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Abstract 
A survey is given on two decades of developments 
in the field, encompassing an increase in comput­
ing power by four orders of magnitude. The '4-D 
approach' integrating expectation-based methods 
from systems dynamics and control engineering 
with methods from AI has allowed to create vehi­
cles with unprecedented capabilities in the techni­
cal realm: Autonomous road vehicle guidance in 
public traffic on freeways at speeds beyond 130 
km/h, on-board-autonomous landing approaches of 
aircraft, and landmark navigation for AGV's, for 
road vehicles including turn-offs onto cross-roads, 
and for helicopters in low-level flight (real-time, 
hardware-in-the-loop simulations in the latter 
case). 

1 In t roduc t ion 

Road vehicle guidance based on video-signal processing has 
been picked up independently in Japan [Tsugawa et al., 
1979], in Europe [Meissner, 1982], and in the USA [Klass, 
1985]. While in Japan analog signal processing has been 
used and (quasi-steady) Al-methods predominated in the 
US, recursive estimation methods well known from systems 
engineering have been extended to image sequence proc­
essing at the author's institute (UBM); the resulting method 
had been dubbed '4-D approach', in contrast to the 2-D, 2.5-
D, and 3-D methods under discussion then, disregarding 
time as the fourth independent variable in the problem 
domain. The numerical efficiency and compactness in state 
representation of recursive estimation which directly al­
lowed control applications for generating behavioral capa­
bilities, finally, led to its wide-spread acceptance in the 
vision community. Artif icial neural nets (ANN) also found 
wide acceptance in the USA [Pomerleau, 1992] and around 
the globe even though image resolution used (about 1000 
pixel = lKpel), usually, was much less than with recursive 
estimation (80 Kpel per image, even at a higher image 
rate). 

Both methods allowed road vehicles to run autono­
mously along highways and other types of roads up to 
rather high speeds, initially on empty roads only 
[Dickmanns and Zapp, 1987, Pomerleau, 1989] but finally 
in normal freeway traffic also [Dickmanns et al., 1994, 
Pomerleau, 1992]; however, while ANN's stayed confined 
to either lateral [Pomerleau, 1992; Mecklenburg et al., 
1992] or longitudinal control [Fritz, 1996] at a time (the 
other mode had to be controlled by a human driver), the 4-
D approach allowed to detect, track and determine the spa­
tio-temporal state (position and velocity components on a 3-
D surface) relative to about a dozen other objects in a range 
of up to 100 meters in front of and behind the own vehicle 
pickmanns, 1995a]. The two final demonstrator vehicles 
in the European project Prometheus: VITA_2 of Daimler-
Benz and VaMP of UBM [Ulmer, 1994; Dickmanns et al., 
1994], may well be considered as the first two road vehicles 
of a new species capable of understanding (part of) their 
environment and of reacting properly to the actual needs on 
their own (completely autonomous). 

Dynamic remote sensing for intelligent motion control 
in an environment with rapidly changing elements requires 
the use of valid spatio-temporal models for efficient han­
dling of the large data streams involved. Other objects have 
to be recognized with their relative motion components, the 
near ones even with high precision for collision avoidance; 
this has to be achieved while the own vehicle body carrying 
the cameras moves in an intended way and is, simultane­
ously, subject to perturbations hardly predictable. 

For this complex scenario, inertial sensing in addition to 
vision is of great help; negative angular rate feedback to a 
viewing direction control device allows to stabilize the 
appearance of stationary objects in the image sequence. 
Measured accelerations and velocities wi l l , via signal inte­
gration, yield predictions for.translational and rotational 
positions affecting the perspective mapping process. These 
predictions are good in the short run, but may drift slowly 
in the long run, especially when inexpensive inertial sen­
sors are used. These drifts, however, can easily be compen­
sated by visual interpretation of static scene elements. 
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2 Simultaneous representations on 
di f ferent ia l and mul t ip le integral scales 

Combined use of inertial and visual sensing is well known 
from biological systems, e.g. the vestibular apparatus and 
its interconnections to eyes in vertebrates. In order to make 
optimal use of inertial and visual signals, simultaneous 
differential and integral representations on different scales 
both in space and in time are being exploited; table 1 shows 
the four categories introduced: The upper left corner repre­
sents the point 'here and now' in space and time where all 
interactions of a sensor or an actuator with the real world 
take place. Inertial sensors yield information on local accel­
erations (arrow 1 from field (1,1) to field (3,3) in the table) 
and turn rates of this point. Within a rigid structure of an 
object the turn rates are the same all over the body; there­
fore, the inertially measured rate signals (arrow 2 from field 
(1,3) to (3,3)) are drawn on the spatial object level (row 3). 

The local surface of a structure may be described by the 
change of its tangent direction along some arc length; this 

is called curvature and is an element of local shape. It is a 
geometrical characterization of this part of the object in 
differential form; row 2 in table 1 represents these local 
spatial differentials which may cause specific edge features 
(straight or curved ones) in the image under certain aspect 
conditions. 

Single objects may be considered to be local spatial in­
tegrals (represented in row 3 of table 1), the shapes of 
which are determined by their spatial curvature distribu­
tions on the surface; in connection with the aspect condi­
tions and the photometric properties of the surface they 
determine the feature distribution in the image. Since, in 
general, several objects may be viewed simultaneously, also 
these arrangements of objects of relevance in a task context, 
called 'geometrical elements of a situation', are perceived 
and taken into account for behavior decision and reactive 
control. For this reason, the visual data input labeled by the 
index 3 at the corresponding arrows into the central inter­
pretation process, field (3,3), has three components: 3a) for 
measured features not yet associated with an object, the so-

Table 1: Differential and integral representations on different scales for dynamic perception 
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called detection component; 3b) the object-oriented tracking 
component with a strong predictive element for efficiency 
improvement, and 3c) the perception component for the 
environment which preshapes the maneuver space for the 
self and all the other objects. Looked at this way, vision 
simultaneously provides geometrical information both on 
differential (row 2) and integral scales (rows: 3 for a single 
objects, 4 for local maneuvering, and 5 for mission per­
formance). 

Temporal change is represented in column 2 which 
yields the corresponding time derivatives to the elements in 
the column to the left. Because of noise amplification asso­
ciated with numerical differentiation of high frequency 
signals this operation is 
usable only for smooth signals, like for computing speed 
from odometry; especially, it is avoided deliberately to do 
optical flow computation at image points. Even on the fea­
ture level, the operation of integration with a smoothing 
effect, as used in recursive estimation, is preferred. 

In the matrix field (3,2) of table 1 the key knowledge 
elements and the corresponding tools for sampled data 
processing are indicated: Due to mass and limited energy 
availability, motion processes in the real world are con­
strained; good models for unperturbed motion of objects 
belonging to specific classes are available in the natural and 
engineering sciences which represent the dependence of the 
temporal rate of change of the state variables on both the 
state- and the control variables. These are the so-called 
'dynamical models'. For constant control inputs over the 
integration period, these models can be integrated to yield 
difference equations which l ink the states of objects in col­
umn 3 of table 1 to those in column 1, thereby bridging the 
gap of column 2; in control engineering, methods and l i ­
braries with computer codes are available to handle all 
problems arising. Once the states at one point in time are 
known, the corresponding time derivatives are delivered by 
these models. 

Recursive estimation techniques developed since the 
60ies exploit this knowledge by making state predictions 
over one cycle disregarding perturbations; then, the meas­
urement models arc applied yielding predicted measure­
ments. In the 4-D approach, these are communicated to the 
image processing stage in order to improve image evalua­
tion efficiency (arrow 4 from field (3,3) to (1,3) in table 1 
on the object level, and arrow 5 from (3,3) to (2,3) on the 
feature extraction level). A comparizon with the actually 
measured features then yields the prediction errors used for 
state update. 

In order to better understand what is going to happen on 
a larger scale, these predictions may be repeated several to 
many times in a very fast in advance simulation assuming 
likely control inputs, for stereotypical maneuvers like lane 
changes in road vehicle guidance, a finite sequence of 'feed-
forward' control inputs is known to have a longer term state 

transition effect. These are represented in field (4,4) of table 
1 and by arrow 6; section 6 below will deal with these 
problems. 

For the compensation of perturbation effects, direct state 
feedback well known from control engineering is used. 
With linear systems theory, eigenvalues and damping char­
acteristics for state transition of the closed loop system can 
be specified (field (3,4) and row 4 in table 1). This is 
knowledge also linking differential representations to inte­
gral ones; low frequency and high frequency components 
may be handled separately in the time or in the frequency 
domain (Laplace-transform) as usual in aero-space engi­
neering. This is left open and indicated by the empty row 
and column in table 1. 

The various feed-forward and feedback control laws 
which may be used in superimposed modes constitute be­
havioral capabilities of the autonomous vehicle. If a suffi­
ciently rich set of these modes is available, and if the sys­
tem is able to recognize situations when to activate these 
behavioral capabilities with which parameters for achieving 
mission goals, the capability for autonomous performance 
of entire missions is given. This is represented by field (n,n) 
(lower right) and will be discussed in sections 6 to 8. Es­
sentially, mission performance requires proper sequencing 
of behavioral capabilities in the task context; with corre­
sponding symbolic representations on the higher, more 
abstract system levels, an elegant symbiosis of control engi­
neering and Al-methods can thus be realized. 

3 Task domains 
Though the approach is very general and has been adapted 
to other task domains also, only road and air vehicle guid­
ance will be discussed here. 

3.1 Road vehicles 
The most well structured environments for autonomous 
vehicles are freeways with limited access (high speed vehi­
cles only) and strict regulations for construction parameters 
like lane widths, maximum curvatures and slopes, on- and 
off-ramps, no same level crossings. For this reason, even 
though speed driven may be high, usually, freeway driving 
has been selected as the first task domain for autonomous 
vehicle guidance by our group in 1985. 

Six perceptual and behavioral capabilities are sufficient 
for navigation and mission performance on freeways: 
1. Lane recognition and lane following with adequate 
speed, 2. obstacle recognition and proper reaction, e.g. 
transition into convoy driving or stopping; 3. recognition of 
neighboring lanes, their availability for lane change, and 
lane changing performance; 4. reading and obeying traffic 
signs, 5. reading and interpreting navigation information 
including proper lane selection, and 6. handling entries and 
exits. 
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On well kept freeways it is usually not necessary to 
check surface structure or to watch for humans or animals 
entering from the side. None-the-less, safe reaction to un­
expected events must be required for a mature autonomous 
system. 

On normal state roads the variability of road parameters 
and of traffic participants is much larger; especially, same 
level crossings and oncoming traffic increase relative speed 
between objects, thereby increasing hazard potential even 
though traveling speed may be limited to a much lower 
level. Bicyclists and pedestrians as well as many kinds of 
animals are normal traffic participants. In addition, lane 
width may be less in the average, and surface state may 
well be poor on lower order roads, e.g. potholes, especially 
in the transition zone to the shoulders. 

In urban traffic, things may be even worse with respect 
to crowdedness and crossing of subjects. These latter men­
tioned environments are considered to be not yet amenable 
to autonomous driving because of scene complexity and 
computing performance required. 

However, driving on minor roadways with little traffic, 
even without macadam or concrete sealing, has been at­
tacked for research purposes in the past, and may soon be 
performed safely with the increasing computing power 
becoming available now. If it is known that the ground is 
going to support the vehicle, even cross country driving can 
be done including obstacle avoidance. However, if com­
pared to human capabilities in these situations, there is still 
a long way to go until autonomous systems can compete. 

3.2 A i r vehicles 
As compared to ground vehicles with 3, full 6 degrees of 
freedom are available for trajectory shaping, here. In addi­
tion, due to air turbulence and winds, the perturbation envi­
ronment may be much harder than on roads. For this rea­
son, inertial sensing is considered mandatory in this task 
domain, in addition, visual navigation guidelines like lanes 
on roads are not available once the aircraft is airborne at 
higher altitudes. Microwave electronic guidelines have been 
established instead. 

Vision allows the pilot or an autonomous aircraft to 
navigate relative to certain landmarks; the most typical task 
is the landing approach to a prepared runway for fixed wing 
aircraft, or to the small landing site usually marked by the 
large letter H for a helicopter. These tasks have been se­
lected for first demonstrations of the capabilities of seeing 
aircraft. Contrary to other electronic landing aids like ILS 
or MLS, machine vision also allows to detect obstacles on 
the runway and to react in a proper manner. 

For flights close to the Earth surface, terrain formations 
may be recognized as well as buildings and power lines, 
thus, obstacle avoidance in nap-of-the-Earth flights is a 
natural extension of this technique for unmanned air vehi­
cles, both with fixed wings and for helicopters. For the 

latter, the capability of recognizing structures or objects on 
the ground and of hovering in a fixed position relative to 
these objects despite perturbations, will improve rescue 
capabilities and delivery performance. 

Motion control for fixed wing aircraft and for helicop­
ters is quite different from each other; by the use of proper 
dynamical models and control laws it has been shown that 
the 4-D approach allows to turn each craft into an autono­
mous agent capable of fully automatic mission perform­
ance. This will be discussed in section 8. 

4 The sensory systems 
The extremely high data rates of image sequences are both 
an advantage (with respect to versatility in acquiring new 
information on both environment and on other ob­
jects/subjects) and a disadvantage (with respect to comput­
ing power needed and delay time incurred until the infor­
mation has been extracted from the data). For this reason it 
makes sense to also rely on conventional sensors in addi­
tion, since they deliver information on specific output vari-
ables with minimal time delay. 

4.1 Conventional sensors 
For ground vehicles, odometers, speedometers as well as 
sensors for positions and angles of subparts like actuators 
and pointing devices are commonplace. For aircraft, pres­
sure measurement devices yield information on speed and 
altitude flown; here, inertial sensors like accelerometers, 
angular rate- and vertical as well as directional gyros arc 
standard. Evaluating this information in conjunction with 
vision alleviates image sequence processing considerably. 
Based on the experience gained in air vehicle applications, 
the inexpensive inertial sensors like accelerometers and 
angular rate sensors have been adopted for road vehicles 
too, because of the beneficial and complementary effects 
relative to vision. Part of this has already been discussed in 
section 2 and will be detailed below. 

4.2 Vision sensors 
Because of the large viewing ranges required, a single cam­
era as vision sensor is by no means sufficient for practical 
purposes. In the past, bifocal camera arrangements (see 
fig.l) with a wide angle (about 45°) and a tele camera 
(about 15° aperture) mounted fix relative to each other on a 
two-axis platform for viewing direction control have been 
used [Dickmanns, 1995a]; in future systems, trinocular 
camera arrangements with a wide simultaneous field of 
view (> 100°) from two divergently mounted wide angle 
cameras and a 3-chip color CCD-camera will be used 
[Dickmanns, 1995b]. For high-speed driving on German 
Autobahnen, even a fourth camera with a relatively strong 
tele-lens will be added allowing lane recognition at several 
hundred meters distance. 
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All these data are evaluated 25 times per second, the 
standard European video rate. 

Figure 1: Binocular camera arrangement of VaMP 

4.3 Global Positioning System (GPS-) sensor 
For landmark navigation in connection with maps a GPS-
receiver has been integrated into one system in order to 
have sufficiently good initial conditions for landmark de­
tection. Even though only the least accurate C/A code is 
being used, in connection with inertial sensing and map 
interpretation good accuracies can be achieved after some 
time of operation [Furst et al, 1997]; GPS signals are avail­
able only once every second. 

5 Spat io-temporal perception: 
The 4-D approach 

Since the late 70ies, observer techniques as developed in 
systems dynamics [Luenberger, 1964] have been used at 
UBM in the field of motion control by computer vision 
[Meissner, 1982; Meissner and Dickmanns, 1983). In the 
early 80ies, H.J. Wuensche did a thorough comparison 
between observer- and Kalman filter realizations in recur­
sive estimation applied to vision for the original task of 
balancing an inverted pendulum on an electro-cart by com­
puter vision [Wuensche, 1983]. Since then, refined versions 
of the Extended Kalman Filter (EKF) with numerical stabi­
lization (UDUT-factorization, square root formulation) and 
sequential updates after each new measurement have been 
applied as standard methods to all dynamic vision prob­
lems at UBM. 

Based on experience gained from 'satellite docking' 
[Wuensche, 1986], road vehicle guidance, and on-board 
autonomous aircraft landing approaches by machine vision, 
it was realized in the mid 80ies that the joint use of dy­
namical models and temporal predictions for several as­
pects of the overall problem in parallel was the key to 
achieving a quantum jump in the performance level of 
autonomous systems based on machine vision. Beside state 

estimation for the physical objects observed and control 
computation based on these estimated states it was the feed-
back of knowledge thus gained to the image feature extrac­
tion and to the feature aggregation level which allowed for 
an increase in efficiency of image sequence evaluation of 
one to two orders of magnitude. (See fig. 2 for a graphical 
overview.) 

Following state prediction, the shape and the measure­
ment models were exploited for determining: 
• viewing direction control by pointing the two-axis plat­

form carrying the cameras; 
• locations in the image where information for most easy, 

non-ambiguous and accurate state estimation could be 
found (feature selection), 

• the orientation of edge features which allowed to reduce 
the number of search masks and directions for robust yet 
efficient and precise edge localization, 

• the length of the search path as function of the actual 
measurement uncertainty, 

• strategies for efficient feature aggregation guided by the 
idea of the 'Gestalt' of objects ,and 

• the Jacobian matrices of first order derivatives of feature 
positions relative to state components in the dynamical 
models which contain rich information for interpreta­
tion of the motion process in a least squares error sense, 
given the motion constraints, the features measured, and 
the statistical properties known. 

Figure 2: Multiple feedback loops on different space scales for 
efficient scene interpretation and behavior control: control of 
image acquisition and -processing (lower left corner), 3-D 
'imagination-space in upper half; motion control (lower right 
corner). 
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This integral use of 
1. dynamical models for motion of and around the center 

of gravity taking actual control outputs and time delays 
into account, 

2. spatial (3-D) shape models for specifying visually meas­
urable features, 

3. the perspective mapping models, and 
4. prediction error feedback for estimation of the object 

state in 3-D space and time 
simultaneously and in closed loop form was termed the '4-D 
approach'. It is far more than a recursive estimation algo­
rithm based on some arbitrary model assumption in some 
arbitrary subspace or in the image plane. 

It is estimated from a scan of recent publications in the 
field that even today most of the papers referring to 'Kal-
man filters' do not take advantage of this integrated use of 
spatio-temporal models based on physical processes. 

Initially, in our applications just the ego-vehicle has 
been assumed to be moving on a smooth surface or trajec­
tory, with the cameras fixed to the vehicle body. In the 
meantime, solutions to rather general scenarios are avail­
able with several cameras spatially arranged on a platform 
which may be pointed by voluntary control relative to the 
vehicle body. These camera arrangements allow a wide 
simultaneous field of view, a central area for trinocular 
(skew) stereo interpretation, and a small area with high 
image resolution for 'tele'-vision. The vehicle may move in 
full 6 degrees of freedom; while moving, several other ob­
jects may move independently in front of a stationary back­
ground. One of these objects may be 'fixated' (tracked) by 
the pointing device using inertia! and visual feedback sig­
nals for keeping the object (almost) centered in the high 
resolution image. A newly appearing object in the wide 
field of view may trigger a fast viewing direction change 
such that this object can be analysed in more detail by one 
of the tele-cameras; this corresponds to 'saccadic' vision as 
known from vertebrates and allows very much reduced data 
rates for a complex sense of vision. It essentially trades the 
need for time-sliced attention control and sampled-data 
based scene reconstruction against a data rate reduction of 1 
to 2 orders of magnitude as compared to full resolution in 
the entire simultaneous field of view. 

The 4-D approach lends itself for this type of vision 
since both object-orientation and the temporal ('dynamical') 
models are available in the system already. This complex 
system design for dynamic vision has been termed EMS-
vision (from Expectation-based, Multi-focal and Saccadic); 
it is actually being implemented with an experimental set of 
four miniature TV-cameras on a two-axis pointing platform 
named 'Multi-focal active/reactive Vehicle Eye' MarVEye 
Pickmanns, 1995b]. 

In the rest of the paper, major developmental steps in 
the 4-D approach over the last decade and results achieved 
will be reviewed. As an introduction, in the next section we 

summarize the basic assumptions underlying the 4-D ap­
proach. 

5.1 Basic assumptions underlying the 
4-D approach 

It is the explicit goal of this approach to take, as much as 
possible, advantage of physical and mathematical models of 
processes happening in the real world. Models developed in 
the natural sciences and in engineering over the last centu­
ries, in simulation technology and in systems engineering 
(decision and control) over the last decades form the base 
for computer-internal representations of real-world proc­
esses: 
1. The (mesoscopic) world observed happens in 3-D space 

and time as the independent variables; non-relativistic 
(Newtonian) models are sufficient for describing these 
processes. 

2. All interactions with the real world happen 'here and 
now' , at the location of the body carrying special in-
put/ouput devices; especially the locations of the sensors 
(for signal or data input) and of the actuators (for con­
trol output) as well as those body regions with strongest 
interaction with the world (as for example the wheels of 
ground vehicles) are of highest importance. 

3. Efficient interpretation of sensor signals requires 
background knowledge about the processes observed 
and controled, that is both its spatial and temporal char­
acteristics. Invariants for process understanding may be 
abstract model components not graspable at one point in 
time. Similarly, 

4. efficient computation of (favorable or optimal) control 
outputs can only be done taking complete (or partial) 
process models into account, control theory provides the 
methods for fast and stable reactions. 

5. Wise behavioral decisions require knowledge about the 
longer-term outcome of special feed-forward or feedback 
control modes in certain situations and environments; 
these results are obtained from integration of the dy­
namical models. This may have been done beforehand 
and stored appropriately, or may be done on the spot if 
analytical solutions are available or numerical ones can 
be derived in a small fraction of real-time as becomes 
possible now with the increasing processing power 
available. Behaviors are realized by triggering the 
modes available from point 4 above. 

6. Situations are made up of arrangements of objects, 
other active subjects, and of the own goals pursued; 
therefore, 

7. it is essential to recognize single objects and subjects, 
their relative state, and for the latter also, if possible, 
their intentions in order to be able to make meaningful 
predictions about the future development of a situation 
(which is needed for successful behavioral decisions). 
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8. As the term re-cognition tells, in the usual case it is 
assumed that objects seen are (at least) generically 
known already, only their appearance here (in the geo­
metrical range of operation of the senses) and now is 
new; this allows a fast jump to an object hypothesis 
when first visual impressions arrive through sets of 
features. Exploiting background knowledge, the model 
based perception process has to be initiated. Free pa­
rameters in the generic object models may be deter­
mined efficiently by attention control and the use of spe­
cial algorithms and behaviors. 

9. In order to be able to do step 8 efficiently, knowledge 
about 'the world' has to be provided in the context of 
'task domains' in which likely co-occurrences are rep­
resented. In addition, knowledge about discriminating 
features is essential for correct hypothesis generation 
(indexing into the object data base). 

10. Most efficient object (class) descriptions by invariants 
is usually done in 3-D space (for shape) and time (for 
motion constraints or stereotypical motion sequences); 
modern microprocessors are sufficiently powerful to 
compute the visual appearance of an object under given 
aspect conditions in an image (in a single one, or even 
in several ones with different mapping parameters in 
parallel) at runtime. They are even powerful enough to 
numerically compute the Jacobian matrices for sen­
sor/object pairs of features evaluated with respect to ob­
ject state or parameter values; this allows a very flexible 
general framework for recursive state and parameter es­
timation. The inversion of perspective projection is thus 
reduced to a least squares model fit once the recursive 
process has been started. The underlying assumption 
here is that local linearizations of the overall process are 
sufficiently good representations of the nonlinear real 
process; for high evaluation rates like video frequency 
(25 or 30 Hz) this is usually the case. 

11. In a running interpretation process of a dynamic scene, 
newly appearing objects wi l l occur in restricted areas 
of the image such that bottom-up search processes may 
be confined to these areas. Passing cars, for example, 
always enter the field of view from the side just above 
the ground; a small class of features allows to detect 
them reliably. 

12. Subjects, i.e. objects with the capability of self induced 
generation of control actuation, are characterized by 
typical (sometimes stereotypical, i.e. predictive) motion 
behavior in certain situations. This may also be used for 
recognizing them (similar to shape in the spatial do­
main). 

13. The same object/subject may be represented internally at 
different scales wi th various degrees of detail; this 
allows flexible and efficient use in changing contexts 
(e.g. as a function of distance or degree of attention). 

5.2 Structura l survey on the 4-D approach 

Figure 3 shows the main three activities running in parallel 
in an advanced version of the 4-D approach: 
1. Detection of objects from typical collections of features 

not yet assigned to some object already tracked (center 
left, upward arrow); when these feature collections are 
stable over several frames, an object hypothesis has to 
be formed and the new object is added to the list of 
those regularly tracked (arrow to the right). 

2. Tracking of objects and state estimation is shown in 
the loop to the lower right in figure 3; first, with the 
control output chosen, a single step prediction is done in 
3-D space and time, the 'imagined real world'. This step 
consists of two components, a) the 'where'- signal path 
concentrating on progress of motion in both transla-
tional and rotational degrees of freedom, and b) the 
'what'- signal path dealing with object shape. (In order 
not to overburden the figure these components are not 
shown.) 

3. Learning from observation is done with the same data 
as for tracking; however, this is not a single step loop 
but rather a low frequency estimation component con­
centrating on 'constant' parameters, or it even is an off-
line component with batch processing of stored data. 
This is an actual construction site in code development 
at present which wil l open up the architecture towards 
becoming more autonomous in new task domains as ex­
perience of the system grows. Both dynamical models 
(for the 'where'-part) and shape models (for the 'what'-
part shall be learnable. 

Another component under development not detailed in 
figure 3 is situation assessment and behavior decision; this 
wil l be discussed in section 6. 

5.3 Generic 4-D object classes 

The efficiency of the 4-D approach to dynamic vision is 
achieved by associating background knowledge about 
classes of objects and their behavioral capabilities with the 
data input. This knowledge is available in generic form, 
that is, structural information typical for object classes is 
fixed while specific parameters in the models have to be 
adapted to the special case at hand. Motion descriptions for 
the center of gravity (the translational object trajectory in 
space) and for rotational movements, both of which to­
gether form the so-called 'where'-problem, are separated 
from shape descriptions, called the 'what'-problem. Typi­
cally, summing and averaging of feature positions is needed 
to solve the where-problem while differencing feature posi­
tions contributes to solving the what-problem. 

Motion description 
Possibilities for object trajectories are so abundant that they 
cannot be represented with reasonable effort. However, 
good models are usually available describing their evolution 
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4-D approach to dynamic machine vision: 
model-based recognition ; analysis through synthesis 

Figure 3: Survey on the 4-D approach to dynamic machine vision with three major areas of activity: Object de­
tection (central arrow upwards), tracking and state estimation (recursive loop in lower right), and learning (loop 
in center top), the latter two being driven by prediction error feedback. 

over time as a function of the actual state, the control- and 
the perturbation inputs. These so-called 'dynamical models', 
usually, are sets of nonlinear differential equations 
u. v' t)) with x as the n-component state vector, u as r-
componcnt control vector and v' as perturbation input. 

Through linearization around a nominal trajectory 
locally linearized descriptions are obtained which can be 
integrated analytically to yield the (approximate) local 
transition matrix description for small cycle times T 

tivity within the object, be it by pre-programmed outputs or 
by results obtained from processing of measurement data, 
we speak of a 'subject'. 

Shape and feature description 
With respect to shape, objects and subjects are treated in the 
same fashion. Only rigid objects and objects consisting of 
several rigid parts linked by joints have been treated; for 
elastic and plastic modeling see [DeCarlo and Metaxas, 
1996]. Since objects may be seen at different ranges the 
appearance in the image may vary considerably in size. At 
large ranges the 3-D shape of the object, usually, is of no 
importance to the observer, and the cross-section seen con­
tains most of the information for tracking. However, this 
cross-section depends on the angular aspect conditions; 
therefore, both coarse-to-fine and aspect-dependent model­
ing of shape is necessary for efficient dynamic vision. This 
wi l l be discussed briefly for the task of perceiving road 
vehicles as they appear in normal road traffic. 

Coarse-to-fine shape models in 2-D: Seen from behind 
or from the front at a large distance, any road vehicle may 
be adequately described by its encasing rectangle; this is 
convenient since this shape just has two parameters, width 
b and height h. Absolute values of these parameters are of 
no importance at larger distances; the proper scale may be 
inferred from other known objects seen, like road or lane 
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width at that distance. Trucks (or buses) and cars can easily 
be distinguished. Our experience tells that even the upper 
limit and thus the height of the object may be omitted with­
out loss of functionality (reflections in this spatially curved 
region of the car body together with varying environmental 
conditions may make reliable tracking of the upper body 
boundary very difficult); thus, a simple U-shape of unit 
height (corresponding to about 1 m turned out to be practi­
cal) seems to be sufficient until 1 to 2 dozen pixels can be 
found on a line crossing the object in the image. Depending 
on the focal length used, this corresponds to different ab­
solute distances. 

Fig. 4a shows this shape model. If the object in the im­
age is large enough so that details may be distinguished 
reliably by feature extraction, a polygonal shape approxi­
mation as shown in fig. 4b or even with internal details 
(fig. 4c) may be chosen; in the latter case, area-based fea­
tures like the licence plate, the tires or the signal light 
groups (usually in yellow or reddish color) may allow more 
robust recognition and tracking. 

Figure 4: Coarse to fine shape model of a car in rear view: 
a) encasing rectangle (U-shape); b) polygonal silhouette, 
c) silhouette with internal structure. 

If the view is from an oblique direction, the depth di­
mension (length of the vehicle) comes into play. Even with 
viewing conditions slightly off the axis of symmetry of the 
vehicle observed, the width of the car in the image will start 
increasing rapidly because of the larger length of the body 
and due to the sine-effect in mapping. Usually, it is impos­
sible to determine the lateral aspect angle, body width and -
length simultaneously from visual measurements; therefore, 
switching to the body diagonal as a shape representation 
has proven to be much more robust and reliable in real-
world scenes [Schmid, 1994]. 

Just for tracking and relative state estimation, taking 
one of the vertical edges of the lower body and the lower 
bound of the object body has proven to be sufficient in most 
cases [Thomanek, 1996]; this, of course, is domain specific 
knowledge which has to be introduced when specifying the 
features for measurement in the shape model. 

In general, modeling of well measurable features for 
object recognition has to be dependent on the aspect condi­
tions. Experience tells that area based features should play 
an important role in robust object tracking. Initially, this 
has been realized by observing the average grey value on 

the vehicle-side of edge features detected; with more com­
puting power available, color profiles in certain cross-
sections yield improved performance. 

Full 3-D models with different degrees of detail Similar 
to the 2-D rear silhouette, different models may also be 
used for 3-D shape. The one corresponding to fig. 4a is the 
encasing box with perpendicular surfaces; if these surfaces 
can be easily distinguished in the image, and their separa­
tion line may be measured precisely, good estimates of the 
overall body dimensions may be obtained from small image 
sizes already. Since space does not allow more details here, 
the interested reader is referred to [Schick and Dickmanns, 
1991, Schmid 1995]. 

5.4 Image feature extraction 
Due to space restrictions, this topic will not be detailed 
here; the interested reader is referred to [Dickmanns and 
Graefe, 1988] and an upcoming paper [Dickmanns et al., 
1997]. Figure 5 shows a survey on the method used. 

Figure 5: Intelligent control of image feature extraction parame­
ters in the algorithms CRONOS (for edges, marked with a win­
dow lable Eij) and Triangle' (labeled T, large rectangles with 
broken lines for efficient object tracking and state estimation in 
the 4-D approach 

Two types of feature extraction algorithms are used: 
Oriented edge features extracted by ternary mask correla­
tions in horizontal or vertical search paths (a rather old 
component), and area-based segmentations of 'stripes' of 
certain widths, arbitrarily oriented in the image plane (a 
new one). 

The intelligent control of the parameters of these algo­
rithms is essential for efficient tracking. In the 4-D ap­
proach, these parameters are set by predictions from the 
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spatio-temporal representations and application of perspec­
tive mapping. From fig.5 it may be seen that a small per­
centage of image data properly analysed allows to track 
objects reliably and precisely when used in a tight bottom-
up and top-down loop traversed frequently (25 Hz); this has 
to be seen in the context of figure 2. 

5.5 State estimation 
The basic approach has been described many times (see 
[Wuensche, 1986; Dickmanns, 1987; Dickmanns, 1992; 
Behringer, 1996; Thomanek, 1996]) and has remained the 
same for visual relative state estimation over years by now. 
However, in order to be able to better deal with the general 
case of scene recognition under (more strongly) perturbed 
ego-motion, an menially based component has been added 
[Werner et al., 1996; Werner, 1997]. 

This type of state estimation is not new at all if com­
pared to inertial navigation, e.g. for missiles; however, here 
only very inexpensive accelerometers and angular rate 
sensors are being used. This is acceptable only because the 
resulting drift problems are handled by a visual state esti­
mation loop running in parallel, thereby resembling the 
combined use of (relatively poor) inertial signals from the 
vestibular apparatus and of visual signals in vertebrate 
perception. Some of these inertial signals may also be used 
for stabilizing the viewing direction with respect to the 
stationary environment by direct negative feedback of an­
gular rates to the pointing device carrying the cameras. 
This feedback actually runs at very high rates in our sys­
tems (500 Hz, see [Schiehlen, 1995]). 

Inertially based ego-state estimation (IbSE) 
The advantage of this new component is three-fold: 1 Be­
cause of the direct encoding of accelerations along, and 
rotational speed components around body fixed axes, time 
delays are negligeable. These components can be integrated 
numerically to yield predictions of positions. 2. The quanti­
ties measured correspond to the forces and moments actu­
ally exerted on the vehicle including the effects of pertur­
bations; therefore, they are more valuable than predictions 
from a theoretical model disregarding perturbations which 
are unknown, in general. 3. If good models for the eigen-
behavior are available, the inertial measurements allow to 
estimate parameters in perturbation models, thereby leading 
to deeper understanding of environmental effects. 

Dynamic vision 
With respect to ego-state recognition, vision now has re­
duced but still essential functionality. It has to stabilize 
longterm interpretation relative to the stationary environ­
ment, and it has to yield information on the environment, 
like position and orientation relative to the road and road 
curvature in vehicle guidance, not measurable inertially. 
With respect to other vehicles or obstacles, the vision task 
also is slightly alleviated since the high-frequency viewing 

direction component is known now; this reduces search 
range required for feature extraction and leads to higher 
efficiency of the overall system. 

These effects can only be achieved using spatio-
temporal models and perspective mapping, since these 
items link inertial measurements to features in the image 
plane. With different measurement models for all the cam­
eras used, a single object model and its recursive iteration 
loop may be fed with image data from all cameras relevant. 
Jacobian matrices now exist for each object/sensor pair. 

The nonlinear measurement equation (2) is linearized 
around the predicted nominal state XN and the nominal 
parameter set pN yielding (without the noise term) 

(3) 

where are the Jacobian ma­
trices with respect to the state components and the parame­
ters involved. Since the first terms to the right hand side of 
the equality sign are equal by definition, eq. (3) may be 
used to determine and in a least squares sense from 

as the prediction error messured (observability given); 
this is the core of recursive estimation. 

5.6 Situation assessment 
For each object an estimation loop is set up yielding best 
estimates for the relative state to the ego-vehicle including 
all spatial velocity components. For stationary landmarks, 
the velocity is the negative of ego-speed, of course. Since 
this is known reliably from conventional measurements, the 
distance to the landmark can be determined even with mo­
nocular vision exploiting motion stereo [Hock, 1994; Tho-
manek, 1996;Muller, 1996]. 

With all this information available for the surrounding 
environment and the most essential objects in it, an inter­
pretation process can evaluate the situation in a task context 
and come up with a conclusion whether to proceed with the 
behavioral mode running or to switch to a different mode. 
Fast in-advance simulations exploiting dynamical models 
and alternative stereotypical control inputs yield possible 
alternatives for the near-term evolution of the situation. By 
comparing the options or by resorting to precomputed and 
stored results, these decisions are made. 

6 Generation of behavioral capabilities 
Dynamic vision is geared to closed-loop behavior in a task 
context; the types of behavior of relevance, of course, de­
pend on the special task domain. The general aspect is that 
behaviors are generated by control output. There are two 
basically different types of control generation: 
1. Triggering the activation of (generically) stored time 

histories, so-called feed-forward control, by events actu­
ally observed, and 
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2. gearing actual control to the difference between desired 
and actual state of relevant systems, so-called feedback 
control. 

In both cases, actual control parameters may depend on the 
situation given. A very general method is to combine the 
two given above (as a third case in the list), which is espe­
cially easy in the 4-D approach where dynamical models 
are already available for the part of motion understanding. 

The general feed-forward control law in generic form is 

where pM may contain averaged state components (like 
speed). 

A typical feed-forward control element is the steer con­
trol output for lane change: In a generic formulation, for 
example, the steer rate is set in five phases during the 
maneuver time the first and the final control phase of 
duration each, consist of a constant steer rate, say R. In 
the second and fourth phase of same duration, the ampli­
tude is of opposite sign to the first and last one. In the third 
phase the steer rate is zero; it may be missing at all 
(duration zero). The parameters R, have to be se­
lected such that at the lateral offset is just one 
lane width with vehicle heading the same as before; these 
parameters, of course, depend on the speed driven. 

Given this idealized control law, the corresponding state 
component time histories 

can be computed according to a good dynamical 
model; the additional time period at the end is added 
because in real dynamical maneuvers the transition is not 
completed at the time when the control input ends. In order 
to counteract disturbances during the maneuver, the differ-
e n c e may be used in a superimposed 
state feedback controller to force the real trajectory towards 
the ideal one. 

The general state feedback control law is 

with K being the r by n gain matrix. The gain coefficients 
may be set by pole placement or by a Riccati design 
(optimal linear quadratic controller) well known in control 
engineering [Kailath, 1980]. Both methods include knowl­
edge about behavioral characteristics along the time axis: 
While pole placement specifies the eigenvalues of the 
closed loop system, the Riccati design minimizes weighted 
integrals of state errors and control inputs. 

The simultaneous use of dynamical models for both per­
ception and control and for the evaluation process leading 
to behavior decision makes this approach so efficient. Fig­
ure 6 shows the closed-loop interactions in the overall sys­
tem. 

Based on object state estimation (lower left corner) 
events arc detected (center left) and the overall situation is 
assessed (upper left). Initially, the upper level has to decide 

Figure 6: Knowledge based real-time control system with three hierarchical levels and time-horizons. 

DICKMANNS 1587 



which of the behavioral capabilities available are to be 
used: Feed-forward, feedback, or a superposition of both; 
lateron, the feedback loops activated are running continu­
ously (lower part in f ig. 6 with horizontal texture) without 
intervention from the upper levels, except for mode 
changes. Certain events also may trigger feed-forward con­
trol outputs directly (center right). 

Since the actual trajectory evolving from this control in­
put may be different from the nominal one expected due to 
unforseeable perturbations, commanded state time histories 

are generated in the block 'state prediction' (center of 
fig. 6, upper right central part) and used as reference values 
for the feedback loop (arrow from top at lower center). In 
this way, combining feed-forward direct control and actual 
error feedback, the system wi l l realize the commanded 
behavior as close as possible and deal with perturbations 
without the need for replanning on the higher levels. 

A l l , that is needed for mission performance of any spe­
cific system then is a sufficiently rich set of feed-forward 
and feedback behavioral capabilities. These have to be acti­
vated in the right sequence such that the goals are achieved 
in the end. For this purpose, the effect of each behavioral 
capability has to be represented on the upper decision level 
by global descriptions of their effects: 
1. For feed-forward behaviors with corrective feedback 

superimposed (case 3 given above) it is sufficient to just 
represent init ial and final conditions including time 
needed; note that this is a quasi-static description as 
used in Al-methods. This level does not have to worry 
about real-time dynamics, being taken care off by the 
lower levels. It just has to know in which situations 
these behavioral capabilities 
may be activated with which 
parameter set. 

2. For feedback behaviors it is 
sufficient to know when this 
mode may be used; these re­
flex-like fast reactions may 
run over unlimited periods 
of time if not interrupted by 
some special event. A typi­
cal example is lane follow­
ing in road vehicle guid­
ance; the integral of speed 
then is the distance traveled, 
irrespective of the curvatures 
of the road. These values are 
given in information sys­
tems for planning, like maps 
or tables, and can be used 
for checking mission prog­
ress on the upper level. 

Performing more complex mis­
sions on this basis has just be-

gun. The newly available computing power wi l l lead to 
quick progress on this mission level, now that the general 
concept has been defined. 

7 Multiple loops in dynamic scene 
understanding 

The principles discussed above have lead to parallel reali­
zations of multiple loops in the interpretation process both 
in space and in time; figure 2 has displayed the spatial 
aspects. In the upper half of the figure, the essential scales 
for feedback loops are the object level, the local situation 
level, and the global mission performance level on which 
behavior decisions for achieving mission goals are being 
done (see table 1 also). 

These decisions may be based on both local and ex­
tended predictions of the actual situation and on knowledge 
about behavioral capabilities of the own vehicle and of 
other subjects in the scene. The multiple loops used in our 
system in the time domain are displayed in figure 7; they 
range from the millisecond scale for inertial viewing direc­
tion control to several hours for ground and flight vehicles 
on the mission scale encompassing sequences of maneuvers 
and feedback behavioral modes. 

The outermost two loops labeled 'quasi-static' are closed, 
up to now, mainly by human operators and software devel­
opers. They are being tackled now for automation on the 
system structure developed; it is felt that a unified approach 
encompassing systems dynamics, control engineering, 
computer simulation and animation techniques as well as 
methods from AI has become feasible. 

Figure 7: Mult iple feedback loops on different time scales in (visual) cognition systems and 
corresponding representational levels 
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8 E x p e r i m e n t a l resu l ts 

8.1 Road vehicles 

The autonomous road vehicle VaMP (see figure 8) and its 
twin V I T A II of Daimler-Benz have shown remarkable 
performance in normal freeway traffic in France, Germany 
and Denmark since 1994. VaMP has two pairs of bifocal 
camera sets of focal lengths 7.5 and 24 mm; one looks to 
the front, the other one to the rear. With 320 by 240 pixels 
per image this is sufficient for observing road and traffic up 
to about 100m in front of and behind the vehicle. With its 
46 transputers for image processing it has been able in 1994 
to recognize road curvature, lane width, number of lanes, 
type of lane markings, its own position and attitude relative 
to the lane and to the driveway, and the relative state of up 
to ten other vehicles including their velocity components, 
five in each hemisphere. At the final demonstration of the 
EUREKA-project Prometheus near Paris, VaMP has dem­
onstrated its capabilities of free lane driving and convoy 
driving at speeds up to 130 km/h in normally dense three-
lane traffic [Dickmanns et al., 1994], lane changing for 
passing and even the decision whether lane changes were 
safely possible have been done autonomously [Kujawski, 
1995]. The human safety pilot just had to check the validity 
of the decision and to give a go-ahead input. 

Figure 8: The autonomous vehicle VaMP of UBM 

In the meantime, transputers had been replaced by Pow­
erPCs MPC 601 with an order of magnitude more comput­
ing power. A long range trip over about 1600 km to a proj­
ect meeting in Odense, Denmark in 1995 has been 
performed in which about 95% of the distance could be 
traveled fully automatically, in both longitudinal and lateral 
degrees of freedom. Maximum speed on a free stretch in the 
northern German plain was 180 km/h. 

Since only black-and-white video signals have been 
evaluated with edge feature extraction algorithms, con­
struction sites with yellow markings on top of the white 
ones could not be handled; also, passing vehicles cutting 
into the own lane very near by posed problems because they 
could not be picked up early enough due to lack of simulta­
neous field of view, and because monocular range estima­

tion took too long to converge to a stable interpretation. For 
these reasons, the system is now being improved with a 
wide field of view from two divergently oriented wide angle 
cameras with a central region of overlap for stereo inter­
pretation; additionally, a high resolution (3-chip) color 
camera also covers the central part of the stereo field-of-
view. This allows for trinocular stereo and area-based object 
recognition. 

Dual-PentiumPro processors now provide the processing 
power for tens of thousands of mask evaluations with 
CRONOS per video cycle and processor. 

VaMoRs, the 5-ton van in operation since 1985 which 
has demonstrated quite a few 'firsts' in autonomous road 
driving, has seen the sequence of microprocessors from 
Intel 8086, 80x86, via transputers and PowerPCs back to 
general purpose Intel Pentium and PentiumPro. In addition 
to early high-speed driving on freeways [Dickmanns and 
Zapp, 1987] it has demonstrated its capability of driving on 
state and on minor unsealed roads at speeds up to 50 km/h 
(1992); it is able to recognize hilly terrain and to estimate 
vertical road curvature in addition to the horizontal one 
[Dickmanns and Mysliwetz, 1992]. 

Recognizing cross-roads of unknown width and angular 
orientation has been demonstrated as well as turning off 
onto these roads, even with tight curves requiring an initial 
maneuver to the opposite direction of the curve [Muller, 
1996; Dickmanns and Muller, 1995]. These capabilities 
wi l l also be considerably improved by the new camera ar­
rangement with a wide simultaneous field of view and area 
based color image processing. 

Performing entire missions based on digital maps has 
been started [Hock, 1994] and is alleviated now by a GPS-
receiver in combination with inertial state estimation re­
cently introduced [Muller, 1996; Werner, 1997]. The vehi­
cles VaMoRs and VaMP together have accumulated a 
record of about 10 000 km in fully autonomous driving on 
many types of roadways. 

8.2 A i r vehicles 

After the feasibility of autonomous control in all six degrees 
of freedom by dynamic machine vision had been demon­
strated for the case of straight-in, unperturbed landing ap­
proaches in hardware-in-the-loop simulations [Eberl, 
1987), a second effort including inertial sensing and both 
wind and gust disturbances led to first flight tests in 1991 
[Schell, 1992]. Because of the safety regulations, the 
autonomous vision system was not allowed to control the 
aircraft, a twin turbo-prop of about 5-ton weight, near the 
ground; the human pilot did the flying but the vision system 
determined all 12 state components relative to the runway 
for distances below 900m from runway threshold. 

The next step was to introduce bifocal vision with a 
mild and a stronger tele lens in connection with the new 
transputer system in the early 90ies; 1993, in another set of 
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flight experiments with the same aircraft of the University 
of Brunswick it was proved that visual range could be dou­
bled, essentially, but more computing power would be 
needed for robust tracking and initialization. The PowerPC 
satisfied these requirements; it is now possible to detect 
large obstacles on the runway sufficiently early for safe 
reactions [Furst et al., 1997]. 

The most demanding guidance and control task per­
formed up to now in hardware-in-the-loop real-time simu­
lations is helicopter flight near the ground including land­
mark navigation. The capability of performing a small scale 
mission starting at one end of the airport of Brunswick, 
flying along a selected sequence of waypoints on the airport 
and in the vicinity (road forks), returning to the airport 
from the other side and slowing down for landing at a heli­
copter 'H' at the other end has been demonstrated [Werner 
et al., 1996; Werner, 1997] (see figure 9). 

In connection with this demanding task, a complete 
software package has been developed containing separate 
inertial and visual state estimation components, integration 
of GPS signals and data fusion in the context of mission 
performance. In addition, provisions have been made to 
integrate coarse-scale image data from a synthetic aperture 
imaging radar system under development elsewhere. The 
combined use of all-weather radar images and high-

resolution optical or infrared images is considered an opti­
mal solution for future helicopter guidance systems. The 
capability of interpreting these data streams by an intelli­
gent on-board computer system will unload the pilot from a 
very difficult task in a situation where he is stressed to the 
limit already. 

9 Techn ica l Beings'? 

There is an ongoing discussion as to what technical beings 
may be like and what the best architecture for realizing 
these agents might be [Brooks and Flynn, 1989; Steels, 
1993]; subsumption architeaure and neural nets have been 
proposed as roads leading to these type of creatures. 

Looking at the results achieved with the 4-D approach 
to dynamic vision, it does not seem unreasonable to expect 
that quite a few problems to be encountered in complex 
scenarios with the other approaches may be avoided taking 
this route which builds upon long term results in the natu­
ral sciences and engineering. 

It has the advantage of having a clear notion of space 
and time, of objects, subjects and processes, and of the 
spatio-temporal representational structure necessary to 
handle multiple independent objects and subjects with own 
intentions, goals and control capabilities. 

9a: Tracking of ' Crossing 2' 

9b: Tracking of taxiways, frame and Heli H during final approach 

Figure 9: Landmark navigation for helicopters has been demonstrated in hardware-in-the-
loop, real-time simulations for a small mission near the airport of Brunswick 

1590 INVITED SPEAKERS 



In [D.Dickmanns, 1997] a corresponding representa­
tional framework has been given which allows to handle 
even complex systems with minimal additional effort on the 
methodical side; knowledge specific to the task domain may 
be entered through corresponding data structures. Com­
puting power available in the near future wi l l be sufficient 
to solve rather complex real-time, real-world problems. A 
corresponding architecture for road vehicle guidance is 
discussed in [Maurer and Dickmanns, 1997]. 

As compared to the other approaches pursued, the 
pledge is to take advantage of the state of the art in engi­
neering and simulation technology; introducing goal func­
tions for these autonomous systems and providing them 
with background knowledge of how to achieve these goals, 
or how to learn to achieve them wil l be essential. The ar­
gument sometimes heard that these systems wi l l be 'closed' 
as opposed to neural-net-based ones is not intelligible from 
this point of view. 

10 Conclusions 
The 4-D approach to dynamic machine vision developed 
along the lines layed out by cybernetics and conventional 
engineering long time ago does seem to satisfy all the ex­
pectations it shares with 'Artificial Intelligence'- and 'Neu­
ral Net'-approaches. Complex perception and control proc­
esses like ground vehicle guidance under diverse conditions 
and in rather complex scenes have been demonstrated as 
well as maneuver- and mission-control in ful l six degrees of 
freedom. The representational tools of computer graphics 
and -simulation have been complemented for dealing with 
the inverse problem of computer vision. 

Computing power is arriving now for handling real-
word problems in real-time. Lack of robustness encountered 
up to now due to black-and-white as-well-as edge-based 
image understanding can now be complemented by area-
based representations including color and texture, both very 
demanding with respect to processing power. 

Taking advantage of well suited methods in competing 
approaches and combining the best of every field in a uni­
fied overall approach wi l l be the most promising way to go. 
The good old stuff should not be discarded too early. 
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