is that smaller neighbor of A such

that C(S) < T . By the definition of a.p and constraints in the theorem statement we know

that such a point exists.

Let B = (a1,a2,a3 + 1, . . . ,au). By definition we know that C(A) ≥ T . Hence,

C(B) ≥ T since costs are ascending.

Consider N = (a1 −1,a2,a3 +1, . . . ,au). N is a neighbor of A and a small neigh-

bor of S. We now try to assign some cost to N.

CASE I: C(N) < T

Then B is an anchor point since,

1. C(B) ≥ T

15

2. C is a smaller neighbor of B and C(N) < T

So B is a neighbor of A and B is an anchor point.

CASE II: C(N) ≥ T

Then N is an anchor point since,

1. C(N) ≥ T .

2. S is a smaller neighbor of N and C(S) < T .

So N is a neighbor of A and N is an anchor point.

Hence, it is impossible to assign any cost to N so that no neighbor of A is an

anchor point. Since N must have some cost, we can say that there is at least one neighbor

of A that is an anchor point.

Let σ be a permutation on u objects. We define action of σ on a point (x1, . . . ,xu)

in V as follows:

σ((x1, . . . ,xu)) = (xσ(1), . . . ,xσ(u))

Lemma 2.4.2. If A is a set of anchor points, then A is permutation stable.

Proof. If I is an anchor point and J is a small neighbor of I with cost less than T , then

σ(J) is a small neighbor of σ(I). Since cost is invariant under this action, σ(I) is indeed an

anchor point.

Lemma 2.4.3. Suppose I = (i1, i2, . . . , iu) and J = (j1, j2, . . . , ju) are two points in V , I 6= J

and A is the set of anchor points. If ik > jk∀1 ≤ k ≤ u, then either I /∈ A or J /∈ A (both I

and J cannot be anchor points).

16

Proof. Suppose I is an anchor point. By definition there is k such that the cost of (i1, . . . , ik−

1, . . . , iu) is less than T . Since ik > jk∀ j, cost of J is also less than T .

Lemma 2.4.4. Suppose (i1, i2, . . . , iu) and (i1, . . ., il+ r,. . . , iu) are anchor points, then

(i1, . . ., il + s, . . . , iu) is an anchor point ∀s, 1 ≤ s < r.

Proof. From definition of anchor points and construction of virtual space described above,

it is clear that ∀s, 1 ≤ s < r, C(i1, . . . , il + s, . . . , iu) ≥ T . Now, (i1, . . . , il + r, . . . , iu) has a

smaller neighbor say N = (i1, . . . , i j − 1, . . . , il + r, . . . , iu) (j > l, is also possible, and does

not affect this proof), where C(N) < T (required by definition of an anchor point). Now,

N1 = (i1, . . . , i j − 1, . . . , il + r− 1, . . . , iu) is a smaller neighbor of (i1, . . . , il + r− 1, . . . , iu).

Also since C(N) < T , C(N1) < T . Hence (i1, . . . , il +r−1, . . . , iu) is an anchor point. Induc-

tively we can now prove that all points (i1, . . . , il +s, . . . , iu) 1 ≤ s < r are anchor points.

Lemma 2.4.5. Suppose X is any connected set that contains points I, J such that C(I) < T

and C(J) ≥ T, then X contains an anchor point or X contains a neighbor of an anchor

point.

Proof. Suppose X does not contain an anchor point. Let I1, I2, . . . , Ir be a connected path

from I to J. Since C(I) < T and C(J) ≥ T , ∃s, 1 ≤ s ≤ r (Ir+1 ≡ I′) such that C(Is) < T

and C(Is+1) ≥ T . There can be more than one such s. We can also have C(Is+1) < T and

C(Is) ≥ T but for simplicity we assume that C(Is) < T and C(Is+1) ≥ T . The method of this

proof holds in both case.

Since X does not contain an anchor point, Is is not a smaller neighbor of Is+1,

since if that was the case then Is+1 ∈ X would be an anchor point. Now choose P1,P2, . . . as

common neighbors of Is+1 and Is using the following construction.

17

Choose P1, . . . ,Pr so that P1 differs from Is in exactly one coordinate, P2 in two

coordinates etc.. Also P2 and P1 differ in one coordinate etc..

If C(P1) < T then look for P2. If C(P2) ≥ T then P2 is an anchor point. By

induction, one of these Pi is an anchor point.

Theorem 2.4.6. The set A of anchor points is connected.

Proof. For I = (i1, . . . , iu), J = (j1, . . . , ju), define the distance,

d(I,J) =
u

∑
l=1

|il − jl|

Let I,J ∈ A, I 6= J, d(I,J) = d. We prove that ∃I1 ∈ A such that d(I1,J) < d.

Since I ∈ A, we assume w.l.o.g that there exists a small neighbor I0 = (i1 − 1, . . . , iu) with

C(I0) < T .

CASE I: i1 < j1

By Lemma 2.4.3 ∃k such that ik > jk. Set I ′ = (i1, . . . , ik − 1, . . . , iu). Clearly

d(I′,J) < d.

CASE Ia: C(I ′) ≥ T

Take I1 = I′. Note that C(i1−1, . . . , ik−1, . . . iu)≤C(I0) =C((i1−1, . . . , iu)) < T .

Thus I1 is an anchor point with smaller neighbor (i1 −1, . . . , ik −1, . . . iu) and we are done.

CASE Ib : C(I ′) < T

Consider I ′′ = (i1 + 1, . . . , ik − 1, . . . , iu), then I ′ is a smaller neighbor of I ′′. If

C(I′′) ≥ T , then I1 = I′′ is an anchor point with smaller neighbor I ′. If C(I ′′) < T , then

I1 = (i1 +1, . . . , ik, . . . , iu) ∈ A and d(I,J) < d.

18

CASE II : i1 > j1

By Lemma 2.4.3 ∃k such that ik < jk. Set I ′ = (i1, . . . , ik + 1, . . . , iu). Clearly

C(I′) ≥ T and d(I ′,J) < d. Let I ′′ = (i1 −1, . . . , ik +1, . . . , iu), then d(I ′′,J) < d.

If C(I ′′) < T , then I1 = I′ and I1 ∈ A. If C(I ′′) ≥ T , then I1 = I′′ and I1 ∈ A.

CASE III: i1 = j1

Find smallest k s.t. ik 6= jk. We can now use Case I or Case II.

By induction, we can find a connected path from I to J.

2.5 Probabilistic Estimates on Consumption

This section tries to answer the following question: Given a set of components

each with its associated costs C, adjacency constraints on these components in the form of

an adjacency matrix A and total available resource is exceeded at T ,then, within an envi-

ronment with U simultaneous users, what should be the maximum allowed sequence length

for each user so that the probability of exceeding the total resource consumption is P ?

Hence, given some sequence length constraint l, each of the U users can pick any

string that is ≤ l. We want to ensure that the total cost of all U such sequences equal or

exceeds T with probability P. A conservative estimate of P = 0 will never let the users

overload the system but will at most times lead to underutilization. On the other hand P ≈ 1

will almost always overload the system. Hence, it is the system designer’s choice to pick

an appropriate P that best reflects his/her context. Given this P we try to find an l that we

can give the end users as a maximum length of sequences that they can use.

19

Our approach to the problem is that we iterate over some range for l and for each

value find the corresponding P. Once we find the closest P we select the corresponding l as

our answer.

There can be several sequences of each length ≤ l. Hence we need an efficient

way to find the probability that the sum of the sequences of length ≤ l is not ≥ T . We use a

counting approach wherein we work within a virtual2 space, V = {(Ci1 , . . . Ciu) | 1≤Ci1 , . . . ,

Ciu ≤ n}3, V ⊂ R
u and the number of elements in V , |V | = nu. Each Ci, 1 ≤ i ≤ n, is the

average cost of sequences of height i− 1. We use identities developed in Theorem 2.2.3

and Theorem 2.3.1 to find the average cost Ci. We define the cost of any point I ≡ (ci1 , . . .

,ciu) as cost(I) = ∑u
j=1Cci j

. I is a favorable event if cost(I) ≥ T . Hence, if G is the number

of favorable points then P(sum ≥ T) = G
nU .

In order to find G we use a 2-stage approach. The first stage consists of finding

the anchor points (described below). The second stage counts favorable events. The overall

problem solving strategy is as follows:

1. Sort average costs.

2. Determine anchor. (Algorithm 1)

3. Using the set of anchor points to determine total number of points in virtual space

≥ T . (Algorithm 2)

If we can find one anchor point, then using Theorem 2.4.1 we can find all the

anchor points by searching neighbors . This is the approach we take in Algorithm 1 to find

2We call this space virtual since we never enumerate all the points in this space, so this space is only
conceptual.

3Instead, one can use two indices such as i1, i2, . . . , however we found this method of indexing more suitable.

20

Algorithm 1 AllAnchors(C, U , T)
1: {C is a 1×n matrix with n costs}
2: {U is the number of users}
3: {T is the max total cost}
4: {Find first diagonal point ≥ T}
5: for i = 1 to n do
6: A ⇐ Point with all elements i
7: if cost(A) ≥ T then
8: break
9: end if

10: end for
11: if no diagonal point ≥ T then
12: return empty set {done}
13: end if
14: if A is anchor point then
15: Add A to result set
16: else
17: for each axis x do
18: for j = 1 to i do
19: set xth element of A to j
20: if cost(A) ≥ T then
21: break
22: end if
23: end for
24: if A is anchor point then
25: Add A to result set
26: end if
27: end for
28: end if
29: {at this stage the result set contain the first seed anchor point}
30: for all B such that B is an unprocessed point in result set do
31: mark B as processed
32: K ⇐ all neighbors of B
33: for all k in K do
34: if k is anchor point and k is not in result set then
35: Add k to result set
36: end if
37: end for
38: end for
39: return result set

21

1

1.5

2

2.5

3

3.5

4

1

1.5

2

2.5

3

3.5

4

0

2

4

25252525
22222222
16161616
14141414*

22222222
19191919
13131313*
11111111

axis−1

27272727
24242424
18181818
16161616

16161616
13131313*
7777
5555

24242424
21212121
15151515*
13131313*

14*
11
5
3

14
11
5
3

14
11
5
3

14
11
5
3

33333333
30303030
24242424
22222222

18
15*
9
7

18
15
9
7

18
15
9
7

18
15
9
7

30
27
21
19

30
27
21
19

30
27
21
19

30
27
21
19

16161616
13131313*
7777
5555

axis−2

36363636
33333333
27272727
25252525

24242424
21212121
15151515*
13131313*

33333333
30303030
24242424
22222222

22222222
19191919
13131313*
11111111

27272727
24242424
18181818
16161616

25252525
22222222
16161616
14141414*ax

is
−3

1 3 9 12
12

Figure 2.1: Anchor points (shown with “*”) for cost matrix [1,3,9,12] and T = 12.

the set of anchor points.

Lines 6-29 determine the first anchor point. We begin by rapidly traversing

(lines 6-11) along the diagonal ((1,1, . . . ,1) → (n,n, . . . ,n)) of the virtual space looking

for a point ≥ T . If no such point is found we know that there is no anchor point and we

return and empty result set. If such a point is found, it might not be an anchor point so we

check along each axis for a anchor point (lines 18-28). In lines 31-39 we use the result from

Theorem 2.4.1 to find the rest of the anchor points.

Figure 2.1 shows the anchors points for a 3 dimensional virtual space with average

costs matrix [1,3,9,12] and T = 12.

22

2.6 Anchors to Points

Lemma 2.6.1. (a) Suppose (a1,a2, . . . ,au) ∈ A is such that

ak = max{bk | (a1, . . . ,ak−1,bk,bk+1, . . . ,bu) ∈ A}

If (a1, . . . ,ak−1,a′k, . . . ,a
′
u) ∈V and if a′k > ak then C((a1, . . . ,ak−1,a′k, . . . ,a

′
u)) ≥ T.

(b) Suppose (b1, . . . ,bu) ∈ V, C((b1, . . . ,bu)) ≥ T. Then ∃(a1, . . . ,au) ∈ A such

that,

1. ai = bi for i = 1, . . . ,k−1, ak < bk and,

2. ak = max{ck | (a1, . . . ,ak−1,ck, . . . ,cu) ∈ A}

Proof. (a) Suppose C(a1 . . . ,ak−1,a′k, . . . ,a
′
u) < T . Since a′k > ak , not all a′i ≥ ai, i =

k+1, . . . ,u. Assume that a′li < ali for i = 1, . . . ,r, k+1 ≤ li ≤ u. Now by adding s to a′li and

checking the cost of a point (a1, . . . ,ak−1,a′k, . . . ,a
′
l1 +s,a′l2 , . . . ,a

′
u) we can eventually find a

point v =(a1, . . . ,ak−1,a′k, . . . ,a
′
l j
, . . . ,a′u), such that C(v)< T but C((a1, . . . ,ak−1,a′k, . . . ,a

′
l j
+

1, . . . ,a′u) ≥ T . But then (a1, . . . ,ak−1,a′k, . . . ,a
′
l j

+ 1, . . . ,a′u) ∈ A with a′k > ak, which con-

tradicts the maximality of ak.

(b) We choose (a1, . . . ,au) ∈ A, with the properties,

• ai = bi for i = 1, . . . ,k−1,

• k is the largest value such that any anchor point has first k− 1 coordinates equal to

b1, . . . ,bk−1,

• ak = max{ck | (a1, . . . ,ak−1,ck, . . . ,cu) ∈ A and ak < bk}.

23

We will show that ak = max{b′k | (a1, . . . ,ak−1,b′k, . . . ,b
′
u) ∈ A}

Suppose this is not true. Then, there exists (a1, . . . ,ak−1,b′k, . . . ,b
′
u)∈ A, such that

b′k > ak. Since k is largest so that a1, . . . ,ak−1 are the coordinates of the given point b′
k ≥ bk.

Consider v1 = (a1, . . . ,ak−1,bk,1, . . . ,1). If v1 ∈ A, then we have a contradiction

since longest prefix is a1, . . . ,ak−1,bk and not a1, . . . ,ak−1.

CASE I: C((a1, . . . ,ak−1,bk,1, . . . ,1)) < T

Then we have, C((a1, . . . ,ak−1,bk,1, . . . ,1))< T and C((a1, . . . ,ak−1,bk, . . . ,bu))≥

T . Then there exists a stage such that C((a1, . . . ,ak−1,bk,bk+1, . . . ,bl − 1,1, . . . ,1)) < T

and C((a1, . . . ,ak−1, bk,bk+1, . . . ,bl , 1, . . . ,1)) ≥ T . But then (a1, . . .,ak−1, bk, . . ., bl , 1,. . .,

1) ∈ A, a contradiction.

CASE II: C((a1, . . . ,ak−1,bk,1, . . . ,1)) ≥ T

Now (a1, . . . ,ak−1,b′k, . . . ,b
′
u) ∈ A, and b′k ≥ bk. This implies that

T ≤C((a1, . . . ,ak−1,bk,1, . . . ,1)) ≤C((a1, . . . ,ak−1,b′k, . . . ,b
′
u))

Suppose (a1, . . . ,al − 1, . . . ,ak−1,b′k, . . . ,b
′
u) is a small neighbor of the anchor point (a1,

. . . ,ak−1, b′k, . . . , b′u), then since

C((a1, . . . ,al −1, . . . ,ak−1,bk,1, . . . ,1))) ≤C((a1, . . . ,al −1, . . . ,ak−1,b′k, . . . ,b
′
u)) < T,

(a1, . . . ,ak−1,bk,1, . . . ,1) ∈ A a contradiction.

If (a1,ak−1,b′k − 1,b′k+1, . . . ,b
′
u) is a small neighbor of (a1, . . . ,ak−1,b′k, . . . ,b

′
u),

then (a1, ak−1,bk − 1,1, . . . ,1) is a small neighbor of (a1,ak−1,bk,1, . . . ,1) again showing

24

that (a1, ak−1, bk,1, . . . ,1) ∈ A since,

C((a1,ak−1,bk,1, . . . ,1)) ≤C((a1,ak−1,b′k, . . . ,b
′
l −1, . . . ,b′u))

for any b′l > 1. (a1, . . . ,ak−1,b′k, . . . ,b
′
u) cannot be a smaller neighbor of the following type:

(a1, . . . ,ak−1,b′k, . . . ,b
′
l −1,b′u).

2.6.1 Points Counting

In V we are working with the surface defined by the set of anchor points. This

surface can be thought of as a boundary between points < T and those ≥ T . Algorithm 2

presents a technique that, given a sorted4 list of anchor points, calculates the number of

points ≥ T .

Algorithm 2 is a recursive algorithm and is initially called as anchors2Points with

the following parameters: a sorted list of anchor points A, the max value of any element in

an anchor point n, and a 2× 2 matrix representing the dimensions of the anchor list. This

algorithm relies on the makegroups algorithm (Algorithm 3).

The makegroups algorithm generates recursive groups within the list of anchor

points such that the first column in every generated group is identical. The effect of such

grouping is that with each level of recursive grouping we reduce a dimension of our virtual

space. This process is illustrated by continuing the example from Section 2.5. Anchor

points generated for costs [1,3,9,12] and T = 12, its grouping obtained by makegroups and

4Lexicographically sorted

25

1 1 4 0×40

0×411 2 3 1×40

1 3 2 2×40

1 4 1 3×40

2 1 3 1×40

1×412 2 3 1×40

2 3 1
2×40

2 3 2
3 1 2 2×40

2×413 2 1
2×40

3 2 2
4 1 1 3×40 3×41

Totals: 17 + 24 + 0 + 12 = 53

Anchor Points 3rd axis 2nd axis 1st axis # of Anchors pts.} } }

0×42 12

Figure 2.2: Illustrating Algorithm 2, counting points from anchor points

counting done by anchors2Points, is illustrated in the Figure 2.2.

2.6.2 Generalized Points Counting

In Section 2.4 we assumed that the costs were unique and Algorithm 2 depends

on this assumption. In this section we present Algorithm 4, a generalized version of Algo-

rithm 2 that relaxes this uniqueness constraint and allows counting points without generat-

ing additional anchor points. The main difference between Algorithm 4 and Algorithm 2 is

that in Algorithm 4 during the counting steps the known number of duplicates of each costs

are accounted for.

Figure 2.3 illustrates the working of Algorithm 4 for costs [2,4,4,10,10,10]. The

anchors points were obtained by calling AllAnchor with costs [2,4,10,]. GeneralizedAn-

chors2Points was called with the anchors points and [1,2,3]. With T = 14 and U = 3, there

26

Algorithm 2 Anchors2Points(A, n, r)
1: {A is the k×U matrix of k of anchor points}
2: {n is the max value of any element in an anchor point}
3: {r is a 2× 2 matrix where [rs cs;re ce] define the upper left hand corner (rs,cs) and

(re,ce) define the lower right hand corner of the space in A that is currently being
processed}

4: if A is empty then
5: return 0
6: end if
7: [rs cs;re ce] ⇐ r
8: if r(2,2)− r(1,2) = 0 then
9: result = result + r(2,1)− r(1,1)+1 {count number of anchor pts}

10: m = n−max(csthcolumn from rows rs to re in A)
11: result = result +m
12: return result
13: end if
14: r1 = makegroups(A,r)
15: for all ri such that ri is a 2×2 group specification in r1 do
16: result = result +anchors2Points(A,n,ri)
17: end for
18: f emax = max(csthcolumn from rows rs to re in A)
19: rp = (n− f emax)×nU−cs

20: return result + rp

Algorithm 3 MakeGroups(A, r)
1: {A is the k×U matrix of k of anchor points}
2: {r is a 2× 2 matrix where [rs cs;re ce] define the upper left hand corner (rs,cs) and

(re,ce) define the lower right hand corner of the space in A within which groups are to
be made}

3: [rs cs;re ce] ⇐ r
4: ri ⇐ rs
5: while ri ≤ re do
6: Record [ri cs+1] as beginning of group
7: f e ⇐ A(ri,cs+1)
8: while ri ≤ re do
9: if f e = A(ri,cs+1) then

10: r f ⇐ ri
11: ri ⇐ r1+1
12: end if
13: end while
14: Record [r f ce] as end of group
15: end while
16: return all groups

27

1 1 3 (0×1×1)60

(0×1)611 2 3 (0×2×1)60

1 3 1
(3×3×1)60

1 3 2

2 1 3 (0×1×2)60

(0×2)612 2 3 (0×2×2)60

2 3 1
(3×3×2)60

2 3 2

3 1 1
(3×1×3)60

(3×3)613 1 2

3 2 1
(3×2×3)60

3 2 2

Totals: 54 + 54 + 0 + 81 = 189

Anchor Points 3rd axis 2nd axis 1st axis # of Anchors pts.} } }

(0)62

1×1×3

1×2×3

1×3×1

1×3×2

2×1×3

2×2×3

2×3×1

2×3×2

3×1×1

3×1×2

3×2×1

3×2×2

Figure 2.3: Illustrating Algorithm 4, counting points from anchor points

were 189 points with cost ≥ T .

2.7 Complexity Analysis

We now perform the asymptotic running time analysis for Algorithms 1 and 2

and then compare it with the brute force method (Section. 2.7.1) and generating functions

(Section 2.7.2). We use the notations of Section 2.5. The complexity of finding the cost of

any point in V is O(u) and to decide whether a point is an anchor point is O(u2).

For Algorithm 1

• Lines 6-11: O(nu) since max i is n.

• Lines 18-28: O(u) since x is number of axes u.

– Lines 19-24: O(nu) since j till max i = n.

28

Algorithm 4 GenralizedAnchors2Points(A,N,r)
1: {A is the k×U matrix of k of anchor points}
2: {N is 1× n matrix where n is the number of unique cost and N(1,i) is the number of

times the ith cost is repeated.}
3: {r is a 2× 2 matrix where [rs cs;re ce] define the upper left hand corner (rs,cs) and

(re,ce) define the lower right hand corner of the space in A within that is currently
being processed}

4: [rs cs;re ce] ⇐ r
5: if r(2,2)− r(1,2) = 0 then
6: {count number of anchor pts}
7: for all p such that p is an a.p in rows rs to re do
8: pc ⇐ 1
9: for all q such that q is an element of p do

10: pc ⇐ pc× (# of times q is repeated)
11: end for
12: result ⇐ result + pc
13: end for
14: {Count points along U th axis}
15: f emax = max(csthcolumn from rows rs to re in A)
16: m = # of costs (with duplicates) greater than f emax
17: for all q value at indices in row rs less than cs do
18: m = m×(# of times q is repeated)
19: end for
20: result = result +m
21: return result
22: end if
23: r1 = makegroups(A,r)
24: for all ri such that ri is a 2×2 group specification in r1 do
25: result = result +GeneralizedAnchors2Points(A,N,ri)
26: end for
27: f emax = max(csthcolumn from rows rs to re in A);
28: m = # of costs (with duplicates) greater than f emax
29: for all q value at indices in row rs less than cs do
30: m = m×(# of times q is repeated)
31: end for
32: rp = m×(total# of costs (with duplicates))U−cs

33: return result + rp

29

– Lines 25-27: O(u2) since testing for anchor point.

Hence total for lines 18-28 is O(u)[O(nu)+O(u2)] = O(nu2)+O(u3).

• lines 31-39: The cost of enumerating all neighbors of a points is O(3u). Hence

checking all neighbours for anchor points is O(3uu2). Assuming that a such anchor

points are processed. The total cost is O(a3uu2). Insertion into list without duplicates

is O(a2).

Hence complexity of Algorithm 1 is

O(nu)+O(nu2)+O(u3)+O(a3uu2)+O(a2)

Algorithm 1 requires sorted n. We assume this sorting complexity to be O(n log n).

Algorithm 3 requires a lexicographically sorted list of anchors points (O(au log(au))

and since there can be at most au groups with exactly one anchor point in each group, the

complexity is O(au). Hence, O(au log(au))+O(au) = O(au log(au)).

Algorithm 2 relies on Algorithm 3 and performs exactly 1 multiplication per

group (line 19) and at most a additions per axis (line 16). Hence, the complexity is O(au).

Total complexity is then,

O(nu)+O(nu2)+O(u3)+O(a3uu2)+O(a2)+O(au log(au))+O(n log n)

+O(au)

= O(nu)+O(nu2)+O(u3)+O(a3uu2)+O(a2)+O(au log(au))+O(n log n)

= O(nu+nu2 +u3 +a3uu2 +a2 +au log(au)+n log n) (2.3)

30

The number of anchors points a is variable and depends on T , however we

do know that the best case (minimum number of anchor points) is a = 1 with the point

(1,1,1, . . .), in which case every point in V is ≥ T . We hypothesize the worst case to be

a = u(n−1)u−1. Proof of this hypothesis will be the subject of future work. This worst case

corresponds to the case when anchor points consist of all points on the the outer surfaces of

V , such that the surface contains the max point in V , (n,n,n, . . .).

The figure below shows the case of max anchor points for costs [1,2,4,10], U = 2.

The max number of anchor points here are for T = 11, 2× (4−1)2−1 = 6.

2 3 5 11

3 4 6 12

5 6 8 14

11 12 14 20

1 2 4 10

1

2

4

10

User 1 costs

U
ser2

costs

}(n−1)U−1

In order to understand the relevance of Equation (2.3), we now look at it’s growth

characteristics separately w.r.t. u and n and analyze each for best and worst case of a.

Using constant u, Equation (2.3) becomes n log n+a2 +a loga. With worst case,

a = u(n−1)u−1,

O(n log n+u2(n−1)2(u−1))

= O((n−1)2(u−1))

= O(n2u) (2.4)

31

With best case a = 1, Equation (2.3) is O(n log n). This is simply the time to sort the n costs.

Using constant n Equation (2.3) becomes O(u3 + a3uu2 + a2+au log(au)). With

worst case, a = u(n−1)u−1,

O(u3 +u(n−1)u−13uu2 +u2(n−1)2(u−1) +u(n−1)u−1u log(u(n−1)u−1u))

= O((n−1)2(u−1))

= O(n2u) (2.5)

With best case, a = 1, Equation (2.3) is O(3u).

2.7.1 Comparison with Brute Force Method

The brute force method is one in which we test each point in V for ≥ T . The

complexity of this approach is always O(unu). We can conclude that while in the worst

case (Equations (2.4) and (2.5)) our algorithms exhibit worse scalability than brute force

whereas in the best case we do significantly better. Our future work will include an average

case complexity analysis in which we hope to show that our approach works much better

that brute force in the average case. This is primarily because the worst case, as outlined

above, occurs only for a very narrow range of T .

2.7.2 Comparison with Generating Functions

A classic method of counting points in the U -dimensional space is using gener-

ating functions. Though our problem requires counting points ≥ T , when using generating

functions it is easier to calculate points ≤ T , so that is what we will do in this section. We

32

begin with explaining this method and then compare it with our algorithms.

Let the costs be [1,2,5], U = 2 and T = 3. This first step is to create a generating

function for each axis from the costs. Such a generating function is,

g(x) = x+ x2 + x5 (2.6)

Since there are two such axes we multiply the generating function twice and di-

vide the result by (1− x) [10] in order to accumulate coefficients. We then differentiate the

result T times, evaluate at x = 0 and divide by T ! to get the number we want. Multiplying

generating functions had the effect of creating a multinomial expansion of the generating

function. Such an expansion has the property that for each term in the expansion, the coef-

ficient of a given term in x happens to be the number of ways to get the exponent of that x.

Multiplying the generating function by 1
1−x has the effect of accumulating coefficients [10].

Now, in order to get the coefficient of the x term with an exponent of T we differentiate T

times. We then evaluate the result at x = 0 to cancel all terms with exponents greater than

T . Finally to negate the effect of repeated derivative on the coefficient of x we divide the

end result by T !. Hence we evaluate,

N =
dT

dxT
(x+ x2 + x5)2

1− x

]

x=0

1
T !

(2.7)

=
d3

dx3
(x+ x2 + x5)2

1− x

]

x=0

1
3!

= 3

We can now say that there are 3 ways that T ≤ 3, they are (1,1),(1,2),(2,1).

33

Equivalently there are 6 = 32−3 ways such that the sum is ≥ 4. So, the required probability

of T ≥ 4 is 6
9 = 0.66. There are two computationally expensive steps in the evaluation of

Equation (2.7): Evaluating the T th derivative and computing T !. We will now look at how

we can eliminate or reduce one or both of these steps.

If we try to prevent explicit computation of T ! we must compute dT

dxT in T steps,

d
dx ,

d2

dx2 , . . . , dT

dxT and at each step divide the result by n,n− 1,n− 2, . . . ,1 . Division of dT

dxT

by T ! or division of each successive derivative by n,n−1,n−2, . . . is required to cancel the

effect of multiplication of the coefficient of x by it’s exponent in each successive derivative.

If we try to prevent successive computation of derivatives then we must compute

T !. While the gamma function Γ(T) =
R ∞

0 xT e−xdx can be used to exactly calculate T !, T ! =

Γ(T + 1), it involves at least T integration steps. An approximation to T ! can be obtained

using T or fewer steps by using Sterling’s approximation as T ! ≈
√

2πT
(T

e

)T . In either

case, the factorial value is large for even modest values of T , for example, 100! contains

158 digits. Given that T represents the sum of costs, finding the factorial is constrained to

costs that can be handled by the precision of the system on which the computation is being

carried out. It is unlikely that most commonly used general-purpose systems will be able

to compute the factorial of large cost values (in the order to several hundreds or thousands)

without overflow.

Hence we cannot eliminate both these computationally intensive steps simulta-

neously. So the choice is between finding the T th derivative, one at a time or calculating

T !. Both these are choices severely constrain using this generating functions technique for

large values of T (several hundreds or thousands).

34

Though the computational requirement of this method is sensitive to T , it is fairly

immune to U , the number of users. This is the case since in Equation (2.7), U is the

exponent of the generating function and does not affect the computational effort to find a

derivative.

35

CHAPTER 3

SLICE ALGORITHMS

The set of anchor points A determined using Algorithm 1 is permutation stable.

We then used those anchor points to count the number of points with cost ≥ T (Algo-

rithm 2). In this chapter we improve upon that approach by determining only permutation

unique anchor points and then counting using this reduced set. The set of permutation

unique anchor points, that we call slice anchor points (Definition 3.1.3) is smaller by a

factor of u! than the set of anchor points.

3.1 Preliminaries

Set,

V+ = {P ∈V | xi(P) ≤ xi+1(P), i = 1, . . . ,u−1}

where,

xi(P) = ithcoordinate of P.

36

Definition 3.1.1. Let < X > be an operator that generates all permutations of X .

Example 3.1.1.

< (1,2,3) >= {(1,2,3),(1,3,2),(2,1,3), (2,3,1),(3,1,2),(3,2,1)}

< {(1,2),(2,3)} >= {(1,2),(2,1),(2,3),(3,2)}

Hence, < V+ >= V .

Definition 3.1.2.

: V → V+

P → P

with P obtained by rearranging coordinates of P suitably.

Lemma 3.1.1. For any P ∈ V, the cardinality of the set {Q ∈ V | Q = P} is
(

u
r1, . . . ,rs

)

where,

r1 = repetition of x1(P)

r2 = repetition of x1+r1(P)

. . .

Proof. See second paragraph on page 16 in [29].

Example 3.1.2. Let V = {(x1,x2,x3,x4) | xi ∈ Z
+, i = 1, . . . ,4}, and P = (1,2,1,3). Then

37

P = (1,1,2,3) and r1 = 2,r2 = 1,r3 = 1, and

∣
∣{Q ∈V | Q = P}

∣
∣=

(
4

2,1,1

)

=
4!

2!1!1!
= 12.

Definition 3.1.3. Slice anchor points are A+ = A
T

V+, where A is the set of anchor points.

It is clear that < A+ >= A.

Definition 3.1.4. Constant
(

u
r1, . . . ,rs

)

associated with any point Q is called the permuta-

tion degree (p-degree) of Q.

Lemma 3.1.2. Suppose Q1,Q2 ∈V are such that xi(Qi)≤ xi(Q2), 1≤ i≤ u and C(Q1) < T,

C(Q2) ≥ T. Then there exists P ∈ A+, such that xi(Q1) ≤ xi(P) ≤ xi(Q2).

Proof. We use induction on m =
u

∑
i=1

[xi(Q2)− xi(Q1)]. If m = 1, then Q2 ∈ A+ and we are

done. Suppose j is a maximum index such that x j(Q1) 6= x j(Q2). Set Q =(x1(Q1), . . . ,x j(Q1)+

1, . . . ,xu(Q1)). Now,

x j(Q1) < x j(Q2) ≤ x j+1(Q2) = x j+1(Q1)

=⇒ x j(Q1)+1 ≤ x j+1(Q1)

=⇒ x j(Q) ≤ x j+1(Q) =⇒ Q ∈V+

If C(Q) ≥ T , then Q ∈ A+. If C(Q) < T , then since

u

∑
i=1

[xi(Q2)− xi(Q1)] ≤
u

∑
i=1

[xi(Q2)− xi(Q1)]+1

38

by induction there exists a P ∈ A+ with required property.

Lemma 3.1.3. Suppose (a1, . . . ,ar, . . . ,au) ∈ A+ has the following property:

ar = max{xr(P) | xi(P) = ai, i = 1, . . . ,r−1,P ∈ A+}

Then for any Q ∈V+, such that,

xi(Q) = ai, 1 ≤ i < r and,

xr(Q) > ar,

C(Q) > T.

Proof. Suppose (a1, . . . ,ar, . . . ,au) ∈ A+ had the property given in the hypothesis and

(b1, . . . ,bu) ∈V+ with ai = bi for 1 ≤ i < r and br > ar. We claim that C(b1, . . . ,bu) ≥ T .

We prove this by contradiction. Suppose C(b1, . . . ,bu) < T . Set Q = (a1, . . . ,

ar−1,br, cr+1, . . . ,cu) with ci = max(ai,bi), r + 1 ≤ i ≤ u. Note that br = max(ar,br) ≤

max(ar+1,br+1) since ar ≤ ar+1 and br ≤ br+1. Thus Q ∈ V+. Further, xi(Q) ≥ bi ∀i and

C(Q)≥C(a1, . . . ,au)≥ T . Hence by Lemma 3.1.2, there exist P∈ A+ with xi(Q)≥ xi(P)≥

bi. But for 1 ≤ i < r, xi(Q) = bi = ai and xr(Q) = br. Thus we have an anchor point P

with xi(P) = ai, 1 ≤ i < r and xr(P) > ar. This is a contradiction. Thus we must have

C(b1, . . . ,br) ≥ T .

Conversely,

Lemma 3.1.4. For any Q∈ {V+ \A+} with C(Q) > T, there exists (a1, . . . ,ar, . . . ,au)∈ A+,

39

such that,

xi(Q) = ai, 1 ≤ i ≤ r−1 and,

xr(Q) > ar.

Proof. Suppose (b1, . . . ,bu) ∈ {V+ \A+} with C(b1, . . . ,bu) ≥ T . Choose a point (a1, . . . ,

ar, . . . , au)∈A+ such that r is a maximum integer such that ai = bi, 1≤ i < r and ar 6= br.This

condition is vacuous if r = 1. We claim ar < br.

We prove by contradiction. Suppose ar > br. Set Q = (a1, . . . , ar−1,br,cr+1

, . . . ,cu) with ci = min(ai,bi). It is easy to show that Q ∈V+. Since C(Q) ≤C(a1, . . . ,au),

for any j,

C(xi(Q), . . . ,x j(Q)−1, . . . ,xu(Q)) ≤C(a1, . . . ,a j −1, . . . ,au)

If (a1, . . . ,au) ∈ A+, then there exists j such that C(a1, . . . ,a j −1, . . . ,au) < T by definition

of anchor point. Hence, C(xi(Q), . . . ,x j(Q)−1, . . . ,xu(Q)) < T . Thus if C(Q) ≥ T , then Q

is an anchor point, which contradicts the minimality of r. Thus C(Q) < T . Also x i(Q) ≤ bi.

Now we use Lemma 3.1.2 to find P ∈ A+, such that xi(Q) ≤ xi(P) ≤ bi. Since xi(Q) = bi =

ai, 1 ≤ i ≤ r and xr(Q) = br, we found P ∈ A+ such that xi(P) = bi for 1 ≤ i ≤ r. This

violates the maximality of (a1, . . . ,au). Thus we must have ar < br.

Definition 3.1.5. Let (a1, . . . ,ar, . . . ,au) ∈ A+ be an anchor point of Lemma 3.1.3. Con-

sider,

τ(a1, . . . ,ar) = {P ∈V | xi(P) = ai,1 ≤ i < r, and xr(P) > ar}

40

Lemma 3.1.5. Suppose P1,P2 ∈ A+ are such that,

xr(P1) = max{xr(Q) | xi(Q) = xi(P1),1 ≤ i < r,Q ∈ A+}

xs(P2) = max{xs(Q) | xi(Q) = xi(P2),1 ≤ i < s,Q ∈ A+}

Then τ(x1(P1), . . . ,xr(P1)) and τ(x1(P2), . . . ,xs(P2)) are disjoint or identical.

Proof. We will show that if (c1, . . . ,cu) is in,

τ(x1(P1), . . . ,xr(P1))
\

τ(x1(P2), . . . ,xs(P2))

then xi(P1) = xi(P2) for r = s and 1 ≤ i ≤ r.

We can assume that r ≤ s. If r < s, then we have xr(P1) ≥ xr(P2) since xi(P1) =

xi(P2) = ci for 1 ≤ i < r. However by Lemma 3.1.4 we know that xr(P1) < cr = xr(P2).

This is a contradiction. Hence we must have r = s and xr(P1) = xr(P2).

Lemmas 3.1.3 and 3.1.5 show that for the right choices of {a1, . . . ,ar}, 1 ≤ r ≤ u,

{Q ∈V+ |C(Q) ≥ T} ≡ A+

.
[

(a1,...,ar)

τ(a1, . . . ,ar)

3.2 Counting Points in Slice

Algorithm 5 illustrates the algorithm used to compute the points with cost ≥ T in

V using only A+. Below we give some definitions and formulae used in the Algorithm 5.

41

Definition 3.2.1. If partu = {paritions of u}, then for E ∈ partu, E = sp1
1 sp2

2 . . . spr
r . Also,

En =
r

∑
i=1

pr (3.1)

multE =

(
En

p1, . . . , pr

)

(3.2)

permE =

(
u

s1,s1 . . .
︸ ︷︷ ︸

p1

· · · sr,sr . . .
︸ ︷︷ ︸

pr

)

(3.3)

Let,

Fu = ∑
E∈partu

multE × permE ×DF DF =







1 En = 1,2

0 otherwise
(3.4)

Ru = ∑
E∈partu

multE × permE ×DR DR =







1 En = 2,3

0 otherwise
(3.5)

Q j,En =







0 En < 3

1
(En −3)!

En = 3

1
(En −3)!

En−4

∏
m=0

(j−En +3+m) otherwise

(3.6)

3.3 Complexity of Counting Points in Slice

The computational complexity of Algorithm 6 is dominated by line 19. Both Fu

and Ru requires the computation of all unrestricted paritions of u. The number of unre-

42

Algorithm 5 Anchors2PointsSlice(S, n, r)
1: {S is the k×U matrix of k of slice anchor points}
2: {n is the max value of any element in an anchor point}
3: {r is a 2× 2 matrix where [rs cs;re ce] define the upper left hand corner (rs,cs) and

(re,ce) define the lower right hand corner of the space in A+ that is currently being
processed}

4: result = Anchor2PointsSliceRecur(S, n, r)
5: for all p, slice anchor point in S do
6: result = result + permutation degree of p
7: end for
8: return result

Algorithm 6 Anchors2PointsSliceRecur(S, n, r)
1: {S is the k×U matrix of k of slice anchor points}
2: {n is the max value of any element in an anchor point}
3: {r is a 2× 2 matrix where [rs cs;re ce] define the upper left hand corner (rs,cs) and

(re,ce) define the lower right hand corner of the space in A that is currently being
processed}

4: {If the final value of a summation variable is smaller than its initial value, let that
summation be zero.}

5: if S is empty then
6: return 0
7: end if
8: [rs cs;re ce] ⇐ r
9: if ce > cs then

10: r1 = makegroups(A,r)
11: for all ri such that ri is a 2×2 group specification in r1 do
12: result = result +Anchors2PointsSliceRecur(S,n,ri)
13: end for
14: end if
15: f emax =max(csth column from rows rs to re in A)
16: u = ce− cs+1
17: k = n− f emax−1
18: {Fu,Ru and Q j,En below are from Equation (3.4), (3.5) and (3.6) respectively.}
19:

f sum = 1+ kFu +
(k−1)k

2
Ru +

∑
E∈partu

[

multE × permE ×
k−1

∑
j=2

(
(k− j)(k +1− j)

2
Q j,En

)]

20: d = denominator of multinomial coefficient of S(re,1),S(re,2), . . . ,S(re,cs−1)

21: rp =
U !

d ×u!
× f sum

22: return result + rp

43

stricted paritions of u, P(u) is given by [13] as

P(u) ≈ e2π
√

2u/3

4u
√

3

Assuming that each paritions can be generated in constant time, since u! = O(uu) the com-

plexity of line 19 in Algorithm 6 is

= O

(

u
e2π

√
2u/3

4u
√

3

)

+

[

O

(

e2π
√

2u/3

4u
√

3

)

(unO(uu))

]

= O(nuue2π
√

2u/3) (3.7)

A+ has fewer points than A by a factor of u! hence in the worst case the number

of anchor points is a = u(n−1)(u−1)

O(uu) .

Continuing the complexity analysis from Section 2.7, the overall complexity with

constant u and worst case a,

= O

(

n log n+
u(n−1)2(u−1)

u2u +n

)

(3.8)

= O(n2u) (3.9)

Hence the asymptotic complexity does not change. This is to be expected since

the reduction is based on u and we let u be the constant.

44

However, with constant n, the overall worst case complexity is,

= 0








u3 +
u(n−1)(u−1)

uu 3uu2 +
u2(n−1)2(u−1)

u2u
+

u(n−1)(u−1)

uu u log

(

u(n−1)(u−1)u
uu)

)

+nuue2π
√

2u/3








= O
(

n2u

u2u

)

Here we can see a substantial reduction in complexity due to the slice algorithms.

3.4 Examples

In this section we illustrate the technique of counting points using two examples.

3.4.1 Example 1

Consider costs [2,3,4,9,12] with U = 3 and T = 10. We omit the detail on ob-

taining A+ since the procedure is fairly straightforward. Figure 3.1 follows the style of

Figure 2.2 and show the counting of points using the anchor points in A+.

For each group returned by Algorithm 3, Algorithm 6 computes rp in line 21. We

now show the computation of rp1, . . . ,rp7.

Computing rp1

Here, f emax = 4,u = 1,k = 0, partu = {11}. Now for each E ∈ partu we evaluate

multE (Equation (3.2)) and permE (Equation (3.3)). For E = 11, En = 1 (Equation (3.1)) and,

multE =

(
1
1

)

45

permE =

(
1
1

)

Hence using Equation (3.4),

F1 = (1×1×1) = 1 (3.10)

Similarly using Equation (3.5),

R1 = (1×1×0) = 0 (3.11)

Hence from Algorithm 6 line 19

f sum = 1+0+0+0 (3.12)

The last term in Equation (3.12) is 0 since in that term the final condition of the summation

(−1) is less that the initial value (2). In line 20, d is the denominator of the multinomial

coefficient of 1,1, which is the denominator of
(

2
2

)

. Hence d = 2! From Algorithm 6

line 21

rp1 =
3!

2!1!
f sum = 3

Computing rp2

Similar to rp1, here f emax = 4,u = 1,k = 0, partu = {11}. However, d = 1!1!.

Hence,

rp2 =
3!

1!1!!1!
f sum = 6

46

Computing rp3

Here, f emax = 3,u = 1,k = 1, partu = {11}. multE and permE identical rp1.

f sum = 1+1+0+0 (3.13)

Hence,

rp3 =
3!

1!1!1!
f sum = 12

Computing rp4

This computation is similar to rp3 except that d = 2!. Hence,

rp4 =
3!

2!1!
f sum = 6

Computing rp5

In this case, f emax = 3,u = 2,k = 1, partu = {12,21} and d = 1!. Since there are

two paritions of u,

F2 =

[(
2
2

)(
2

1,1

)

1
]

+

[(
1
1

)(
2
2

)

1
]

= 3 (3.14)

R2 =

[(
1
1

)(
2

1,1

)

1
]

+

[(
1
1

)(
2
1

)

0
]

= 2 (3.15)

Hence,

f sum = 1+1 ·3+0 ·2+0 = 4

rp5 =
3!

1!2!
f sum = 12

47

Computing rp6

Here, f emax = 2,u = 2,k = 2, partu = {12,21} and d = 1!. Using Equations (3.14)

and (3.15),

f sum = 1+2 ·3+1 ·2+0 = 9 (3.16)

Hence,

rp6 =
3!

1!2!
f sum = 27

Computing rp7

Finally, here f emax = 2,u = 3,k = 2, partu = 13,1121,31 and d = 1!. So,

F3 =

[(
3
3

)(
3

1,1,1

)

0
]

+

[(
2

1,1

)(
3

1,1

)

1
]

+

[(
1
1

)(
3
3

)

1
]

= 7 (3.17)

R3 =

[(
3
3

)(
3

1,1,1

)

1
]

+

[(
2

1,1

)(
3

1,1

)

1
]

+

[(
1
1

)(
3
3

)

0
]

= 12 (3.18)

f sum = 1+2 ·7+1 ·12+0 = 27

Hence,

rp7 =
3!

1!3!
f sum = 27

Line 5 in Algorithm 5 returns the sum of all rpi, 1 ≤ i ≤ 7 and in line 7, the p-

degree of each slice anchor point is added. The the overall number of points ≥ T , 108, is

returned in line 9. The p-degree of each point in A+ is shown in the rightmost column in

Figure 3.1.

We can see that Equations (3.4) and (3.5) are independent of k and can be reused

48

1 1 4 rp1

1 2 4 rp2 rp5

1 3 3 rp3

2 2 3 rp4 rp6

rp7

Totals: 27 + 39 + 27 + 15 = 108

A+ 3rd axis 2nd axis 1st axis perms of slice a.ps.} } }
3
6
3
3

Figure 3.1: Illustrating Algorithm 5, for Example 1

in computing rp of a column from Figure 3.1

3.4.2 Example 2

Now, we present another example similar to that in Section 3.4.1, but with T = 8.

This example has fewer slice anchor points and exercises computation of Q j,En (Equa-

tion (3.6)). Figure 3.2 illustrates this computation.

Consider costs [2,3,4,9,12] with U = 3 and T = 8.

Computing rp1

Here, f emax = 3, u = 1, k = 1, partu = {11}. f sum in this case is identical to

Equation (3.12). Hence,

rp1 =
3!

2!1!
f sum = 6

Computing rp2

Here, f emax = 2, u = 1, k = 2, partu = {11} and f sum is again identical to

Equation (3.12). Hence,

rp2 =
3

1!1!1!
f sum = 18

49

Computing rp3

Here, f emax = 2, u = 2, k = 2, partu = {12,21} and f sum is identical to Equa-

tion (3.16). Hence,

rp3 =
3!

1!2!
f sum = 27

Computing rp4

Here, f emax = 1, u = 3, k = 3, partu = {13,1121,31}. Using F3 and R3 from

Equations (3.17) and (3.18) respectively,

f sum = 1+3 ·7+3 ·12+

{(
3
3

)(
3

1,1,1

)[
(3−2)(3+1−2)

2
1

(3−3)!

]}

+

{(
2

1,1

)(
3

1,2

)[
(3−2)(3+1−2)

2
·0
]}

+

{(
1
1

)(
3
3

)[
(3−2)(3+1−2)

2
·0
]}

= 1+21+36+6+0+0

= 64

Hence,

rp4 =
3!
3!

f sum = 64

The rightmost column of Figure 3.2 shows the p-degree of each point in A+.

Adding up all rpi, 1 ≤ i ≤ 4 and the p-degrees, give us 121, the total number of points with

cost ≥ 8.

50

1 1 3 rp1

1 2 2 rp2
rp3 rp4

Totals: 24 + 27 + 64 + 6 = 121

A+ 3rd axis 2nd axis 1st axis perms of slice a.ps.} } }

3
3

Figure 3.2: Illustrating Algorithm 5, for Example 2

51

CHAPTER 4

APPLICATIONS

In this chapter we demonstrate the application of our techniques. In Section 4.1

we use simulations to demonstrate the steps for application of our techniques to component-

based environments. In Section 4.2 we outline and report on experiments that demonstrate

the application of our techniques to ad-hoc service environments.

4.1 Application to Component-Based Environments

In this section we use simulations to demonstrate a usage of our technique in

component-based environments. Consider a component-based environment of 5 compo-

nents with costs [5, 9, 10, 13, 20]. Let the adjacency matrix be,

A =

[1 0 1 1 1
1 0 0 1 1
1 1 1 1 1
0 1 0 1 0
1 0 1 1 0

]

,

52

the system’s total resources be exceeded at 250 and there be 3 concurrent users. Figure 4.1

illustrates the max sequences lengths computed (Y-axis) by our algorithms for varying sys-

tem designer defined probabilities (X-axis).

The problem was solved using following steps:

1. Using historical information (or just 1 if no historical information) we selected a

starting maximum sequence length.

2. For each length from 1 to current maximum length, we used the formulae developed

in Section 2.2 to find the average cost of all sequences of that length.

3. We then used the algorithms in Section 2.5 to compute the required probability. The

average costs calculated in the previous step were the input costs for these algorithms,

the number of users 3 became the dimension of the virtual space. Then we counted

“points” with cost ≥ 250. The number of points computed divided by the total points

gave us the probability Pr.

4. If Pr was the required probability or was as close as possible to the required probabil-

ity, we were done, else we modified the length (decrease if Pr > required probability

else increase) and repeated from step 2.

To verify our results, we simulated 3 concurrent users with each user generating

sequences up to a maximum suggested length. Then we added the costs of those sequences

and considered it to be the systems instantaneous total cost. We generated 400 such instan-

taneous costs and then computed the probability that any instantaneous cost was over 250

(the total system resources). This was considered one experiment. We repeated this exper-

53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

16

18

20

22

24

26

28

Probability that concurrent resource utilization is greater than T

M
ax

 s
eq

ue
nc

e
le

ng
th

 fo
r e

nd
 u

se
rs

8 10 12 14 16 18 20 22 24 26 28
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max sequence length for end users

P
ro

ba
bi

lit
y

co
nc

ur
re

nt
 re

so
ur

ce
 u

til
iz

at
io

n
gr

ea
te

r t
ha

n
T

Algorithmic results
Simulation results

Figure 4.1: Max sequences lengths Figure 4.2: Probability errors

iment 4 times and reported the averaged probabilities. Figure 4.2 illustrates the simulation

and algorithmic results. The two results compare favorably, the mean error is 0.04 while

the maximum error is 0.06.

4.2 Application to Ad-hoc Environments

In this section we estimate the performance of a set of services deployed at a

server. Using exact counting algorithms might not always be the best way to estimate

service performance. While the counting algorithms are efficient at returning exact results,

useful approximations can often be obtained using computationally cheaper Markov Chain

Monte Carlo methods [16, 24]. However we choose to use our exact counting algorithms

instead of approximation algorithms since the value that we are computing, the probability

of overload, is uncertain by definition and using approximation algorithms can only worsen

this uncertainty. The purpose of selecting this application is that this application showcases

the flexibility of our algorithms and proves that meaningful measures can be associated with

the cost Ci, number of users U and capacity measure T used by the counting algorithms.

54

The application consists of a set of services deployed at a server such that the

services can be accessed by multiple users concurrently. Examples of such applications are

Web Services and remote procedure calls. Every service is associated with a server based

Service Level Agreement (SLA). The server based SLA of a service is the maximum time

that the server is allowed to take to complete a service call. We say that a service call, or

simply service, passes if the service call meets its SLA, otherwise it fails. User perceived

performance of services at a server is the percentage of service calls made by a user that

fail. Clearly, user perceived performance is determined by server capacity, computational

requirements of services, SLAs and number of concurrent users. In this application we

restrict ourselves to CPU bound services, each executing in its own process with round-

robin scheduling and equal time slices.

The rest of this section is organized as follows. Section 4.2.1 deals with assigning

server capacity measures and service costs, Section 4.2.2 discusses the procedure of esti-

mating and simulating concurrent users. Section 4.2.3 details the case when services fail,

i.e. fail to meet their SLA. Section 4.2.4 illustrates how our model can be used to exactly

compute the probability that, given the parameters determined in Section 4.2.1, a user’s ser-

vice call will fail. Section 4.2.5 illustrates how our counting algorithms can be efficiently

adapted to changing service access patterns and how service costs can be easily ported to

new servers. Finally, we compare our approach with others in Section 4.2.7.

4.2.1 Assigning Costs

Here we define cost of a service as the rate of resource consumption. Hence,

suppose a service requires X number of CPU cycles for completion, the cost of that service

55

is X/S cycles per second (cps), where S is the required SLA for that service in seconds.

Subsequently, server capacity is the rate at which resource are available for services, mea-

sured in cps. Since we are only interested in the relation between resource consumption and

availability, i.e. between service cost and server capacity, we do not need to determine the

true server capacity or service cost in terms of Million Instructions Per Second (MIPS) or

CPU clock cycles. For our experiments we assume server capacity is exceeded at T = 100

cps where cycles are not CPU clock cycles but some abstract measure of CPU capacity.

Now we can readily determine service costs using the following calibration procedure:

1. Start U concurrent accesses to service S1

2. Wait till all U accesses finish

3. Compute mean time to finish, RU

4. C = RU∗T
U

5. Cost of S1 = C
SLA.

The above procedure should be repeated for a few different values of U to ensure stable

cost. Recall that we assume round-robin scheduling with equal time slices, which is why

we can compute the total cycles consumed by S1 using the relation in Line 4 above.

Table 4.1 tabulates the total cycles consumed and cost for a SLA of 5 seconds for

4 services assuming T = 100. These services were calibrated on a 300 MHz Intel Pentium

II processor based PC running Linux kernel 2.4.20. These services were calibrated using

5 concurrent accesses. It is worth pointing out that though we imply that each service

56

Service Total cycles Cost
R1 328 65.6
R2 130 26
R3 196 39.2
R4 63 12.6

Table 4.1: Computing service costs with SLA = 5 seconds.

is different, they could in fact be invocations of the same code with different parameters.

For purposes of computing resource consumption this distinction is moot. The services

calibrated in Table 4.1 simply consume CPU time in for loops. In this application we

restrict the application to services with equal SLAs.

4.2.2 User Access Discipline

Once a user makes a service call, and the service call passes (i.e. returns on or

before the SLA period), the user must wait until the end of the SLA period before the user

can make the next service call. This restriction arises from the method of computing service

cost. The disadvantage of this access discipline is that users might have to wait until they

can call the next service, however in return once a user make a service call the user gets a

probabilistic guarantee of success. Such a guarantee is not possible in back-to-back service

calls. Figure 4.3 compares the effect of using and not using this access discipline.

In Figure 4.3 we consider the case of 3 users each calling two services. U1 calls

services S1 followed by S2, U2 calls S2 followed by S1 and U3 class S1 twice. Required

SLA for all services is 30 seconds. Available resources are exceeded at 100 cps. The cost

of S1 is 750 and S2 is 1500 and SLA for both is 30 seconds. In the upper part of the figure,

U1’s call to S1 finished at 22.5 seconds, however due to the access discipline, U1 must wait

57

U1:S1 U1:S2
U2:S2 U2:S1

U3:S1 U3:S1

U1:S1 U1:S2
U2:S2

U2:S1U3:S1 U3:S1

22.5 30 45 52.5 600
Time (seconds)

With
Discipline

Without
Discipline

User U1 User U2 User U3
End of call
marker

Figure 4.3: Effect of with and without discipline with 3 users.

till the end of its SLA period (30 seconds) before it can make the call to S2. We see that,

given the round-robin equal time-slice assumption, without using access discipline the calls

to S2 fail to meet the required SLA, whereas with the access discipline all calls pass. This

happens because without access discipline, users U1 and U3 fail to “give up” the server

resources long enough for U2’s S2 call to finish. When using access discipline users U1

and U3 have to wait before they can call their next services, consequently allowing U2’s S2

call to finish. The reason for users having to wait up to end of SLA period (and not some

other time interval) will be discussed in Section 4.2.3. Our algorithms assume users use

access discipline, and in return users get probabilistic service guarantees.

4.2.3 Service Failures

We now look at the context of service failures using the model of the counting al-

gorithms. Consider the following example: Assume 2 users uniformly access 4 services S1,

S2, S3 and S4 with costs [1,3,7,12], using the access discipline described in Section 4.2.2.

58

1 3 7 12
User 1

12

7

3

1

U
se

r2

2 4 8
13

12+1

4 6 10
15

12+3

8 10
14

7+7
19

12+7
13

1+12
15

3+12
19

7+12
24

12+12

User 1
service fails

User 2
service fails

Figure 4.4: Service failure events. T = 13.

Let resources be exceeded at T = 13 cps. Then, as per our model the probability that re-

source demand exceeds T is 8/16. This virtual space is shown in Figure 4.4. In this figure

when, for example, user 1 calls service with cost 12 and user 2 calls service with cost 3,

the total resource consumption exceeds T . Since there are 2 users in the system, each will

get up to T/2 = 6.5 cps and hence the call by user 1 will succeed but the call by user 2

will fail. In general, given U users, a user’s service will fail in the event when the sum of

costs is greater than T and the cost of that user’s service is greater that T/U . In the example

of Figure 4.4, the dashed line encloses the events when User 1’s services fail, hence the

probability of User 1’s services failing is 6/16 = 0.375. In the next section we show how

the counting algorithms can be used to determine a user’s failure rate.

4.2.4 User Perceived Performance

Recall, that the counting algorithms work in two stages. In the first stage we

determine anchor points in the virtual space V . V has U dimensions and the number of

points on each axis is equal to the number of services N. In the second stage we use these

59

Anchor
points

2nd

axis
count

1st

axis
count

Total
anchor
points

1 4

2 4

3 3

4 1

4 2

1×40

2×40
0×41 3

3 + 0 + 3 = 6

Figure 4.5: Counting points ≥ T and a user’s costs ≥ T/U . Shaded area is discarded a.ps.

anchor points to compute G, number of points in V with value ≥ T . Then from the server

perspective, given U concurrent users, the probability that at least one user’s service call

will fail is G
NU . User perceived performance in terms of probability of service call failure,

(Section 4.2.3) can be computed efficiently using the same set of anchor points used to

compute performance from the server’s perspective. All that needs to be done is to discard

anchors points with cost value of any fixed co-ordinate ≤ T/U . Applying the second stage

to this new set of anchor points will give us the probability that sum of costs ≥ T and cost

of a user’s service ≥ T/U . This is the required probability of a user’s service call failing.

We illustrate the procedure of determining user perceived performance by contin-

uing the example from Section 4.2.3. Using co-ordinate (1,1) for the top left hand corner

of Figure 4.4, the anchor points determined for T = 13 using the first stage algorithms are:

A = {(1,4),(2,4),(3,3), (4,1), (4,2)}. Since there are 2 users, per user share is T/2 = 6.5.

Given (sorted) services costs [1,3,7,12], we see that the 1st and 2nd costs, 1 and 3 are

≤ 6.5, hence we discard all anchors points whose 1st coordinate is 1 or 2. We are left with

A′ = {(3,3),(4,1),(4,2)}, applying the second stage of the algorithm to A ′ (Figure 4.5) we

60

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

P
er

 U
se

r S
er

vi
ce

 F
ai

lu
re

 %

Number of Users

Error bars indicate min and max

Predicted
Measured

Figure 4.6: User perceived performance: Service R1, R2, R3, R4 with uniform access.

get the number of points with cost ≥ T and a fixed user’s cost ≥ T/U as 6. Hence, from a

given user’s perspective the probability that a service will fail is 6/16 = 0.375.

We tested our algorithm’s predictions using the 4 services R1,R2,R3 and R4 from

Section 4.2.1. Each experiment was conducted for 520 seconds and the mean of services

failures by all users was taken. Each experiment was repeated 25 times and the average

taken. Figure 4.6 summarizes the results. The results closely match predictions. The mea-

sured per user loss rate correctly followed the loss rates predicted by the counting algo-

rithms.

4.2.5 Service Access Patterns

In Section 4.2.4 we assumed that users access services uniformly, i.e. each service

is accessed with equal probability. However, our model can easily adapt to arbitrary access

patterns. The patterns do not need to fit any known distribution and do not affect the first

stage of our algorithm. The anchors points do not need to be recomputed for changing

access patterns. The only change needed is in the second stage. This change is illustrated

61

Anchor
points

2nd

axis
count

1st

axis
count

Total
anchor
points

1 4

2 4

3 3

4 1

4 2

(2×2)90

(2×4)90
0×91

2×2

2×1

2×4

12 + 0 + 14 = 26

Figure 4.7: Counting points ≥ T and a user’s costs ≥ T/U with cost weights [1,4,2,2].

by continuing the example from Section 4.2.4, but this time the 4 services S1,S2,S3 and

S4 are weighted (and normalized to smallest integer) as 1, 4, 2, 2, respectively. Hence,

for example S2 is twice as likely to be accessed as compared to S4. If P is the number of

anchor points, and normally P �U , the worst case computational complexity of O(PU 2)

for arbitrary access patterns is only slightly greater compared to O(PU) in the uniform

access case (Figure 4.5). This increased complexity is independent of the access pattern.

Figure 4.7 shows the second stage of the algorithm. The multiplier 9 in each group of

Figure 4.7 is the sum of weights. With the given access pattern the probability that a user

service will fail is 26/81 = 0.32. This reduction in probability of failure as compared

to uniform access (0.375) is intuitive since now users are more likely to access cheaper

services.

Figure 4.8 continues the experiment from Sections 4.2.1 and 4.2.4, but this time

with access weights 2,1,2 and 4 for R1, R2, R3 and R4 respectively. Again, we see that the

measured loss rate follows the loss rate predicted by the counting algorithms.

62

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

P
er

 U
se

r S
er

vi
ce

 F
ai

lu
re

 %

Number of Users

Error bars indicate min and maxError bars indicate min and max

Predicted
Measured

Figure 4.8: User perceived performance: Access weights 2,1,2,4.

4.2.6 Porting Costs

Another feature of our model is that costs can be easily ported between different

servers. In Section 4.2.1 we described the process of calibrating services, with the assump-

tion that server capacity T = 100. In order to determine user perceived performance when

services are moved to another server, we could re-calibrate every service. However, it is

much more efficient to keep service costs the same (as with T = 100) and change T to a T ′

that reflects the new server’s capacity. The procedure to compute T ′ is as follows:

1. Choose any service S.

2. Compute Co, the total cycles of S with server T = 100.

3. Compute Cn, the total cycles of S with new server (assume T = 100).

4. Capacity of new server T ′ = 100Co/Cn

Figure 4.9 shows the results from porting T = 100 for R1, R2, R3 and R4 onto

a 550 MHz SUN SPARCv9 based workstation running SunOS 5.9. Service R1 was recal-

63

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

P
er

 U
se

r S
er

vi
ce

 F
ai

lu
re

 %

Number of Users

Error bars indicate min and maxError bars indicate min and maxError bars indicate min and max

Predicted
Measured

Figure 4.9: User perceived performance: Services R1, R2, R3, R4 on a faster workstation

ibrated for this workstation resulting in Cn = 190, (Co = 328 from Table 4.1), hence the

capacity of this workstation was computed (and rounded) to be T ′ = 100×328/190 = 172.

In both cases (Pentium and SPARC) the same server source code (written in C) was com-

piled using the gcc compiler. We notice that the faster SPARC workstation could handle the

same number of users as compared to the Pentium computer with a lower per user service

failure. The counting algorithms correctly predicted these lower loss rates without having

to recalibrate every service.

4.2.7 Related Work

Several mechanisms exist for modeling resource consumption and probabilisti-

cally meeting SLAs [5, 30, 7]. SHARP [7] uses a ticket based mechanism to allocate re-

sources. However, by “oversubscribing” tickets the SHARP architecture is able to achieve

gains in resource utilization at the server being managed. They report a utilization increase

of 30% by allocating 1.5 times the available resources. Upon allocating 2 times the avail-

able resources, utilization reaches close to 100% but services requests begin being denied.

64

Our algorithms are supplementary to this work in that we focus on admitting users (rather

than allocating resources/tickets) and can precompute and provide the system admininstra-

tor with a continium of the number of users and expected service failure rates.

Urgoankar et. al. [30] report that applications capsules (components) being allo-

cated resources “overbooked” by a factor or 0.01 to 0.05 lead to a 2 to 5 fold improvement

in resource utilization. They use an operating system specific kernel profiling toolkit to de-

termine the resource usage and distribution of several applications and then report on how

many such applications can be supported at a hosting facility.

Our approach is similar to the above approaches in that we provide efficient mech-

anisms for computing the probabilities that can aid in such probabilistic guarantee methods.

However, as shown in the application presented, our approach does not need OS specific

profiling techniques since we do not need to find the actual resources consumed but rather

the fraction of the available resources consumed by a service. This greatly simplifies our

profiling technique (Section 4.2.1) and makes it portable (Section 4.2.6). Also, our focus is

on per-user perceived behavior in addition to server utilization.

In this section we illustrated the application of the counting algorithms to predict-

ing the number of users that can be supported at a server. We demonstrated that the model

is flexible enough to efficiently accommodate changing user access patterns without having

to recompute anchor points. Also, we showed that the model is portable since we can effi-

ciently predict user perceived performance on changing server capacities without having to

recalibrate all services.

65

CHAPTER 5

CONCLUSION

5.1 Future Work

While the motivation for this research is to create resource-bounded network ser-

vices, it is clear that the algorithms developed are general enough to be applied to many

combinatorial enumeration problems. As part of future work we plan to investigate the

application of the counting algorithms to the following variants of classic problems:

1. (Knapsack Problem): Given a set I = {i1, . . . , in} of n types of items with weight of

i j = w j, 1 ≤ j ≤ n, a Knapsack with capacity T and infinite number of instances of

any type. Find the number of ways to fill the Knapsack with exactly U items without

breaking.

2. (Frobenius Coin Exchange Problem): Given a set I = {i1, . . . , in} of n coin types

with value of i j = wi, 1 ≤ j ≤ n. Find the total number of ways we can make change

of amounts greater than or equal to T using exactly U coins.

66

Our approach to counting is essentially that of volume estimation in a poly-

tope. Computing volume by counting lattice points in convex polytopes is a widely studied

area [1]. Reference [2] presents and practically tests algorithms for a wide range of con-

vex polytopes, while [12] surveys applications of such computations and provides in-depth

treatment of a few. We define a directionally convex polytope as a polytope that is convex

only if lines parallel to a given direction are considered. The polytope defined by anchor

points is directionally convex and is more general than strictly convex polytopes. It would

be interesting to see if our algorithms can be used to efficiently compute the volume of any

arbitrarily specified convex polytope.

The work on sequences of components presented in Sections 2.2 and 2.3 could

be extended to trees. The root of the tree would correspond to the first component of a

sequence but then a tree would allow for a choice between subsequent components. The

cost of a tree can be defined as the cost of a most expensive sequence in the tree. Such an

extension might lead of a better representation of services since it will allow for conditional

execution of components.

5.2 Conclusion

In this dissertation we presented and proved efficient counting algorithms that

allow the construction of frameworks for creating resource-bounded services. Such frame-

works provide probabilistic guarantees. Though the primary motivation for such a frame-

work was to implement network services, we showed that it can also be used for provi-

sioning services at servers. We showed through simulation and experimentation that our

67

algorithms can be applied to both component-based and ad-hoc service environments. Fi-

nally we outlined how the counting algorithms are general enough to be applied to some

combinatorial enumeration problems.

68

APPENDIX A

Experimental Data

Users Predicted Measured
min mean max

1 0 0 0 0
2 12.5 5.66 11 14.97
3 39 24.17 34.5 43.88
4 69.5 52.39 60.1 70.62
5 74.4 67.71 73.9 80.23
6 74.9 70.60 75 79.47

Table A.1: Data for Figure 4.6. Per user service failure percentage with uniform access.

69

Users Predicted Measured
min mean max

1 0 0 0 0
2 9.88 2.34 7.16 10.48
3 28.81 16.89 24.57 29.67
4 48.78 32.45 42.87 51.65
5 53.82 50.21 54.66 58.67
6 55.36 47.33 55.46 58.92

Table A.2: Data for Figure 4.8. Per user service failure percentage with weighted access.

Users Predicted Measured
min mean max

1 0 0 0 0
2 0 0 0 0
3 1.56 0 1.79 3.76
4 11.33 2.85 8.46 13.14
5 33.39 19.69 25.04 31.14
6 44.55 39.09 44.19 51.63

Table A.3: Data for Figure 4.9. Per user service failure percentage after porting services to
faster workstation.

70

REFERENCES

[1] A. Barvinok. Lattice points and lattice polytopes. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 7,
pages 133–152. CRC Press LLC, 1997.

[2] B. Bueler, A. Enge, and K. Fukuda. Exact volume computation for polytopes: A
practical study. In G. Kalai and G. M. Ziegler, editors, Polytopes-Combinatorics and
Computation. Birhauser Verlag, Basel, 2000.

[3] Y. Chae, S. Merugu, E. Zegura, and S. Bhattacharjee. Exposing the network: Support
for topology sensitive applications. In Proceedings of IEEE OpenArch 2000, March
2000.

[4] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plattner. Router plugins:
a software architecture for next-generation routers. IEEE/ACM Transactions on
Networking (TON), 8(1):2–15, 2000.

[5] Ronald P. Doyle, Jeffrey S. Chase, Omer M. Asad, Wei Jin, and Amin Vahdat.
Model-Based Resource Provisioning in a Web Service Utility. In Fourth USENIX
Symposium on Internet Technology and Systems (USITS), pages 57–71, Seattle,
Washington, USA, March 2003. USENIX.

[6] Bart Duysburgh, Thijs Lambrecht, Bart Dhoedt, and Piet De meester. Data Transcod-
ing in Multicast Sessions in Active Networks. In Hiroshi Yasuda, editor, LNCS 1942,
Second International Working Conference, IWAN 2000, Tokyo, Japan, October 2000.
Proceedings, pages 130–144, 2000.

[7] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat. SHARP:
an architecture for secure resource peering. In Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 133–148. ACM Press, 2003.

71

[8] V. Galtier, K. Mills, Y. Carlinet (NIST), S. Bush, and A. Kulkarni (GE). Predicting
and Controlling Resource Usage in a Heterogeneous Active Network. In Proceedings
of the DARPA Active Networks Conference and Exposition, IEEE, pages 511–533,
May 2002.

[9] Yitzchak Gottlieb and Larry Peterson. A Comparative Study of Extensible Routers.
In OPENARCH 2002, pages 51–62, June 2002.

[10] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison
Wesley, Reading, Massachusetts, 1988.

[11] R.L. Graham, M. Grötschel, and L. Lovász, editors. Handbook of combinatorics.
Elsevier, 1995.

[12] P. Gritzmann and V. Kleen. On the Complexity of some basic problems in compu-
tational convexity: II Volume and mixed volumes. In T. Bistriczky, P. McMullen,
R. Schneider, and A.I. Weiss, editors, Polytopes: Abstract, convex and computational,
pages 373–466. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 1994.

[13] G. H. Hardy and S. Ramanujan. Asymptotic Formulae in Combinatory Analysis.
Proc. London Math. Soc., 17:75–115, 1918.

[14] Michael Hicks, Jonathan T. Moore, and Scott Nettles. Compiling PLAN to SNAP.
Lecture Notes in Computer Science, 2207, 2001.

[15] Michael W. Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott
Nettles. PLAN: A packet language for active networks. In International Conference
on Functional Programming, pages 86–93, 1998.

[16] Mark Jerrum and Alistair Sinclair. The Markov Chain Monte Carlo Method: An
Approach to Approximate Couting and Integration. In Dorit S. Hochbaum, editor,
Approximation algorithms for NP-hard problems, chapter 12, pages 482–520. PWS
Publishing Co., 1997. ISBN 0-534-94968-1.

[17] Kenneth L. Calvert and James Griffioen and Su Wen . Lightweight Network Support
for Scalable End-to-End Services. In Proceedings of SIGCOMM 2002, Pittsburg, PA,
August 2002.

72

[18] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The click modular router. ACM Transactions on Computer Systems, 18(3):263–297,
August 2000.

[19] Ulana Legedza and John Guttag. Using Network Level Support to Improve Cache
Routing. In Proceedings of 3rd International Web Caching Workshop, Manchester,
England, June 1998.

[20] L. H. Lehman, S. J. Garland, and David L. Tennenhouse. Active Reliable Multicast.
In Proceedings of the 17t h INFOCOM,, pages 581–589, March 1998.

[21] Jonathan T. Moore, Michael Hicks, and Scott Nettles. Practical programmable
packets. In Proceedings of the 20th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM’01), April 2001.

[22] Akihiro Nakao, Larry Peterson, and Andy Bavier. Constructing End-to-End Paths for
Playing Media Objects. In 2001 IEEE Open Architectures and Network Programming
Proceedings, pages 117–128, Ancorage, AK USA, April 2001.

[23] V. Ramachandran, R. Pandey, and S. Chan. Fair resource allocation in active
networks. In Proceedings of the IEEE International Conference on Computer
Communications and Networks (ICCCN), pages 468–475, Las Vegas, Nevada, Oct.
2000.

[24] Ravi Kannan. Markov chains and polynomial time algorithms. In 35th IEEE Annual
Symposium on Foundations of Computer Science, pages 656–671, Santa Fe, New
Mexico, 1994.

[25] F. Sabrina and S. Jha. A novel architecture for resource management in active
networks using a directory service. In Proceedings of ICT03, February 2003.

[26] S. Schmid, J. Finney, A.C. Scott, and W.D. Shepherd. Component-Based Active
Network Architecture. In Sixth IEEE Symposium on Computers and Communications
(ISCC’01), pages 114–122, Hammamet, Tunisia, July 2001.

[27] Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi Zhou, R. Dennis
Rockwell, and Craig Partbridge. Smart packets: applying active networks to network
management. ACM Transactions on Computer Systems, 18(1):67–88, 2000.

73

[28] Steven Simpson, Mark Banfield, Paul Smith, and David Hutchison. Component
selection for heterogeneous active networking. Lecture Notes in Computer Science,
2207, 2001.

[29] Richard P. Stanley. Enumerative Combinatorics, volume 1 of Cambridge Studies in
Advanced Mathematics 49. Cambridge University Press, 1997.

[30] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource overbooking
and application profiling in shared hosting platforms. SIGOPS Oper. Syst. Rev.,
36(SI):239–254, 2002.

[31] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A Toolkit for Building and
Dynamically Deploying Network Protocols. In Proceedings of IEEE OPENARCH
1998, April 1998.

[32] J. Whaley, M. Martin, and M. Lam. Automatic extraction of object-oriented compo-
nent interfaces. In Proceedings of the International Symposium of Software Testing
and Analysis, 2002.

[33] Lidia Yamamoto and Guy Leduc. An Agent-inspired Active Network Resource Trad-
ing Model Applied to Congestion Control. In Eric Horlait, editor, Proceedings of the
Second International Workshop on Mobile Agents for Telecommunication Applica-
tions (MATA 2000), pages 151–170, Paris, France, 2000. Springer-Verlag: Heidelberg,
Germany.

