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Abstract—Cloud computing as an emerging technology trend is expected to reshape the advances in information technology. In a cost-
efficient cloud environment, a user can tolerate a certain degree of delay while retrieving information from the cloud to reduce costs. In
this paper, we address two fundamental issues in such an environment: privacy and efficiency. We first review a private keyword-based
file retrieval scheme that was originally proposed by Ostrovsky. Their scheme allows a user to retrieve files of interest from an untrusted
server without leaking any information. The main drawback is that it will cause a heavy querying overhead incurred on the cloud, and
thus goes against the original intention of cost efficiency. In this paper, we present a scheme, termed efficient information retrieval for
ranked query (EIRQ), based on an aggregation and distribution layer (ADL), to reduce querying overhead incurred on the cloud. In
EIRQ, queries are classified into multiple ranks, where a higher ranked query can retrieve a higher percentage of matched files. A user
can retrieve files on demand by choosing queries of different ranks. This feature is useful when there are a large number of matched
files, but the user only needs a small subset of them. Under different parameter settings, extensive evaluations have been conducted
on both analytical models and on a real cloud environment, in order to examine the effectiveness of our schemes.
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1 INTRODUCTION

Cloud computing as an emerging technology is expected
to reshape information technology processes in the near
future [1]. Due to the overwhelming merits of cloud com-
puting, e.g., cost-effectiveness, flexibility and scalability,
more and more organizations choose to outsource their
data for sharing in the cloud. As a typical cloud ap-
plication, an organization subscribes the cloud services
and authorizes its staff to share files in the cloud. Each
file is described by a set of keywords, and the staff, as
authorized users, can retrieve files of their interests by
querying the cloud with certain keywords. In such an
environment, how to protect user privacy from the cloud,
which is a third party outside the security boundary of
the organization, becomes a key problem.

User privacy can be classified into search privacy and
access privacy [2]. Search privacy means that the cloud
knows nothing about what the user is searching for,
and access privacy means that the cloud knows nothing
about which files are returned to the user. When the files
are stored in the clear forms, a naı̈ve solution to protect
user privacy is for the user to request all of the files from
the cloud; this way, the cloud cannot know which files
the user is really interested in. While this does provide
the necessary privacy, the communication cost is high.
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Private searching was proposed by Ostrovsky et al. [3],
[4] (referred to as the Ostrovsky scheme in this paper),
which allows a user to retrieve files of interest from an
untrusted server without leaking any information. How-
ever, the Ostrovsky scheme has a high computational
cost, since it requires the cloud to process the query
(perform homomorphic encryption) on every file in a
collection. Otherwise, the cloud will learn that certain
files, without processing, are of no interest to the user.
It will quickly become a performance bottleneck when
the cloud needs to process thousands of queries over a
collection of hundreds of thousands of files. We argue
that subsequently proposed improvements, like [5], [6],
also have the same drawback. Commercial clouds follow
a pay-as-you-go model, where the customer is billed for
different operations such as bandwidth, CPU time, and
so on. Solutions that incur excessive computation and
communication costs are unacceptable to customers.

To make private searching applicable in a cloud en-
vironment, our previous work [7] designed a cooperate
private searching protocol (COPS), where a proxy server,
called the aggregation and distribution layer (ADL), is
introduced between the users and the cloud. The ADL
deployed inside an organization has two main function-
alities: aggregating user queries and distributing search
results. Under the ADL, the computation cost incurred
on the cloud can be largely reduced, since the cloud
only needs to execute a combined query once, no matter
how many users are executing queries. Furthermore,
the communication cost incurred on the cloud will also
be reduced, since files shared by the users need to be
returned only once. Most importantly, by using a series
of secure functions, COPS can protect user privacy from
the ADL, the cloud, and other users.
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In this paper, we introduce a novel concept, differential
query services, to COPS, where the users are allowed
to personally decide how many matched files will be
returned. This is motivated by the fact that under certain
cases, there are a lot of files matching a user’s query,
but the user is interested in only a certain percentage
of matched files. To illustrate, let us assume that Alice
wants to retrieve 2% of the files that contain keywords
“A, B”, and Bob wants to retrieve 20% of the files that
contain keywords “A, C”. The cloud holds 1,000 files,
where {F1, . . . , F500} and {F501, . . . , F1000} are described
by keywords “A, B” and “A, C”, respectively. In the
Ostrovsky scheme, the cloud will have to return 2, 000
files. In the COPS scheme, the cloud will have to return
1, 000 files. In our scheme, the cloud only needs to return
200 files. Therefore, by allowing the users to retrieve
matched files on demand, the bandwidth consumed in
the cloud can be largely reduced.

Motivated by this goal, we propose a scheme, termed
Efficient Information retrieval for Ranked Query (EIRQ),
in which each user can choose the rank of his query
to determine the percentage of matched files to be re-
turned. The basic idea of EIRQ is to construct a privacy-
preserving mask matrix that allows the cloud to filter out
a certain percentage of matched files before returning to
the ADL. This is not a trivial work, since the cloud needs
to correctly filter out files according to the rank of queries
without knowing anything about user privacy. Focusing
on different design goals, we provide two extensions:
the first extension emphasizes simplicity by requiring
the least amount of modifications from the Ostrovsky
scheme, and the second extension emphasizes privacy by
leaking the least amount of information to the cloud.

Our key contributions are as follows:
1) We propose three EIRQ schemes based on the

ADL to provide a cost-efficient solution for private
searching in cloud computing.

2) The EIRQ schemes can protect user privacy while
providing a differential query service that allows
each user to retrieve matched files on demand.

3) We provide two solutions to adjust related param-
eters; one is based on the Ostrovsky scheme, and
the other is based on Bloom filters.

4) Extensive experiments were performed using a
combination of simulations and real cloud deploy-
ments to validate our schemes.

The remainder of this paper is organized as follows.
We introduce related work in Section 2 before presenting
preliminaries in Section 3. We describe EIRQ schemes in
Section 4 and adjust the parameters in Section 5. After
analyzing the performance and security of the proposed
schemes in Section 6, we conduct evaluations in Section
7. Finally, we conclude this paper in Section 8.

2 RELATED WORK

Our work aims to provide differential query services
while protecting user privacy from the cloud. Existing

research that is similar to ours can be found in the areas
of private searching [3]–[11].

Unlike searchable encryption [2], [12], where the user
conducts searches on encrypted data, private searching
performs keyword-based searches on unencrypted data.
Private searching was first proposed in [3], [4], which
allows a server to filter streaming data without compro-
mising user privacy. Their solution requires the server
to return a buffer of size O(f log(f)) when f files match
a user’s query. Each file is associated with a survival
rate, which denotes the probability of this file being
successfully recovered by the user. Based on the Paillier
cryptosystem [13], the files that mismatch a query will
not survive in the buffer, but the matched files enjoy a
high survival rate.

Among various extensions, Refs. [5], [6] further re-
duced the communication cost from O(f log(f)) to O(f)
by solving a set of linear equations to recover f matched
files. However, their scheme requires the decryption of
one more buffer, thus the computation cost is higher than
the Ostrovsky scheme. Ref. [8] presented an efficient de-
coding mechanism which allows the recovery of files that
collide in a buffer position. Ref. [9] proposed a recursive
extraction mechanism, which requires a buffer of size
O(f) when f files match a user’s query. Ref. [10] pro-
posed two new communication-optimal constructions;
one uses Reed-Solomon codes and allows for a zero-
error, and the other is based on irregular LDPC codes
and allows for lower computation cost at the server. The
above private searching schemes only support searching
for OR of keywords or AND of two sets of keywords.
Ref. [11] extended the types of queries to support dis-
junctive normal forms (DNF) of keywords. The main
drawback of existing private searching schemes is that
both the computation and communication costs grow
linearly with the number of users executing queries.
Thus, when applying these schemes to a large-scale
cloud environment, querying costs will be extensive.

Our previous work [7] was the first to make private
searching techniques applicable to a cloud environment.
However, Ref. [7] requires the cloud to return all of the
matched files, which may cause a waste of bandwidth
when only a small percentage of files are of interest.
To alleviate the problem, we introduced the concept of
differential query services in [14]. The main difference
between this work and [14] is that we provide two
extensions to address different aspects of the problem,
and we conduct extensive experiments on a real cloud
to verify the effectiveness of the proposed schemes.

3 BACKGROUND
3.1 System Model
The system mainly consists of three entities1: the aggre-
gation and distribution layer (ADL), many users, and the

1. The users inside an organization share data in the cloud. Thus, we
assume that a management server maintained by the organization is
in charge of managing the authorized users and related keys. Limited
by the space, we do not detail this entity here.
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Fig. 1. System model.

cloud, as shown in Fig. 1. For ease of explanation, we
only use a single ADL in this paper, but multiple ADLs
can be deployed as necessary. An ADL is deployed in
an organization that authorizes its staff to share data in
the cloud. The staff members, as the authorized users,
send their queries to the ADL, which will aggregate user
queries and send a combined query to the cloud. Then,
the cloud processes the combined query on the file col-
lection and returns a buffer that contains all of matched
files to the ADL, which will distribute the search re-
sults to each user. To aggregate sufficient queries, the
organization may require the ADL to wait for a period
of time before running our schemes, which may incur
a certain querying delay. In the supplementary file, we
will discuss the computation and communication costs
as well as the querying delay incurred on the ADL.

To further reduce the communication cost, a differ-
ential query service is provided by allowing each user
to retrieve matched files on demand. Specifically, a user
selects a particular rank for his query to determine the
percentage of matched files to be returned. This feature
is useful when there are a lot of files that match a user’s
query, but the user only needs a small subset of them.

3.2 Security Model and Design Goals

The ADL is deployed inside the security boundary of an
organization, and thus it is assumed to be trusted by all of
the users. In the supplementary file, we will discuss how
the EIRQ schemes work without such an assumption.
The communication channels are assumed to be secured
under existing security protocols, such as SSL, during
information transfer. With these assumptions, as long
as the ADL obeys our schemes, a user cannot know
anything about other users’ interests, and thus the cloud
is the only attacker in our security model. As in existing
work [15], [16], the cloud is assumed to be honest but
curious. That is, it will obey our schemes, but still wants
to know some additional information about user privacy.

Ref. [2] classified user privacy into search privacy and
access privacy. In our work, user queries are classified into
multiple ranks, and thus a new kind of user privacy,
rank privacy, also needs to be protected against the
cloud. Rank privacy entails hiding the rank of each user
query from the cloud, i.e., the cloud provides differential
query services without knowing which level of service

Fig. 2. Working process.

is chosen by the user. Rank privacy can be classified into
basic level and high level, where basic level will hide the
rank of each query from the cloud, and the high level
will further hide the number of ranks from the cloud.
Our design goal can be subdivided as follows:

• Cost efficiency. The users can retrieve matched files
on demand to further reduce the communication
costs incurred on the cloud.

• User privacy. The cloud cannot know anything
about the user’s search privacy, access privacy, and
at least the basic level of rank privacy.

3.3 Overview of the Ostrovsky Scheme
We briefly introduce the Ostrovsky scheme [3], [4], which
relies on a public key cryptosystem, the Paillier cryptosys-
tem [13]. Let Epk(m) denote the encryption of plaintext
m under public key pk. The Paillier cryptosystem has
the following homomorphic properties:

• Epk(a) · Epk(b) = Epk(a+ b)
• Epk(a)

b = Epk(a · b)
The Paillier cryptosystem allows the performance of

certain operations, such as multiplication and exponenti-
ation, on ciphertext directly. Given the resultant cipher-
text, the user can obtain the corresponding plaintext that
processes addition and multiplication operations.

The Ostrovsky scheme consists of three algorithms, the
working process of which is shown in Fig. 2-(a). Two
assumptions are used in their scheme: first, a dictionary
that consists of the universal keywords is assumed to be
publicly available; second, the users are assumed to have
the ability to estimate the number of files that match
their queries. To better illustrate its working process, we
provide an example in the supplementary file.

Step 1. The user runs the GenerateQuery algorithm to
send an encrypted query to the cloud. The query is a bit
string encrypted under the user’s public key, where each
bit is an encryption of 1, if the keyword in the dictionary
is chosen; otherwise, it is an encryption of 0.

Step 2. The cloud runs the PrivateSearch algorithm
to return an encrypted buffer to the user. Generally
speaking, the cloud processes the encrypted query on
every file in the collection to generate an encrypted c-
e pair, and maps it to multiple entries of an encrypted
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buffer. For file Fj , the corresponding c-e pair, denoted
as (cj , ej), is generated as follows: the bits in query Q
corresponding to keywords in Fj are multiplied together
to form cj =

∏
Dic[i]∈Fj

Q[i], where Dic[i] denotes the
i-th keyword in the dictionary, and file content |Fj | is
powered to cj to form ej = c

|Fj |
j .

Then, the cloud constructs a buffer of size β. Let B

denote the buffer, where the i-th entry, denoted as B[i],
consists of two parts, denoted as B[i, 1] and B[i, 2], both
of which are initialized with an encryption of 0 under
the user’s public key. To map (cj , ej) to the buffer, the
cloud randomly chooses an entry, say p∗, and multiplies
(cj , ej) to this entry by performing B[p∗, 1] = B[p∗, 1] · cj
and B[p∗, 2] = B[p∗, 2] · ej . The mapping operation will
be performed γ times. After mapping all pairs to the
buffer, each buffer entry has one of the three statuses:
survival, collision, and mismatch. If only one matched file
is mapped, the entry state is survival; if more than one
matched file is mapped, the entry state is collision; if no
matched files are mapped, the entry state is mismatch.

Step 3. The user runs the FileRecover algorithm to
recover files. The user decrypts the buffer, entry by entry,
to obtain the plaintext c-e pairs. For the entries in the
survival state, file content can be recovered by dividing
the plaintext e value by the plaintext c value.

The security of the Ostrovsky scheme derives from the
semantic security of the Paillier cryptosystem. The key
technique of their scheme is that the files mismatching a
user’s query are processed to encrypted 0s, which have
no impact on the matched files, even if they are mapped
in the same entry. Thus, the buffer size only depends on
the number of matched files, which is much smaller than
the number of files stored in the cloud.

4 SCHEME DESCRIPTION

In this section, we will describe the original EIQR scheme
and its two extensions. To distinguish the three EIRQ
schemes, we name the original EIRQ scheme as EIRQ-
Efficient, the first extension as EIRQ-Simple, and the
second extension as EIRQ-Privacy, in this paper.

The basic idea of EIQR-Efficient is to construct a
privacy-preserving mask matrix with which the cloud can
filter out a certain percentage of matched files before
mapping them to a buffer. As proven in the Ostrovsky
scheme, the file survival rate is determined by the buffer
size β and mapping times γ. Therefore, the basic idea of
two extensions is that, for each rank i ∈ {0, . . . , r}, the
ADL adjusts the buffer size βi and the mapping times γi
to make the file survival rate qi approach 1−i/r. To better
illustrate the working process of the EIRQ schemes, we
provide examples in the supplementary file.

4.1 The EIRQ-Efficient Scheme
Before illustrating EIQR-Efficient, two fundamental
problems should be resolved:

Firstly, we should determine the relationship between
query rank and the percentage of matched files to be

Algorithm 1 The EIRQ-Efficient scheme
MatrixConstruct (run by the ADL with public key pk)
for i = 1 to d do

set l to be the highest rank of queries choosing Dic[i]
for j = 1 to r do

if j ≤ r − l then
M [i, j] = Epk(1)

else
M [i, j] = Epk(0)

adjust γ and β so that file survival rate is 1
FileFilter (run by the cloud)
for each file Fj stored in the cloud do

for i = 1 to d do
k = j mod r; cj =

∏
Dic[i]∈Fj

M [i, k]; ej = c
|Fj |
j

map (cj , ej) γ times to a buffer of size β

returned. Suppose that queries are classified into 0 ∼ r
ranks. Rank-0 queries have the highest rank and Rank-r
queries have the lowest rank. In this paper, we simply
determine this relationship by allowing Rank-i queries
to retrieve (1− i/r) percent of matched files. Therefore,
Rank-0 queries can retrieve 100% of matched files, and
Rank-r queries cannot retrieve any files.

Secondly, we should determine which matched files
will be returned and which will not. In this paper, we
simply determine the probability of a file being returned
by the highest rank of queries matching this file. Specif-
ically, we first rank each keyword by the highest rank
of queries choosing it, and then rank each file by the
highest rank of its keywords. If the file rank is i, then the
probability of being filtered out is i/r. Therefore, Rank-0
files will be mapped into a buffer with probability 1, and
Rank-r files will not be mapped at all. Since unneeded
files have been filtered out before mapping, the mapped
files should survive in the buffer with probability 1. In
Section 5, we will illustrate how to adjust the buffer size
and mapping times to achieve this goal.

EIRQ-Efficient mainly consists of four algorithms, with
its working process being shown in Fig. 2-(b). Since algo-
rithms QueryGen and ResultDivide are easily understood,
we only provide the details of algorithms MatrixCon-
struct and FileFilter in Alg. 1.

Step 1. The user runs the QueryGen algorithm to send
keywords and the rank of the query to the ADL. Since
the ADL is assumed to be a trusted third party, this query
will be sent without encryption.

Step 2. After aggregating enough user queries, the
ADL runs the MatrixConstruct algorithm to send a mask
matrix to the cloud. The mask matrix M is a d-row and
r-column matrix, where d is the number of keywords
in the dictionary, and r is the lowest query rank. Let
M [i, j] denote the element in the i-th row and the j-
th column, and let l be the highest rank of queries
that choose the i-th keyword Dic[i] in the dictionary.
M is constructed as follows: for the i-th row of M that
corresponds to Dic[i], M [i, 1], . . . , M [i, r − l] are set to
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Algorithm 2 The EIRQ-Simple scheme
MatrixConstruct (run by the ADL with public key pk)
for i = 0 to r − 1 do

for j = 1 to d do
if Dic[j] is in Rank-i queries then
Qi[j] = Epk(1)

else
Qi[j] = Epk(0)

adjust γi and βi so that survival rate of Rank-i files
is qi = 1− i/r

FileFilter (run by the cloud)
for i = 0 to r − 1 do

for each file F in the cloud do
for j = 1 to d do
c =

∏
Dic[j]∈F Qi[j]; e = c|F |

map (c, e) γi times to Bi of size βi

1, and M [i, r − l + 1], . . . ,M [i, r] are set to 0, then each
element is encrypted under the ADL’s public key pk.
For the rows that correspond to Rank-l keywords, the
ADL sets the first r − l elements, rather than random
r − l elements, to 1. The reason is to ensure that, given
any Rank-l file Fj , when we choose a random number
k, the probability of all of the k-th elements of the rows
that correspond Fj ’s keywords being 0 is l/r, which is
determined by the highest rank of Fj ’s keywords.

Step 3. The cloud runs the FileFilter algorithm to return
a buffer that contains a certain percentage of matched
files to the ADL. Specifically, the cloud multiplies the k-
th elements of the rows that correspond to Fj ’s keywords
together to form cj , where k = j mod r. Then, it powers
|Fj | to cj to obtain ej , and maps the c-e pair into multiple
entries of a buffer, as in the Ostrovsky scheme. Note
that, with Step 2, we can make sure that, for a Rank-
l file Fj , the probability of cj being 0 is l/r, and thus the
probability of Fj being filtered out is l/r.

Step 4. The ADL runs the ResultDivide algorithm to
distribute search results to each user. File contents are
recovered as the FileRecover algorithm in the Ostrovsky
scheme. To allow the ADL to distribute files correctly, we
require the cloud to attach keywords to the file content.
Thus, the ADL can find out all of the files that match
users’ queries by executing keyword searches.

4.2 The EIRQ-Simple Scheme
The working process of EIRQ-Simple is similar to Fig. 2-
(b). The main differences lie in the MatrixConstruct
and FileFilter algorithms (see Alg. 2). Intuitively, given
queries that are classified into 0 ∼ r ranks, ADL sends r
combined queries, denoted as Q0, . . . , Qr−1, to the cloud,
each with a different rank. Specifically, for Qi, the ADL
sets the j-th bit to an encryption of 1 if the j-th keyword
Dic[j] in the dictionary is chosen by at least one Rank-i
query. The cloud then will generate r buffers, denoted
as B0, . . . ,Br−1, each with a different file survival rate.
Specifically, for Bi, the ADL adjusts the mapping time γi

Algorithm 3 The EIRQ-Privacy scheme
MatrixConstruct (run by the ADL with public key pk)
for i = 0 to r − 1 do

adjust γi and β so that survival rate of Rank-i files
is qi = 1− i/r

for i = 1 to d do
set l to be the highest rank of queries choosing Dic[i]
for j = 1 to max γi do

if j ≤ γl then
M [i, j] = Epk(1)

else
M [i, j] = Epk(0)

FileFilter(run by the cloud)
for each file Fj in the cloud do

for k = 1 to max γi do
for i = 1 to d do
cj,k =

∏
Dic[i]∈Fj

M [i, k]; ej,k = c
|Fj |
j,k

map (cj,k, ej,k) once to a buffer of size β

and the buffer size βi so that the survival rate of files in
Bi is qi = 1− i/r, where 0 ≤ i ≤ r − 1.

The main drawback of EIRQ-simple is that it returns
redundant files when there are files satisfying more than
one ranked query. For example, if Fi is of interest by
Rank-0 and Rank-1 queries, it will be returned twice (in
Rank-0 buffer and Rank-1 buffer, respectively), which
wastes the network bandwidth. Therefore, the best case
scenario is when there are no files of interest to different
ranked queries, and the worst case scenario is when
queries of different ranks query the same files.

4.3 The EIRQ-Privacy Scheme

The working process of EIRQ-Privacy is similar to Fig. 2-
(b). The main differences lie in the MatrixConstruct
and FileFilter algorithms (see Alg. 3). Intuitively, EIRQ-
Privacy adopts one buffer, with different mapping times
for files of different ranks. Let γi denote the mapping
times for a Rank-i query, and let l be the highest rank
of queries that choose the i-th keyword Dic[i] in the
dictionary. The mask matrix M is a d-row and m-
column matrix, where d is the number of keywords in
the dictionary, and m = max γi. The MatrixConstruct
algorithm constructs M in the following way: for the
i-th row of M that corresponds to Dic[i], the ADL sets
M [i, 1], . . . ,M [i, γl] to 1, and M [i, γl + 1], . . . ,M [i,m] to
0, and then encrypts each element under its public
key. Note that for a row that corresponds to a Rank-
l keyword, the ADL sets the first γl elements, rather
than random γl elements, to 1. The reason is to ensure
that, given any Rank-l file, when we multiply the rows
that correspond to file keywords together in a element-
by-element way, the resulting row contains γl elements
whose values are larger than 0.

In the FileFilter algorithm, for each file Fj , the cloud
multiplies the rows that correspond to file keywords,
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element by element, to form a resulting row. Each el-
ement in the resulting row corresponds to a c value. Let
cj,1, . . . , cj,m denote Fj ’s c values, where m = max γi. The
cloud powers the file content |Fj | to cj,k to form ej,k, and
maps (cj,k, ej,k) to the buffer once, where 1 ≤ k ≤ m.
Note that with the MatrixConstruct algorithm, we can
make sure that, for a Rank-l file, the number of c values
larger than 0 is γl. Therefore, although m c-e pairs will
be mapped, only γl of them will take effect, which is
equal to mapping c-e pairs γl times to a buffer.

5 PARAMETER SETTING

5.1 Ostrovsky Parameter Setting

The Ostrovsky scheme has proven that, given f files that
match a query, when each file is randomly mapped γ
times into a buffer of 2 · f · γ entries, the file failure rate
will be lower than f/2γ , i.e., the file survival rate will be
higher than 1−f/2γ . Therefore, given a threshold failure
rate p′ > 0, if we map each file log(f/p′) times2 into a
buffer of size 2 · f · log(f/p′), then the real failure rate p
is smaller than p′, and the real file survival rate q will
be higher than 1− p′. Furthermore, we know that, given
the estimated number of the matched files, two factors
have an impact on file survival rate: the buffer size and
the mapping times.

Suppose that queries are classified into 0 ∼ r ranks,
where f ′

i files match Rank-i query but mismatch higher
ranked queries, and fi files match Rank-i query. The
Ostrovsky parameter setting is as follows: the ADL
determines a threshold value α > 0, and then adjusts
parameters with Eq. 1-3. EIRQ-Efficiency filters out a
certain percentage of matched files before mapping them
into the buffer, and thus all remaining files should be
returned. EIRQ-Efficiency adopts one buffer, where the
file survival rate is 100%. EIRQ-Simple returns multiple
buffers with different file survival rates, one for each
rank. EIRQ-Privacy still adopts one buffer, but with
different mapping times for files of different ranks.
Therefore, EIRQ-Efficient will use Eq. 1, EIRQ-Simple
will use Eq. 2, and EIRQ-Privacy will use Eq. 3 to adjust
the parameters under the Ostrovsky parameter setting.

γ = log(

∑r
i=0 f

′
i · (1− i

r )

α
), β = 2 · γ ·

r∑

i=0

f ′
i · (1−

i

r
) (1)

γi = log(fi/(
i

r
+ α)), βi = 2 · γi · fi (2)

γi = log(f ′
i/(

i

r
+ α)), β =

r∑

i=0

2 · γi · f ′
i (3)

5.2 Bloom Filter Parameter Setting

An alternative solution is to use Bloom filters [17], [18]
to adjust the parameters in our schemes. Bloom filter is
a technique that is used to represent a subset S of n
members from a universe U . A Bloom filter consists of

2. log is the abbreviation of log2

an array of m bits, all of which are initially set to 0. It
uses k independent random hash functions h1, . . . , hk,
with range 0, . . . ,m − 1, to map each member in U to
random k bits. For each member s ∈ U , the bits hi(s)
are set to 1 if s ∈ S; otherwise, they are set to 0, for
1 ≤ i ≤ k. A location can be set to 1 multiple times, but
only the first change has an effect. To check if a member
s is in S, we check whether all hi(s) are set to 1. If not,
then clearly s is not a member of S. Otherwise, there is
still a certain probability (false positive) that s is not in
S, since k bits may be set to 1 by other members.

The false positive is calculated as follows [17]: after all
members of S are hashed, the probability for a specific
bit to be 0 is (1 − 1/m)kn ≈ e(−kn/m). A false positive
occurs when each of k locations of one non-member are
set to 1, which is (1−(1−1/m)kn)k ≈ (1−e(−kn/m))k. Let
g = k · ln(1− e(−kn/m)). Minimizing the false positive is
equivalent to minimizing k, which in turn is equivalent
to minimizing g. When k = ln 2 · (m/n), we have
dg/dk = 0. In this case, the false positive is minimized to
(0.6185)m/n. That is to say, given the number of members
n and the threshold false positive p′′, we can make the
real false positive approximate p′′ when each member
is hashed log

0.6185
(p′′) · ln 2 times to a Bloom filter of

log
0.6185

(p′′) · n bits. Recall that the file failure rate in
EIRQ schemes denotes the probability of a missing file,
i.e., the probability that all mappings of each file collide.
In a sense, the failure rate is equivalent to the false
probability in Bloom filters. Therefore, we let the number
of members n, the threshold false positive p′′, and the
number of bits m in Bloom filters represent the number
of files that match the query f , threshold failure rate p′,
and buffer size β in EIRQ schemes, respectively.

The Bloom filter parameter setting is as follows: the
ADL determines a threshold value α > 0, and then
adjusts parameters with Eq. 4-6. Here, EIRQ-Efficient
will use Eq. 4, EIRQ-Simple will use Eq. 5, and EIRQ-
Privacy will use Eq. 6 to adjust the parameters under the
Bloom filter parameter setting.

γ = log
0.6185

(α) · ln 2, β =
r∑

i=0

(
γ

ln 2
· f ′

i · (1−
i

r
)) (4)

γi = log
0.6185

(
i

r
+ α) · ln 2, βi =

γi
ln 2

· fi (5)

γi = log
0.6185

(
i

r
+ α) · ln 2, β =

r∑

i=0

(
γi
ln 2

· f ′
i) (6)

Note that, in Eqs. 1 and 4, p′ = α, and thus, all of the
files that are mapped into the buffer will survive with a
rate higher than 1−α; in Eqs. 2, 3, 5, and 6, p′i = i/r+α,
and thus the files that match Rank-i queries will survive
in the buffer with a rate higher than 1− i/r − α.

6 ANALYSIS

6.1 Security Analysis
We will show that EIRQ schemes can provide search
privacy, access privacy, and rank privacy as follows.
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TABLE 1
No Rank vs. Three EIRQ schemes

Scheme Computation Communication under Ostrovsky setting Communication under Bloom filter setting 2

No Rank O(t) O(d+ f · log(f/α)) O(d+ f · log
0.6185

(α))

EIRQ-Simple O(r · t) O(r · d+
∑r

i=0(fi · log(fi/(α+ i/r)))) O(
∑r

i=0(r · d+ fi · log0.6185
(i/r + α)))

EIRQ-Privacy O(max(γi) · t) O(max(γi) · d+
∑r

i=0(f
′
i · log(f ′

i/(α+ i/r)))) O(max(γi) · d+
∑r

i=0(f
′
i · log0.6185

(i/r + α)))

EIRQ-Efficient O(t) O(r · d+
∑r

i=0(f
′
i · (1− i/r)) · log(

∑r
i=0 f ′

i ·(1−i/r)

α
)) O(r · d+

∑r
i=0(f

′
i · (1− i/r)) · log

0.6185
(α))

Search privacy. In the three schemes, the combined
query sent to the cloud is encrypted under the ADL’s
public key with the Paillier cryptosystem. The query is a
matrix of encrypted 0s and 1s. The Paillier cryptosystem
is semantically secure, and the ciphertext of every 1 or
0 is different from other 1s or 0s. Therefore, the cloud
cannot deduce what each user is searching for from the
encrypted query.

Access privacy. In the three schemes, the cloud pro-
cesses the encrypted query on each file in a collection,
and maps the processing result into a buffer, which is
encrypted with the ADL’s public key. The cloud conducts
this process for all files in the same way. Therefore,
the cloud cannot know which files are actually returned
from the encrypted buffer.

Rank privacy. In EIRQ-Simple, the messages from the
ADL to the cloud are r encrypted queries, the buffer
size, and the mapping times, where r is the information,
which we leak more than [3]. Given r, the cloud only
knows the number of query ranks without knowing
how many users are in each rank, nor which users are
in which ranks. Therefore, EIRQ-Simple can protect the
basic level of rank privacy for a user. In EIRQ-Privacy,
the message from the ADL to the cloud is a d-row and m-
column mask matrix, where d is the number of keywords
in the dictionary, and m = max γi is the maximal value
of mapping times. Here, no extra information is leaked
more than [3]. Therefore, EIRQ-Privacy provides a high
level of user rank privacy. In EIRQ-Efficient, the message
from the ADL to the cloud is a d-row and r-column
mask matrix, where d is the number of keywords in
the dictionary, and r is the lowest rank of user queries.
Here, r is the information that we leak more than [3].
Therefore, EIRQ-Efficient can protect the basic level of
rank privacy for a user.

6.2 Performance Analysis

We compare the performance between No Rank and the
three EIRQ schemes under different parameter settings
(see Table 1). In No Rank, the ADL only combines user
queries, but does not provide differential query services.
In the supplementary file, we also provide a comparison
of performance between No Rank and the work in [3],
[6]. Suppose that queries are classified into 0 ∼ r ranks,
t files stored in the cloud whose keywords constitute
a dictionary of size d, fi files matching Rank-i queries,
and f ′

i files matching Rank-i queries but mismatching

higher ranked queries. Furthermore, in No Rank and
EIRQ-Efficient, the threshold file survival rate p′ is set to
α; in EIRQ-Simple and EIRQ-Privacy, p′i is set to i/r+α.

Computational cost. We only consider the cost of the
exponential operation, which is the most expensive. In
both parameter settings, the results are the same. In
EIRQ-Simple, the computational cost is r times more
than No Rank since, for each ranked query, the cloud
needs to process it on the file collection once. In EIRQ-
Privacy, the computational cost is max(γi) times more
than No Rank since, for each file, the cloud needs to ex-
ecute max(γi) exponentiations with the matrix elements.
In EIRQ-Efficient, the computational cost is much the
same as in No Rank, since the cloud needs to execute
exponentiation once for each file.

Communication cost. Under the Ostrovsky parame-
ter setting, for EIRQ-Simple, the ADL sends r queries,
each of which is of size O(d), to the cloud, which
will return r buffers to the ADL, each of which is
of size O(fi · log(fi/(i/r + α))); for EIRQ-Privacy, the
ADL sends a mask matrix of size O(max γi · d) to the
cloud, which will return a buffer of size O(

∑r
i=0(f

′
i ·

log(f ′
i/(i/r + α)))) to the ADL; for EIRQ-Efficient, the

ADL sends a mask matrix of size O(r · d) to the cloud,
which will return a buffer of size O(

∑r
i=0(f

′
i · (1− i/r)) ·

log(
∑r

i=0 f ′
i ·(1−i/r)

α )) to the ADL. Under the Bloom filter
parameter setting, the query sizes are the same as those
under the Ostrovsky parameter setting. The buffer sizes
returned from the cloud in EIRQ-Simple, EIRQ-Privacy,
and EIRQ-Efficient are O(

∑r
i=0(fi · log0.6185

(i/r + α))),
O(

∑r
i=0(f

′
i · log0.6185

(i/r+α))), and O(
∑r

i=0(f
′
i ·(1−i/r)) ·

log0.0.6185(α)), respectively.

7 EVALUATION

In this section, we will compare three EIRQ schemes
from the following aspects: file survival rate and compu-
tation/communication cost incurred on the cloud. Then,
based on the simulation results, we deploy our program
in Amazon Elastic Compute Cloud (EC2) to test the
transfer-in and transfer-out time incurred on the cloud
when executing private searches. Note that the energy-
performance trade-off is crucial to the success of cloud
computing, and existing energy-saving techniques are

2. O(log
0.6185

(x)) = O(log(x)), as log
0.6185

(x) =
log(x)

log(0.6185)
, where

1/ log(0.6185) is a constant. We keep log
0.6185

(x) in the complexity
analysis for the ease of comparison.
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TABLE 2
Parameters

Notation Description Value
|F | File content 1KB
|w| Keyword content 1KB
n The number of users 1-100
d The number of keywords in Dic 100
k The number of keywords in each query 1-5
w The number of keywords in each file 1-5
t The number of files stored in the cloud 1, 000
r The lowest user rank 4
α Threshold value 0.1

Fig. 3. File survival rate under Ostrovsky setting.

Fig. 4. File survival rate under Bloom filter setting.

hard to directly extend to a cloud environment [19], [20].
As part of our future extensions, we will evaluate the
consumed energy overhead in the cloud to verify the
effectiveness of our schemes. We use No Rank to denote
unranked queries under the ADL. The summary of the
experiment parameters are shown in Table 2.

7.1 File Survival Rate
Since queries are classified into 0 ∼ 4 ranks, queries
in Rank-0, Rank-1, Rank-2, Rank-3, and Rank-4 should
retrieve 100%, 75%, 50%, 25%, 0% of matched files, re-
spectively. However, in Fig. 3, the real failure rate in
EIRQ-Simple and EIRQ-Privacy under the Ostrovsky
parameter setting is much lower than i/r, and thus, the
real file survival rate is higher than the desired value
of 1 − i/r (about 25% and 50% of files are redundantly
returned to users); Only EIRQ-Efficient, which filters a
certain percentage of matched files before mapping them
to a buffer, provides differential query services.

Under the Bloom filter parameter setting, we first
obtain corresponding mapping times. Specifically, for file
survival rate 100%, 75%, 50%, 25%, we have the optimal
mapping times 7, 2, 1, 0.4, respectively. Based on these
values, the buffer size can be calculated with Eqs. 4-6 for

5 10 15 20 25
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EIRQ−Simple
EIRQ−Privacy
EIRQ−Efficient

(a) Bloom filter parameter setting
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200
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EIRQ−Privacy
EIRQ−Efficient

(b) Ostrovsky parameter setting

Fig. 5. Comparison of computational cost at the cloud.
The x-axis denotes the number of queries in each rank,
and the y-axis denotes the computation time (s).

different schemes. In practice, γ and β must be integers.
Thus, we use �γ� and �β� to replace the corresponding
values. Using these parameters, the file survival rates
for different ranks are shown in Fig. 4, where three
EIRQ schemes can provide differential query services,
and no bandwidth is wasted in each EIRQ scheme.
Therefore, in terms of file survival rate, the Bloom filter
parameter setting can achieve better performance than
the Ostrovsky parameter setting.

7.2 Computational Cost
As described in Section 6-(B), the computational cost is
mainly determined by the number of exponentiations
performed by the cloud, which is almost the same under
the Bloom filter and the Ostrovsky parameter settings.
In order to justify the analyses, we will compare the
computational cost between No Rank and three EIRQ
schemes.

The comparisons of computational cost on the cloud
are shown in Fig. 5, where the number of queries in
each rank ranges from 1 to 25. In Fig. 5-(a), under the
Bloom filter parameter setting, the computational cost
is approximately 14.807s in No Rank, 59.274s in EIRQ-
Simple, 101.075s in EIRQ-Privacy, and 14.861s in EIRQ-
Efficient. In Fig. 5-(b), under the Ostrovsky parameter
setting, the computational cost approximately ranges
from 14.8270s to 14.8788s in No Rank, from 59.1671s to
59.3838s in EIRQ-Simple, from 114.0475s to 176.5107s in
EIRQ-Privacy, and from 14.8664s to 14.9269s in EIRQ-
Efficient. In both settings, EIRQ-Privacy consumes the
most computation cost, and EIRQ-Efficient, like No
Rank, consumes the least computation cost.

7.3 Communication Cost
As described in Section 6-(B), the communication cost
mainly depends on the buffer size generated by the
cloud, which is calculated in different ways under d-
ifferent parameter settings. Furthermore, the buffer size
depends on the number of files that match the queries,
which is different when users have different common
interests, i.e., the average number of common keywords
among user queries. Therefore, in different parameter
settings, we will analyze the buffer size under differ-
ent common interests. In the following experiments, 1
common keyword, 2 common keywords, and 4 common
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Fig. 6. Comparison of communication cost under the Bloom filter setting. The x-axis denotes the number of queries
in each rank, and the y-axis denotes the buffer size (KB).
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Fig. 7. Comparison of communication cost under the Ostrovsky setting. The x-axis denotes the number of queries in
each rank, and the y-axis denotes the buffer size (KB).

keywords denote that the average common keywords
among user queries are 1, 2, and 4, respectively; random
keywords denote that each user randomly chooses key-
words for its query.

From Figs. 6 and 7, we know that the EIRQ schemes
perform better under the Bloom filter setting compared
to under the Ostrovsky setting. Under the Bloom filter
setting, all of the EIRQ schemes consume less commu-
nication costs than No Rank, e.g., EIRQ-Efficient, EIRQ-
Privacy, and EIRQ-Simple can further reduce communi-
cation costs by about 50%, 35%, and 30% compared to
No Rank, respectively, when the queries share 4 common
keywords. Under the Ostrovsky setting, EIRQ-Simple
always consumes more bandwidth than No Rank, and
EIRQ-Privacy only performs better than No Rank under
certain conditions. In both settings, the EIRQ schemes
consume less bandwidth as the common interests among
users increase. For example, when there are 25 users in
each rank under the Bloom filter setting, EIRQ-Efficient
only generates a 1MB buffer under 4 common keyword-
s, but 3MB under 1 common keyword.

Notice that in both settings, EIRQ-Efficient always has
the best performance, the next is EIRQ-Privacy, and the
last is EIRQ-Simple. Furthermore, EIRQ-Efficient works
better than No Rank when only a few users are con-
ducting searches. For example, when there are 5 queries
with 4 common keywords, EIRQ-Efficient generates a
buffer of size 274KB, but No Rank generates a buffer
of size 467KB, under the Bloom filter setting; EIRQ-
Efficient generates a buffer of size 439KB, but No Rank
generates a buffer of size 834KB under the Ostrovsky
setting. When there are 5 queries in each rank with 1
common keyword, EIRQ-Efficient generates a buffer of
size 687KB, but No Rank generates a buffer of size
1513KB, under the Bloom filter setting; EIRQ-Efficient
generates a buffer of size 1309KB, but No Rank gen-

Fig. 8. Comparison of transfer-in time.
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Fig. 9. Transfer-out time in real cloud under the Bloom
filter setting. The x-axis denotes the number of users, and
the y-axis denotes transferring time (s).

erates a buffer of size 3194KB, under the Ostrovsky
setting.

7.4 Transfer Time in a Real Cloud
To verify the feasibility of our schemes, we deploy our
program in Amazon EC2, to test the transfer-in (receiv-
ing query) and transfer-out (sending buffer) time at the
cloud. The local machine has an Intel Core 2 Duo E8400
3.0 GHz CPU and 8 GB Linux RAM. We subscribe EC2
amzn-ami-2011.02.1.i386-ebs (ami-8c1fece5) AMI and a
small type instance with the following specifications:
32-bit platform, a single virtual core equivalent to 1
compute unit CPU, and 1.7 GB RAM. The average
bandwidth from EC2 to the local machine is 33.43 MB/s,
and from the local machine to EC2 is 42.98 MB/s.
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Fig. 10. Transfer-out time in real cloud under the Ostro-
vsky setting. The x-axis denotes the number of users, and
the y-axis denotes the transferring time (s).

First, we test the transfer-in time in the real cloud,
which is mainly incurred by receiving queries from the
ADL. Under both parameter settings, the query size
for No Rank, EIRQ-Simple, EIRQ-Privacy, and EIRQ-
Efficient can be calculated with O(d), O(r · d), O(max γi ·
d), and O(r · d), respectively. Given d = 100, r = 4, and
|w| = 1KB, the query size for No Rank, EIRQ-Simple,
and EIRQ-Efficient is about 100KB, 400KB, and 400KB,
respectively. For EIRQ-Privacy, the mapping times are
calculated in different ways under different parameter
settings. Under the Bloom filter parameter setting, the
mapping times are 7, 4, 1, 1, respectively, and thus the
query size is about 700KB. However, under the Ostro-
vsky parameter setting, the mapping times depend on
the number of matched files, which in turn depends on
the common interests among queries. The comparisons
of transfer-in time are shown in Fig. 8.

Then, we test the transfer-out time at the cloud, which
is mainly incurred by returning files to the ADL. The
results are shown in Figs. 9 and 10. In all cases, EIRQ-
Efficient consumes the least amount of transfer time,
and EIRQ-Simple works better than No-Rank under the
Bloom filter setting. For example, under the Ostrovsky
scheme, No-Rank consumes from 83.6s to 1191.8s, EIRQ-
simple consumes from 189.8s to 1597.6s, EIRQ-Privacy
consumes from 83.3s to 1099.9s, and EIRQ-Efficient con-
sumes from 57.4s to 475.1s when there are 4 common
keywords; No-Rank consumes from 191.1s to 3857.5s,
EIRQ-simple consumes from 181.5s to 5369.7s, EIRQ-
Privacy consumes from 161.8s to 3323.4s, and EIRQ-
Efficient consumes from 81.3s to 1502.7s when there is
1 common keyword.

Therefore, EIRQ-Efficient is most suitable to be de-
ployed to a cloud environment. For example, the time
to transfer a query from the ADL to the cloud consumes
less than 100 seconds, and the time to transfer the buffer
from the cloud to the ADL consumes less than 500
seconds, under 4 common keywords.

8 CONCLUSION

In this paper, we proposed three EIRQ schemes based
on an ADL to provide differential query services while
protecting user privacy. By using our schemes, a user
can retrieve different percentages of matched files by

specifying queries of different ranks. By further reducing
the communication cost incurred on the cloud, the EIRQ
schemes make the private searching technique more ap-
plicable to a cost-efficient cloud environment. However,
in the EIRQ schemes, we simply determine the rank of
each file by the highest rank of queries it matches. For
our future work, we will try to design a flexible ranking
mechanism for the EIRQ schemes.
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