
CRIS - Computational Research Infrastructure for Science

Invited Paper

Eduard C. Dragut1#, Peter Baker2#, Jia Xu3#, Muhammad I Sarfraz4*, Elisa Bertino5#*,
Amgad Madhkour6*, Raghu Agarwal7*, Ahmed Mahmood8*, Sangchun Han9*

#Cyber Center, Purdue University
*Computer Science Department, Purdue University

1edragut@purdue.edu, 2pnbaker@purdue.edu, 3xu222@purdue.edu, 4msarfraz@purdue.edu,
5bertino@purdue.edu, 6amgad@purdue.edu, 7raghuagarwal@purdue.edu,

8amahmoo@purdue.edu, 9han84@purdue.edu

Abstract

The challenges facing the scientific community are
common and real: conduct relevant and verifiable
research in a rapidly changing collaborative landscape
with an ever increasing scale of data. It has come to a
point where research activities cannot scale at the rate
required without improved cyberinfrastructure (CI). In
this paper we describe CRIS (The Computational
Research Infrastructure for Science), with its primary
tenets to provide an easy to use, scalable, and
collaborative scientific data management and workflow
cyberinfrastructure for scientists lacking extensive
computational expertise. Some of the key features of CRIS
are: 1) semantic definition of scientific data using domain
vocabularies; 2) embedded provenance for all levels of
research activity (data, workflows, tools etc.); 3) easy
integration of existing heterogeneous data and
computational tools on local or remote computers; 4)
automatic data quality monitoring for syntactic and
domain standards; and 5) shareable yet secure access to
research data, computational tools and equipment. CRIS
currently has a community of users in Agronomy,
Biochemistry, Bioinformatics and Healthcare
Engineering at Purdue University (cris.cyber.purdue.edu)

Keywords: Scientific activity management;
cyberinfrastructure (CI); provenance; workflow; data
dictionaries; data sharing.

1. Introduction

Despite many advances in data management and
workflow technologies, scientific cyberinfrastructures
(CIs) currently in use are typically composed of a diverse
set of rather ad-hoc components. As a result, these CIs

suffer from several major shortcomings: (1) ad hoc
management of research data – data is placed on shared
drives and personal laptops, resulting in highly
distributed and unmanaged collections of data; (2) limited
data re-use as data is not adequately described; (3) lack of
documentation of computational stages (e.g., data
conversion among different file formats), resulting in
untraceable modifications and thus limiting the
exploration of unexpected research results; and (4) limited
community interaction – data and computational tools are
operated on isolated servers, inaccessible to the broader
community. These issues are more prevalent in the so
called “long tail of small science”, because large numbers
of small projects produces ever larger volumes of data.
Yet they lack data repositories, community standards for
data structures and metadata, and data management
expertise [12, 16]. The unfortunate consequence of
inadequate CI solutions is compromised research
efficiency and integrity.

Significant work has already been done to assist in
solving CI related problems. For example, workflow
management systems such as Pegasus [19], Taverna [17]
and Kepler [2] as well as scripting languages help
improve the repeatability and control of experiments.
National data repositories such as DataONE [2] and
dbGap [15] provide storage locations for long term
collaborative access. Data descriptors such as OWL 1

facilitate universal access to data and metadata.
Specialized database engines such as MonetDB [14] and
SciDB [7, 6] provide the ability to accelerate research.
Online information management communities such as
HUBZero (http://hubzero.org/) and PBWorks.com
provide a framework for exchanging curated information.
While data curation methodologies such as DataONE and

1 http://www.w3.org/TR/owl-features/

301IEEE IRI 2013, August 14-16, 2013, San Francisco, California, USA
978-1-4799-1050-2/13/$31.00 ©2013 IEEE

Data Curation Profiles [21] provide expertise for long
term storage. All of these provide pieces for solving the
data and computational management puzzle.

The reality is that a typical scientific researcher does
not have the computational expertise, funding, or time
necessary to find, assess, and combine these independent
building blocks into a cohesive CI to aid his/her research,
data curation, and collaborative efforts. Without a suitable
CI, their research can be inefficient, unable to easily build
upon prior work, and provides limited extensibility by the
broader community.

In this paper we describe CRIS (The Computational
Research Infrastructure for Science), with its primary
tenets to provide an easy to use, scalable, and
collaborative scientific data management and workflow CI
for scientists lacking extensive computational expertise.
We have built and currently support CRIS for an initial
user community at Purdue University in Agronomy,
Biochemistry, Bioinformatics and Healthcare
Engineering; however the infrastructure is designed to
support applications from a much broader set of scientific
domains. To support such varied communities, CRIS
provides an extensible suite of tools to:

� describe data using domain specific vocabularies;
� support configurable and interactive workflows

for seamless operations from the raw data
through analysis and visualization;

� automatically validate the quality of scientific
data;

� automatically capture, transform, and analyze
data and metadata with associated provenance;

� facilitate cross-domain scientific collaboration;
� provide long term storage and access to

organized and managed data, leading to efficient
and verifiable research.

Our philosophy is that any CI must: (1) have low
barriers to entry (i.e. easy to use and configure); (2) be
inexpensive; (3) provide added value (i.e. incorporate the
relevant scientific tools); and (4) be interoperable with
other systems (i.e., seamless integration with other
systems). In CRIS we are not re-inventing the wheel,
but developing an infrastructure in which existing and
new techniques are integrated and customized, driven
by the specific requirements of scientific research
processes. To the best of our knowledge, there is no other
CI that has the same capabilities of CRIS. We give the
details of CRIS in the rest of the paper.

The remainder of this paper is organized as follows.
Section 2 illustrates the need for suitable CI with a
concrete scenario of a scientific research process. Section
3 provides an overview of the CRIS architecture. Section
4 describes the tools used to implement CRIS. Section 5

depicts the motivating scenario in Section 2 when CRIS is
used. Section 6 concludes the paper.

2. A Motivating Scenario: A Typical Small
Science Research Process

Small science CI is traditionally comprised of shared
network folders for data storage; limited access lab
servers or laptops; isolated computational tools; under-
documented file and data formats; FTP/email/sneakernet
transmission of information; limited or non-existent
system backups and revision control; and manual
provenance collection. As a result, valuable information is
often discarded or underutilized, and research efficiencies
and integrity compromised. To explain the motivation
behind CRIS, we will detail a typical small science
research environment for a scientist Mark. This is a
typical experimental setting for Mark, a biochemist, who
is currently using CRIS. Mark is conducting an
experiment to analyze the mineral uptake within the plant
Arabidopsis, and correlating phenotypic variations with
genetic information. Although his research is unique, his
CI requirements and current processes are widely
applicable to a broad range of scientific environments.

Mark first needs to capture metadata about the
experiment, including information such as the seed lines,
photoperiod, temperature, soil conditions, and growth
chambers. Second, he runs physical samples of the plant
through a mass spectrometer (an instrument which
measures the masses and relative concentrations of atoms
and molecules) in order to identify the chemical
components in the sample. The equipment produces a data
file in a proprietary format, which needs to be converted
to a more universally acceptable format for his analysis
software (e.g., from .raw format to .mzdata format). This
requires a new program that Mark does not currently have,
and therefore searches the internet to find a shareware
version of software that accomplishes the conversion.
However after finding, he still has to install on a Linux PC
(he has limited experience with Linux), and get familiar
with these formats to be able to carry out the
implementation. As fourth step, the converted file needs to
be processed by a protein search engine, to find specific
proteins within the sample. Mark needs to implement an
intricate piece of software that performs the following
tasks: specifies the parameters, sends the parameters along
with the file to a protein search engine, and remotely
launches the protein search engine. Fifth, after the search
is complete, Mark copies the results from the remote
computer to a flash drive, transferring the results back and
storing with the rest of the experimental data on an
external hard drive in his lab. Finally, Mark has to input
the file to a proprietary tool and analyze the results
visually. Then this process is repeated hundreds of times,

302

with minor variations to the experiment setup. The data
and experimental results must be kept private on his local
computers until his findings can be analyzed, compiled
and published. After which he needs some manner to
make the original data available to the research
community.

All these computer and engineering challenges
sidetrack Mark from his main research activity:
biochemistry. Even if Mark is successful in implementing
all these steps he will still not have a complete solution, or
a solution that his collaborators can leverage. Mark still
needs to worry about automatic provenance collection
(e.g., for experiment repeatability) [8], quality control
(e.g., to avoid scientific fraud) [3], data loss (when his
external hard drive fails). Furthermore, Mark lacks the
infrastructure to publish his dataset or even the workflow
to the broader community, resulting in others possibly
repeating his work.

This scenario illustrates why it is critical to provide
an easy to use and cost-effective CI which enables the
seamless integration of data with existing computational
tools, automates manual processes, provides broad yet
secure access, and allows scientists to focus their efforts
on understanding their research domain in new and
innovative ways. We will revisit this scenario (Section 5)
once we introduce CRIS.

3. CRIS Architecture

CRIS is a web-based application whose architecture is
shown in Figure 1. We provide the details for its key
components and implementation in this section.

3.1. Workspace

A workspace is the “face” of CRIS, and acts as a
container for all activities and data to be managed for a
single group of scientists. Each workspace includes a
dashboard offering a simple view of the relevant
information (Figure 2), and provides the tools and
controls necessary to conduct research such as: project
and experiment containers; configurable workflows;
access controls; computational tools; visualization and
reporting; and connectors to automatically exchange
information with external systems.

Figure 2: A fragment snapshot of CRIS's workspace

Workspaces are seamlessly connectable to diverse
external data sources and computational tools. CRIS will
soon support interconnected workspaces. This will
provide an efficient and distributed architecture that can
operate in an isolated manner, if desired, and instantly
leverage other workspace resources when required. This is
particularly beneficial for research projects with multiple
people: e.g., projects that involve several institutions, or
span diverse scientific domains. In addition to support
access to remote data sources, CRIS will allow one to
remotely execute computational tools within other

Figure 1: A high level overview of CRIS architecture.

303

workspaces. Thus “owners” of computational tools can
make their resources available to the broader community,
without having to manage difficulties of cross platform
compatibility.

3.2. Scientific Workflows

A key impediment for scientists is how to automate
their manual scientific processes. To support these efforts,
CRIS allows seamless definition of workflows.
Workflows usually consist of several (independently
developed) pieces of software, metadata capture, external
resources, and datasets. However for a workflow to
function properly, and to support broad reuse, the output
produced in one step must be “compatible” with the input
expected in the subsequent step. CRIS is built using a
“common vocabulary” (Section 3.3.1) for the data
interface.

Additionally, in order to make it possible to easily
incorporate existing computational tools into the CI, CRIS
provides “wrapping" support for tools (Services, Fig. 1).
This basically helps the user to construct a definition for
the inputs and outputs of a tool in terms of the common
vocabulary of the project, and provides a standard
mechanism to convert the data into the specific format
required by the tool. In this way, the wrapper seamlessly
ensures that the tool is not only usable within a particular
workflow, but it can be reused in any other workflow in
the scope of the project.

Notice that CRIS is not a dedicated workflow system,
rather CRIS integrates workflows along with many other
features (e.g., provenance, data versioning, secure access)
required to ease the daily research activity of scientists
and their groups. And in that light, external workflow
engines (Pegasus, Kepler, etc.) can be added into CRIS as
a workflow step, allowing complex data manipulation
efforts to be seamlessly integrated in with other process
and data management efforts.

3.3. Data Management

A basic premise of CRIS is to provide a CI with
enough tangible benefits that scientists will want to use,
with the net result being the efficient and organized
management of their research data (for free). To
accomplish this task, CRIS utilizes the following key
concepts: (1) the definition of a Domain Vocabulary to
support coordinated exchange and validation of
information; (2) utilization of Key/Value Pairs for
identification of information; (3) automatic Rendering of
Web-Pages from template definitions; (4) integrated
Storage, Retrieval and Provenance; and (5) Reusable
Resources.

Figure 3: A Snapshot view of the vocabulary interface.

3.3.1. Domain Vocabulary. At the core of any effective
exchange of information is a defined vocabulary. For
example within the human perspective, the various
languages throughout the world constitute defined
vocabularies. They will change over time as a result of a
variety of influences, but are the base reference for all
interpretations. In a similar vein, CRIS provides a
framework for the creation and evolution of domain
vocabularies. They are best defined by a member of the
research team who understands the scope of the project;
Fig. 3 shows a fragment of the vocabulary from an
agricultural project currently supported by CRIS.

Each domain vocabulary contains the unique
definitions of relevant data elements, along with the
definition of how to validate the information. To insure
uniqueness across domains and throughout the workflows,
we utilize a UUID as the primary reference identifier for
each data element. For example, a definition of “Human
Age” is as an integer with the range of [0-150]. However
this must be kept distinct from the similar “Human Age”
within a social science domain, which is instead defined as
a list of [“Infant”, “Child”, “Adolescent”, “Teenager”,
“Adult”, “Senior”]. So understanding that these similar
definitions will exist, we incorporate Translators.

Within each vocabulary data element, validators are
defined allowing CRIS to automatically evaluate any data
entered or ingested into the system. Validators define
basic data types (integer, string, list, etc.) along with
corresponding ranges. Additionally, regular expressions
can be constructed and used to validator more complex
data values (i.e. zipcodes, phone numbers, IP address,
etc.). It is also possible to extend the internal validators to
communicate with external data validation sources (e.g.
verifying a term exists in a pre-defined dictionary at a web
url). Finally, complex data quality measurement and
detection can be implemented as a scriptable solution
within a workflow step. For example, if it is necessary to
detect when data values in an input stream start no longer
change as expected (i.e. a rain gauge sensor freezes), then

304

a script can be written to check for this specific condition.
When found, then the workflow step can notify the user to
take corrective action.

Analogous to their human language counterparts,
translators support the exchange of information between
domain vocabularies. So in the above example, an integer
age of [0-1] can be converted to “Infant”, [13-19] can be
converted to “Teenager”, etc. (and also in reverse
although a lossy translation). Importantly, CRIS records
that the translation has occurred for future inspection. As
vocabularies and translators are developed, they are made
available to a broader audience through the GRCR
repository (Section 3.4.2).

Future efforts will include a Guided Vocabulary
Service which checks definitions created by a user against
the GRCR repository of existing definitions. Whenever a
definition provided by a user “matches” an existing
definition, the latter is suggested to the user as an
alternative definition. This is useful to avoid bloating the
number of synonymous terms in the system, and reduce
the number of required translators.

3.3.2. Key/Value Pairs. In the experiences with our initial
user community, the set of information a researcher
desires to capture is often completely different at the
beginning of a project than at the end. So instead of
fighting change and multiple updates to database schemas,
we embraced change through simple definitions using
key/value pairs. In this manner, the vocabulary element
UUID is the key, and the value is the stored data. Thus, it
becomes a simple task to add or remove desired
information from the scientific workflow. We do however
group information according to the project/ experiment/
job/ workflow step containers to support accurate retrieval
of the desired information, and to provide some contextual
information for individual workflow steps. The back end
database is also designed to support such dynamic
modifications to the captured data (see Section 3.3.6)

3.3.3. Rendered Web-Pages. To support the tenet of “an
easy to use CI for scientists lacking in-depth
computational expertise”, CRIS automatically renders the
HTML web-pages from underlying XML templates. So
the researcher simply adds the desired vocabulary terms to
a desired workflow step, CRIS then renders the necessary
HTML, and the workflow engine validates the entered
data using validation parameters specified in the
vocabulary term. The net result is a minimal effort by the
scientists to modify their CI requirements.

3.3.4. Storage, Retrieval, and Provenance. At each step
in a workflow, in addition to the expected data files and
metadata, as much provenance as possible is captured for
long term storage and retrieval using the back-end storage

services [20]: e.g., the specific version of a computational
tool, the person entering the data, geographic location, etc.
It additionally tracks revisions to the information, storing
who updated specific data elements and why [9]. Then
customary browse, search, and export functions are
available to retrieve relevant information. This is an area
for future extensions to CRIS.

3.3.5. Reusable Resources. As discussed earlier, it is
important to provide resources which can be re-used by a
broad set of groups. For example, Mass Spectrometry
equipment is widely used by scientists. In CRIS, a basic
equipment category resource is created that identifies the
physical attributes (equipment owner, physical location,
manufacturer, etc.) and data attributes (LAN network
location, data format type and version, etc.). Once created,
anyone can simply locate the resource within the CRIS
GRCR (Figure 1), and pull it into his/her workflow.
Hence when the Mass Spectrometry step is executed
during a workflow, the data and metadata associated with
the equipment are automatically retrieved and stored. This
result is a fully abstracted view of the Mass Spectrometer,
which allows the scientist to simply “use” the equipment
while automatically gaining a rich set of experiment
information. Currently, CRIS expects users to manually
create proper data definitions. CRIS will incrementally be
equipped with data definition assisting tools.

3.3.6. Back End. The back end services consist of a
relational SQL database instance, a NoSQL database
instance, a distributed file system infrastructure, and
computational processing nodes. It should be noted that
each described component can be deployed beyond a
single server, therefore supporting isolation of data sets as
required by an individual research (i.e., regulatory
compliance issues), as well as scalability as the number of
users increases. The SQL database is used to store data
internal to CRIS (e.g., workspaces, tools, user accounts,
etc.) [7]. The NoSQL database is used to store scientific
datasets through the prior noted key/value pairs (Section
3.3.2). The distributed file system is used to store files of
moderate size in their original form. And the
computational nodes are used to run computational
algorithms, translators, and any other specialized
workflow steps to avoid significant loading on the web
server. Future capabilities are expected to include a
Hadoop cluster for storing large sized files in an efficient
and scalable manner, and the appropriate hooks are
already in place.

3.4. Services

We describe some of the key services of CRIS here.

305

3.4.1. Templates. The vocabulary is the basis for defining
an element of data within a specific scientific domain, and
becomes the method to validate as well as search and
exchange information between domains. In the hierarchy
of the system, templates are then assembled from a set of
vocabulary terms, and workflows combine multiple
templates. Templates are used to form a defined collection
of vocabulary terms which have combined relevance
within a workflow step. They inherit the definitions from
each included vocabulary term, and provide a method to
individually over-ride specific properties. HTML web
pages can be auto-generated by CRIS from the template
definition, thus providing a straightforward mechanism for
a user to enter relevant information. Templates are
typically designed for a specific user workflow, but can be
shared with other users in a similar domain.

3.4.2. Global Registry of Community Resources
(GRCR). The GRCR is CRIS’s central repository for
collecting and exchanging information about any first-
class citizen of a CRIS workspace: domain vocabularies,
datasets, tools, workflows, equipment, and computational
resources. It is the component that will make it possible to
easily share and search these objects across scientists and
projects. GRCR will be governed by a Resource Access
Control mechanism (Section 3.5) that ensures that
resources are shared according to the levels and
permissions prescribed by their owners [8].

3.4.3. Search. To realize collaborative opportunities
beyond a single researcher’s workspace, and to promote
exploratory investigation, search capabilities are very
necessary. Based upon our design criteria of stability,
scalability, integration with NoSQL databases, and ability
to extract contents directly from ingested files (Word,
PDF, etc.), we have integrated the ElasticSearch2 engine
in CRIS prototype. Its schema free approach, built upon
the Apache Lucene high performance search engine, is an
ideal match to the data components within CRIS.

CRIS currently provides the following search and
browse capabilities: (1) browse access via a hierarchical
structure which closely matches the research process; and
(2) keyword search based upon all stored information and
vocabulary definitions. Future versions of CRIS will be
equipped with more sophisticated search features, such as,
search by datasets similarity, e.g., the user points out a
dataset X and CRIS retrieves all the datsets similar to X.

3.5. Access and Security
The organization and sharing of large sets of

heterogeneous scientific datasets pose non-trivial access
control challenges. An inadequate or unreliable

2 http://www.elasticsearch.org

authorization mechanism can significantly increase the
risk of unauthorized use of scientific data. This section
highlights the security management issues that impact the
design of an authorization model in CRIS.

3.5.1 Authorization Requirements and Model. We
assume a general notion of authorization, by which an
authorization is defined in terms of a subject, a
permission, an object, an object owner and an object
class. An inefficient way to implement an authorization
mechanism is to explicitly store all authorizations for all
system subjects and objects. In contrast, the concept of
implicit authorizations makes it unnecessary to store all
authorizations explicitly [18]. The main idea is that a
permission of a certain type defined for a subject on a
certain object implies other authorizations, which means
that authorizations can be automatically propagated.
Hence, the authorization mechanism can compute
authorizations from a minimum set of explicitly stored
authorizations in order to prevent unauthorized access.

The domain of subjects is organized in groups and
authorizations are associated to groups, thus reducing the
number of explicit individual authorizations. The idea of
groups is similar to user-role assignment in Role Based
Access Control (RBAC) [11]. The groups form a Group
Hierarchy (GH) where a node in the hierarchy represents a
group and a directed arc from group A to group B
indicates that an authorization for group A subsume that of
B. A permission in our model is stored as a cumulative
permission represented by an integer bit mask where each
bit represents a permission. Since only one entry is needed
to store an authorization for a particular object, this
reduces the need for implicit authorization along the
domain P and hence implication between two
authorizations does not occur along the domain P. The
domain O of objects is organized as a rooted acyclic
graph, in which each node is a Project, Experiment, Job or
Workflow. An arc from node A to node B in the graph
indicates that authorizations for object A imply
authorizations for object B.

CRIS allows a user to develop a computational tool
and then grant the execute permission on this tool to other
users. A user having the authorization to execute a tool
does not automatically have any authorization to directly
read or modify the datasets accessed by the tool [4]. The
user needs to possess the appropriate authorization on the
datasets to execute the tool on them.

3.5.2 CRIS Access Control System Since CRIS is built
using the Spring framework, we adopt the access control
module of Spring Security3 and customize it to meet the
requirements of CRIS. The access control module of

3 http://www.springsource.org/ spring-security

306

Spring Security provides comprehensive authorization
services, is widely used in enterprise applications and is
the de-facto standard for securing Spring-based
applications.

CRIS has a set of explicit authorizations, called
authorization base (AB). This consists of four tables
provided by the default implementation of Spring Security
as discussed below:

� acl_sid uniquely identifies any group in the
system. Spring Security also provides support for
group hierarchies and allows one to configure the
containment relationship between groups.

� acl_class uniquely identifies any domain object
class in the system.

� acl_object_identity stores information for each
unique domain object along with its parent,
owner and whether authorization entries inherit
from any parent.

� acl_entry stores the individual permissions
assigned to each principal or authority.

CRIS has an Authorization Module that gives users the
ability to create and store authorizations in the
authorization base for the various objects in the users’
workspace and consequently allows access to authorized
objects. If the authorization specified by the user is not
already stored in AB or implied by an existing
authorization in AB, the authorization is inserted into AB.
In the case of tools, an additional check is done in order to
ensure that grant and revoke authorizations on the
dataset(s) associated with the tool are done properly.

3.6. User Interface

CRIS is intended to be routinely used by scientists
lacking in-depth computer and system administration
expertise. Its current user interface offers all basic
functionalities and strives as much as possible to hide all
the complexities of data management and computation.
Our goal is to continually improve the user interface so
that it will be very easy to use and consistent with the
user’s own mental model of their data, their activities, and
the workflow as a whole.

3.7. Iterative development

CRIS is an ongoing project with a growing community
of users. It is currently operational (available at:
cris.cyber.purdue.edu) with the initial user community
mentioned in Section 1, and several other components
with partially implemented functionalities (e.g., the
Resource Access Control of the GRCR, Guided
Vocabulary Service, Hadoop Cluster, and Search
Recommendations). We believe that an iterative
development methodology delivers a robust CI, provides

for immediate basic support for the scientists, and allows
for comprehensive user feedback and improvements of the
base system as new requirements are encountered.
Additionally, it provides a unique proving ground for
future research opportunities.

4. System Implementation

CRIS has been implemented using open source
software and free Web APIs. The back end uses
PostgreSQL database 4 , MongoDB database 5 , Hadoop
HDFS6 and Activiti workflow engine7. Activiti is used
within CRIS as the workflow engine due to its ease of use
in defining, changing, and sharing user workflows. CRIS
is written in JAVA, with Spring and Hibernate as main
frameworks.

The implementation of the front end of CRIS utilizes a
number of open source APIs, mainly Spring MVC8 and
dojo javascript 9 . Most of the communication with the
server is through Ajax to make the application more
responsive.

5. CRIS in Action

Let’s now revisit our scenario in Section 2 with Mark
using CRIS for his research activity. With CRIS, Mark
first defines the metadata about the experiment on a
rendered Web page. Second, the mass spectrometer is
“wrapped” in CRIS and Mark can run the physical sample
from CRIS and CRIS will ensure that the outcome of the
analysis is automatically imported in Mark’s workspace.
To convert the data files from .raw format to .mzdata
format Mark can now use GRCR. He searches for a
suitable program to see if anyone has shared such a
program. Suppose such a program exists in GRCR, but it
has to be executed remotely on the processing node where
it is currently installed. To require such a remote
execution, Mark only needs to drag the program into his
workflow and CRIS takes care of transferring the file to
the remote processing node, launching the program to
convert the file, and transferring the converted file back to
CRIS storage. Recall that in the fourth step, the converted
file needed to be processed by a protein search engine.
Mark can now add this step to his workflow, specifies the
parameters, and CRIS does the rest: transfers the file to
another remote processing node, sends the parameters,

4 http://www.postgresql.org
5 http://www.mongodb.org
6 http://hadoop.apache.org/hdfs/
7 http://activiti.org/
8 http://www.springsource.org
9 dojotoolkit.org/ framework

307

and launches the protein search engine. This part of the
scenario shows how a computational node is abstracted
and transparently invoked from within CRIS. Fifth, after
the search is complete, CRIS automatically transfers the
results back and stores them for long term archival. Mark
can invoke a visualization tool in CRIS (assuming it was
previously “wrapped”) to explore the results. Finally,
Mark can publish his data set and the workflow in GRCR
to be used by the community.

If Mark is a user that belongs to the “Admin Group”,
then Mark has complete authorization on all objects
during the course of an experiment and is not subjected to
permission checking. If Mark is a normal user, then prior
to the utilization of an object for an experiment, a
permission check is done in order to ensure that Mark has
the appropriate authorization on the requested object.

6. Conclusion

In this paper, we describe CRIS. CRIS currently
provides support for 1) automatic capture, definition and
processing of research data, 2) easy integration of existing
data and computational tools on local or remote
computers, 3) automatic data quality monitoring for
syntactic and domain standards, and 4) secure access to
research data, computational tools and equipment.

CRIS is an ongoing and long term project with a
growing community of users at Purdue University. CRIS
is continually being improved and extended with new
components and functionalities such as Guided
Vocabulary Service, Hadoop Cluster and Provenance at
all levels.

We believe that CRIS is a step forward in the ongoing
endeavor of the scientific community to build tools that
allow scientific discovery through data exploration and
community collaboration [13].

7. References

[1] S. Allard. “DataONE: Facilitating eScience through
Collaboration”. Journal of eScience Librarianship. 2012.

[2] [ALT04] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B.
Ludäscher, S. Mock. “Kepler: An Extensible System for
Design and Execution of Scientific Workflows”. SSDBM,
2004.

[3] C. Batini, C. Cappiello, C. Francalanci, and Andrea
Maurino. “Methodologies for data quality assessment and
improvement”. ACM Comput. Surv. 41, 3, 2009.

[4] E. Bertino. “Data Hiding and Security in Object-oriented
Databases”, ICDE, 1992.

[5] E. Bertino, G. Ghinita and A. Kamra. Access Control for
Databases: Concepts and Systems. Foundations and Trends
in Databases. 2011.

[6] G.P. Brown. “Overview of sciDB: large scale array storage,
processing and analysis”. SIGMOD. 2010.

[7] P. Cudre-Mauroux, et al. 2009. A Demonstration of SciDB:
A Science-Oriented DBMS. VLDB.

[8] S. B. Davidson and J. Freire, “Provenance and scientific
workflows: challenges and opportunities”. SIGMOD. 2008.

[9] M. Eltabakh, W.G. Aref, et al. 2011. HandsOn DB:
Managing Data Dependencies involving Human Actions,
Purdue CS Tech. Report.

[10] M. Eltabakh, M. Ouzzani, and W. Aref, et al. 2008.
Managing biological data using bdbms, ICDE.

[11] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn & R.
Chandramouli. “Proposed NIST Standard for Role Based
Access Control”, TISSEC, 4(3), 2001.

[12] B. Heidorn. "Shedding light on the dark data in the long
tail of science". Library Trends. 2008. Vol. 57, No. 2.

[13] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth
Paradigm: Data-Intensive Scientic Discovery. Microsoft
Research, 2009.

[14] M. Ivanova, N. Nes, R. Goncalves, M. Kersten. 2007.
MonetDB/SQL meets SkyServer: the challenges of a
scientific database. SSDBM Conference.

[15] [NCB07] M.D. Mailman, et al. “The NCBI dbGaP
Database of Genotypes and Phenotypes”, Nat Genet. 2007.

[16] T. Malik and I. T. Foster. "Addressing data access needs of
the long-tail distribution of geoscientists". IGARSS. 2012.

[17] [OIN06] T. Oinn, et al. “Taverna: lessons in creating a
workflow environment for the life sciences”, Concurrency
and Computation: Practice & Experience, 2006.

[18] F. Rabitti, E. Bertino, W. Kim & D. Woelk. “A Model of
Authorization for next-generation Database Systems.”
TODS, 16(1), 1991.

[19] M. Sonntag, D. Karastoyanova and E. Deelman.
“BPEL4Pegasus: Combining Business and Scientific
Workflows”, ICSOC, 2010.

[20] S. Sultana, M. Shehab and E, Bertino. Secure Provenance
Transmission for Streaming Data. TKDE, (to appear).

[21] [WIT09] M. Witt., JR. Carlson, MR. Cragin, MR. and DS.
Brandt, “Constructing Data Curation Profiles”,
International Journal of Digital Curation, 4(3), 2009.

308

